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Abstract

An approach is proposed for robust online behaviour redmgnand abnor-
mality detection based on discovering natural groupingetfdviour patterns
through unsupervised learning and a time accumulativaliitly measure.
A novel behaviour learning model and a run-time accumuatiliability
measure are introduced to determine both the natural grgsmf possible
normal behaviour classes without manual labelling and veluéficient visual
evidence has become available for differentiating ambtiggiamong differ-
ent behaviour classes observed online. This ensures loginagcognition at
the shortest possible time and robust abnormality detectio

1 Introduction

One of the critical functionalities of an automatic videasbd behaviour monitoring sys-
tem is to detect abnormal behaviour and recognise normaivii@lr reliablyon-the-fly

A novel behaviour modelling approach is proposed in thiskased on discovering nat-
ural grouping of bebaviour patterns through unsupervisadhing and by introducing a
time accumulative reliability measure on visual featuresilable at a given time. Our
approach differs from previous approaches in the follovdspects: (1) Different classes
of behaviour patterns are discovered automatically. This avoid the laborious process
of manual labelling and the bias in manual labelling causethb inconsistency of hu-
man interpretation of behaviour. (2) A novel relevancen@sag algorithm is employed for
clustering behaviour patterns using the eigenvectorseobéhaviour affinity matrix. The
number of behaviour classes is automatically determinedyasly the relevant eigenvec-
tors. Unlike previous unsupervised feature relevanceniegralgorithms such as [4, 2],
our algorithm is specially tailored for fast and robust st of relevant eigenvectors
of the behaviour affinity matrix. (3) A novel time-accumwdtreliability measure is in-
troduced to determine when sufficient visual features hagoime available in order to
overcome any ambiguity among different behaviour clasbssmed online due to insuf-
ficient visual evidence at a given time instance. This ersstoeust behaviour recognition
and abnormality detection at the shortest possible timeppesed to previous work such
as [14, 3, 6] which requires completed behaviour patterns.approach is also advanta-
geous over previous approaches usingMaimum LikelihoodML) method [13, 3, 6].
Such as a ML based approach makes a forced decision on behesognition at each
time instance without considering the reliability and siéincy of the accumulated visual
evidence. Consequently, it can be error prone. The effatiss and robustness of our
approach is demonstrated through experiments using noég@arse data sets collected
from both indoor and outdoor surveillance scenarios.



2 Behaviour Modelling

A continuous videdV is segmented int&V segment® = {vy,...,v,,..., vy} SO that
each segment contains approximately a single behavioterpdl0, 14]. A discrete event
based approach is adopted for behaviour representatipnHitst, an adaptive Gaussian
mixture background model is used to detect foreground pix8kcond, the foreground
pixels in a vicinity are grouped into a blob using the conadaomponent method. Each
blob with its average pixel-change-history value gredtanta threshold is then defined
as an event. An event is represented as a 7-dimensionaldeetctor capturing location,
shape and motion information. Third, classification is perfed in a 7D feature space
using a Gaussian Mixture Model (GMM). The number of evenssta/ . is determined
automatically using Bayesian Information Criterion (BIZ). The learned GMM is used
to classify each detected event into ond@fevent classes. Finally, the behaviour pattern
captured by thexth video segment,,, consisting off;,, image frames, is represented as
a behaviour pattern feature vec®y,=[pn1,.-.,Pnt, - - - » Pnt, |, Where thetth element
Pt is aK, dimensional variablep,,; = [p,, ..., p&,, ...,pff;]; Pn: is computed from the
tth image frame ofr,, wherep”, is the posterior probability that an event of i event
class has occurred in the frame given the learned GMM.

2.1 Behaviour Affinity Matrix
Consider a training data sBt = {Py,...,P,,..., Py} consisting ofN behaviour pat-
terns, wheréP,, is thenth behaviour pattern feature vector as defined above. Weaim t
first discover the natural grouping of the training behawvjoatterns upon which a behav-
iour model can be based. This is an unsupervised clusteraigm with the number of
clusters unknown. However, there are two characterisfittsedbehaviour feature vectors
that make the clustering problem challenging: (1) Eachufeatector can be of different
length therefore requires dynamic warping before they @andmpared with. Conven-
tional clustering approaches such as K-means and mixtudelsithus cannot be applied
directly. (2) A definition of a distance/affinity metric angpthese variable length feature
vectors is not simply Euclidean therefore requires a naiatrstring similarity measure.
We propose to utilise Dynamic Bayesian Networks (DBNs) tavjate a dynamic rep-
resentation of each behaviour pattern feature vector iardalboth address the need for
dynamic warping and provide a string similarity metric. Mapecifically, each behav-
iour pattern in the training set is modelled using a DBN. Tamwee the affinity between
two behaviour patterns representedPasandP;, two DBNs denoted aB; andB; are
trained onP; andP; respectively using the EM algorithm [1, 5]. The affinity bewwn
P; andP; is then computed ass;; = 3 {Ti] log P(P;|B;) + Ti log P(Pi|Bj)}, where
P(P;|B;) is the likelihood of observin® ; givenB;, andT; andT are the lengths dP;
andP; respectively. DBNSs of different topologies can be usedhisiwork, we employ a
Multi-Observation Hidden Markov Model (MOHMM) [3]. The nuwer of hidden states
for each hidden variables in the MOHMM is seth®, i.e. the number of event classes
The eigenvectors of an affinity matri@ = {S;;} can then be employed directly
for data clustering. However, it has been shown in [9, 8] th& more desirable to
perform clustering based on the eigenvectors of the nosedaffinity matrixS, defined
asS = L~3SL~2 whereL is anN x N diagonal matrix withL;;, = Zj Sij. The

1K, reflects the complexity of the behaviour patterns, so is tmetrar of hidden states. So it is appropriate
to set these two to be equal.



remaining problem is to first determine the number (ordebeadfaviour classek™ before
clustering the behaviour patterns in the training set.

2.2 Selecting Relevant Eigenvectors for Behaviour Clusterm

We assume that the number of clustéfss between 1 andk,,,, a number considered to
be sufficiently larger than the true value 8t We setk,,, = %N whereN is the number
of training sampleg. The training data set is now represented using&hg largest
eigenvectors, denoted 83, = {x1,...,Xn,..., Xy}, With the nth behaviour pattern
being represented asf4,, dimensional feature vectot,, = [e1n,-- -, Ckn,-- -, €K, ns
whereey,, is thenth element of thé:th largest eigenvectas.

Because only the firsi( largest eigenvectors are needed for groupiagclusters
[12, 9], there are certainly redundant/irrelevant eigetwes among thés,,, largest eigen-
vectors. It is important to identify those irrelevant bugla eigenvectors because that (1)
irrelevant features degrade the accuracy of learning, 2rith¢ dimension of the features
space [,,) is high compared to the sample siZ€)(resulting in learning subject to the
curse of dimensionality. To overcome these problems, wieelbere a novel eigenvector
relevance learning algorithm. Specifically, we proposeth&asure the relevance of an
eigenvector according to how well it can separate a datanseseparate groups.

We denote the likelihood of théth eigenvectore, being relevant aske, . Ap-
parently, we havéd < R, < 1. We assume that the elements e, e, follow
two different distributions depending on whethsgy is relevant. The probability den-
sity function (pdf) ofey,, is thus formulated as a mixture model of two components:
P(egnlbe,,) = (1 — Re, ) P(€knl0?, )+ Re, Plern|62, ) whered,,  are the parameters
describing the distributiom(ey, |0;, ) is the pdf ofe,,, wheney is irrelevant/redundant
and P(eg, |02, ) otherwise. R., acts as the weight or mixing probability of the sec-
ond components. The distribution ef,, is assumed to be a single Gaussian to reflect
the fact thate, cannot be used for data grouping when it is irrelevate,|0;, ) =
N (en|pir1, or1) whereN (.|u, o) denotes a Gaussian of mearand covariance. We
assume the second componentRikx,|0.,,, ) as a mixture of two Gaussians to reflect
the factey can separate one group of data from others when it is rel:eﬁé(rmwgkn) =
wiN (ekn|pr2, ok2) + (1 — wi) N (egn|irs, ors) Wherewy is the weight of the first
Gaussian inP(e, |02, ). There are 8 parameters required for describing the distrib
tion of exy: Oc,, = {Rey, k1, bh2s BE3; Ok1, Ok2, Ok3, Wk ;. The maximum likelihood
(ML) estimate off.,, can be estimated using the following algorithm. First, theap
meters of the first mixture compone&@kn are estimated agy; = ﬁ Zf:’:l ern and

Opl = % ij:l(e;m — ug1)?. The rest 6 parameters are then estimated using EM.

Since our relevance learning algorithm is essentially allsearching method, it could
be sensitive to parameter initialisation especially ingressence of noise [1]. To overcome
this problem, oum priori knowledge on the relevance of each eigenvector is utilieed t
set the initial value ofR., . Specifically, we set the initial value @i, , R;k = \;, where
i € [0,1] is the normalised eigenvalue feg with A\; = 1 and\g, = 0.

The estimated{ek provides a continuous-value measurement of the relevaneg. o
Since a ‘hard-decision’ is needed for dimension reductvem simply eliminate thé:th
eigenvectoey if R., < 0.5 and weight the relevant eigenvectors usitig . This gives us
a new data set denotedBs = {y1,...,¥n,-..,yn}. We model the distribution dD,
using a Gaussian Mixture Model (GMM) for behaviour pattelustering. The Bayesian

2As arule of thumb, itk > éN, the training data set would be too sparse for model training.



Information Criterion (BIC) is then employed to select thimal number of components
K, denoted ad<,, corresponding to the number of behaviour classes. Eacévlmh
pattern in the training data set is then labelled as one aktheehaviour classes using the
learned GMM. Itis found by our experiments (see Section &jttie number of behaviour
classes could be severely under-estimated without red@igenvector selection.

2.3 A Composite Behaviour Model using Mixture of MOHMMs

To build a model for the observed/expected behaviour, we riedel thekth behav-
iour class using a MOHMMB,,. The parameters dB;, g, are estimated using all the
patterns in the training set that belong to i@ class. A behaviour mod@&1 is then
formulated as a mixture of th&, MOHMMSs. Given an unseen behaviour pattern, rep-
resented as a behaviour pattern feature véetas described in Section 2, the likelihood
of observingP givenM is P(P|M) = fo:l 2k P(P|By,), whereN is the number of
training behaviour patterns that belong to tfike behaviour class.

3 Abnormality Detection with Reliability Measure

An unseen behaviour pattern of lendkhis represented aB = [p1,...,P¢,--.,PT].
At the tth frame, the accumulated visual information for the bebawpattern, denoted
asP; = [p1,...,p:), is used for online reliable abnormality detection and be&ha
recognition. First, the normalised log-likelihood of obgag P at thetth frame given the
behaviour modeM is computed ag = %log P(P;|M). I, can be computed by extend-
ing the forward part of the forward-backward procedure §BJHHIMM to MOHMM 3. We
then measure the abnormality Bfat each frame usingQ;:

I ift=1

Q= 1)
(1-0a)Q¢_1+a(ly —1l;_1) otherwise

wherea is an accumulating factor determining how important thei@isnformation ex-
tracted from the current frame is for abnormality detecti@ompared té; as an indicator

of normality/abnormalityQ),; could add more weighting to more recent observations. Ab-
normality is detected at framieif Q, < Tha whereTh, is a threshold. Note that it
takes atime delay fap, to stabilise at the beginning of evaluating a behaviouepattiue

to the nature of the forward-backward procedure. The lenfthis time period, denoted
asT,, is related to the complexity of the MOHMM used for behaviouwdalling®.

Beyond abnormality detection, our model is also employquetéorm normal behav-
iour classification. At each framea behaviour pattern needs to be recognised with a
reliability measure as one df, behaviour classes whep, > Th,. To this end, we
measure the reliability of a decision &hbelonging to thé:th behaviour class as:

o= R EBY @
Zi;&k %P(PJBZ')

r IS the ratio of the probability oP, belonging to theé:th behaviour class and that Bf;
belonging to the otheK, — 1 classes. It is a function df P, is reliably recognised as

3The complexity of computing; is O(K.2) and does not increase with

4Th 4 is determined in practice according to the detection ane falsrm rate required by each particular
surveillance application.

SWe setT,, = 3K, in our experiments reported later in the experiment section.



the kth behaviour class only wher, > Th,., a threshold. When there is more than one
ri greater thar'h,., the behaviour pattern is recognised as the class with thedtry,.

For comparison, the commonly uskthximum LikelihoodML) method recognises
P, as thekth behaviour class wheln = arg maxy, { P(P;|By)}. Using the ML method,
recognition has to be performed at each single frame withonsidering how reliable
and sufficient the accumulated visual evidence is. Thisnofiguses errors especially
when there are ambiguities among different classes (e.ghavour pattern can be ex-
plained away equally well by multiple plausible behavioatgs early stage). Compared
to the ML method, our approach holds the decision on behavemognition unless suf-
ficient evidence has been accumulated to overcome amlgguifihe recognition results
obtained using our approach are thus more reliable compartbdse obtained by ML.

4 Experiments
4.1 Corridor Entrance/Exit Human behaviour Monitoring

(e)C5 (fce
Figure 1: Behaviour patterns in a corridor scene. (a)-(@wshmage frames of typical
behaviour patterns belonging to the 6 behaviour classesllis Table 1. Events detected
during each behaviour pattern are shown by colour-codedding boxes in each frame.
A CCTV camera was mounted on the ceiling of an office entryidory monitoring
people entering and leaving the office area (see Fig. 1). Tl @rea is secured by an
entrance-door which can only be opened by scanning an eattyon the wall next to the
door (see middle frame in Fig. 1(b)). Two side-doors were &isated at the right hand
side of the corridor. Typical behaviours occurring in therse would be people entering
or leaving either the office area or the side-doors, and wglkowards the camera. For
this experiment, a data set was collected over 5 differeps @dansisting of 6 hours of
video totalling 432000 frames captured at 20Hz wiftd) x 240 pixels per frame. This
data set was then segmented into sections separated by aioyless intervals lasting
for more than 30 frames. This resulted in 142 video segmdratstoal behaviour pattern
instances. Each segment has on average 121 frames.
Model training — Each training set consist of 80 randomly selected video segsn
without any behaviour class labelling of the video segmehite remaining 62 segments
were used for testing later. This model training exerciss repeated 20 times and in each

8Th,. should be greater than one. In our experiments we foundithat= 10 led to satisfactory results.



C1 | Office area to near end of the corridorC2 | Near end of the corridor to office arga
C3 | Office area to side-doors C4 | Side-doors to office area
C5 | Near end of the corridor to side-doorsC6 | Side-doors to near end of the corridor

Table 1: Six classes of commonly occurred behaviour pattierthe corridor scene.
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Figure 2: An example of model training. (a): The normalisetdviour affinity. (b): the
learned relevance for thi,, largest eigenvectors. The first 7 largest eigenvectors were
determined as relevant features for clustering. (c) andt{dyv the BIC model selection
results without and with relevant eigenvector selectiapeetively.

trial a different model was trained using a different randomiming set. Given each train-
ing set, 4 classes of discrete events were detected andfielhssing automatic model

order selection in clustering (see Figure 1). Over the 2dstrion average 6 eigenvec-
tors were automatically determined as being relevant fastering with smallest 4 and

largest 9. The number of clusters for each training set wesrmdned automatically as

2 and 6 in every trial without and with relevant eigenvectelestion respectively (see
Fig. 2(c)&(d)). By observation, each discovered data elustainly contained samples
corresponding to one of the 6 behaviour classes listed iteTab
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Figure 3: The performance of abnormality detection and Wielia recognition for the
corridor scene. (a): The mean a#d standard deviation of the ROC curves for abnor-
mality detection obtained over 20 trials. (b): Confusiorttixeor behaviour recognition.
Each row represents the probabilities of that class beinfused with all the other classes
averaged over 20 trials. The main diagonal of the matrix shibw the fraction of patterns
correctly recognised and is as follows: [.68 .63 .72 .84 8%2.85].

Abnormality detection — To measure the performance of the learned models on ab-
normality detection, each behaviour pattern in the testigtg was manually labelled as
normal if there were similar patterns in the correspondiaining sets and abnormal
otherwise. On average, there were 7 abnormal behaviougrpatin each testing set.



Frame 25 Frame 50 @ Frame 85

0]
80 ~
—_—Cl] | X p—y
-1 @ ==y @ -mC2
o v alla [
2 = o . ol | & [
-1 c5 o c5
L == | © =Ch
3 2 -1
L <
4 L plmmmmme e e L L L L L w’“
0 50 100 150 0 50 10 150 2 0 60 80 100 120 140
Frame Number Frame Number Frame Number

(b) Q+ computed over time (@), computed over time (dP(P¢|B} ) computed over time

Frame 20 Frame 50 Frame 75 7 Frame 85

(e)
04 T T 1
80
— 1 —~
e 'y
0] =
- = 3
o o o % 0 p—
40 s o -=C2
- = (| o c3
s c
(=)
C6
] 0 M M B N H 0N w0 TR m % w0 @ w0 % w %
Frame Number Frame Number Frame Number
(f) Q+ computed over time (9 computed over time (hP(P,|By ) computed over time

Figure 4: (a): An abnormal behaviour pattern where two peaeplempted to enter an
office area without an entry card. It resembles C2 in the estdge. (b): The behaviour
pattern was detected as abnormality from Frame 62 till tllebased or®),. (c): The be-
haviour pattern between Frame 40 to 53 was recognised IsefialC2 based ory, before
being detected as an abnormality. (d) The behaviour patteswrongly recognised as
C3 before Frame 20 using ML. (e): A normal C3 behaviour patt&tote that it can be
interpreted as either C1 or C3 before the person entereddbédcor. (f): The behaviour
pattern was detected as normal throughout uging (g): It was recognised reliably as
C3 from Frame 83 till the end based ep. (h): The behaviour pattern was recognised
prematurally and unreliably as either C1, C2, or C3 befoeerter 83 using ML.

The detection rate and false alarm rate of abnormality tieteare shown in the form

of a ROC curve. Fig. 3(a) shows that high detection rate amndfédse alarm rate can
be achieved.T'h 4 was set to—0.2 in the rest results unless otherwise specified, which
gave an abnormality detection rate&¥.4 + 2.9% and false alarm rate d@f.1 + 3.1%.

Fig. 4(b)&(f) show examples of online reliable abnormaliigtection results obtained by
monitoring the value of); over time.a was set td.1 for computing@;.

Recognition of normal behaviours —To measure the performance of behaviour recog-
nition results, the normal behaviour patterns in the tgstiets were manually labelled
into different behaviour classes. A normal behaviour patteas recognised correctly



if it was detected as normal and classified into the right bielia class. The behaviour
recognition results is illustrated as a confusion matrigvah in Fig. 3(b). Overall, the
recognition rates had a mean ©f.9% and standard devation df8% for the 6 behav-
iour classes over 20 trials. Examples of online behaviocogaition are shown in Fig. 4.
Based on, normal behaviour patterns were reliably and promtly reised after suf-
ficient visual evidence was available (see Fig. 4(c) & (g)) t@e contrary, based on the
ML method decisions on behaviour recognition were made pterally and unreliably
due to the ambuiguities among different behaviour classss fig. 4 (d)&(h)).

4.2 Aircraft Docking Area Behaviour Monitoring

.......
3 U

aircraftDeparture  airbridgeDisconnection

frontalCateringService

Figure 5: Typical, visually detectable behaviour patteman aircraft docking scene.

Now we consider an outdoor scenario. A fixed CCTV camera wasnted at an
aircraft docking area, monitoring the aircraft docking gedure. Typical visually de-
tectable behaviour patterns in this scene involved theadtyahe airbridge and various
ground vehicles (see Fig. 5(a)). The captured video segsehave a very low frame
rate of 2Hz which is common for CCTV surveillance videos. fEanage frame has a
size of 320240 pixels. Our database for the experiments consists of&#ames of
video data (around 10 hours of recording) that cover diffetienes of different days un-
der changing lighting conditions.The video was segmentéainaatically using an online
segmentation algorithm proposed in [10], giving 59 videgnsents of actual behaviour
pattern instances. Each segment has on average 428 frames.

Al | Aircraft arrives A2 | Airbridge connected A3 | Frontal cargo service
A4 | Frontal catering service A5 | Aircraft departs A6 | Airbridge disconnected

Table 2: Six classes of commonly occurred behaviour patterthe airport scene.

Model training — A training set now consisted of 40 video segments and theirénga

19 were used for testing. 20 trials were conducted, each afhwinad a different ran-
dom training set. Given each training set, eight classessofete events were detected
and classified automatically (see Fig. 7(a)&(e)). On averagigenvectors were auto-
matically determined as being relevant for clustering sitiallest 4 and largest 10. The
number of clusters for each training set was determinechzatioally as 2 and 6 in every
trial without and with relevant eigenvector selection exgtpwely. By observation, each
discovered data cluster mainly contained samples comelspg to one of the 6 behaviour
classes listed in Table 2.

Abnormality detection — Fig. 6(a) shows that high detection rate and low false alarm
rate can be achieved’h 4, was set to—0.5 in the rest results unless otherwise specified,
which gave an abnormality detection rater6f2+8.3% and false alarm rate 6f1+3.9%.

Fig. 7(b)&(f) show examples of online reliable abnormatigtection.
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Figure 6: The performance of abnormality detection and tielia recognition for the
airport scene. (a): The mean afid standard deviation of the ROC curves. (b): Confu-
sion matrix for behaviour recognition. The main diagonathe matrix is: [.65 .58 .83
.72 .87 .80 .79].

Recognition of normal behaviour patterns —Overall, the recognition rates were.1+
5.4% for the 6 behaviour classes over 20 trials (see Fig. 6(b)antptes of online reliable
behaviour recognition are shown in Fig. 7. Again, the ressittow that our approach is
superior to the ML based approach in that normal behaviottefes can be reliably and
promptly recognised after sufficient visual evidence haolree available to overcome
the ambiguities among different behaviour classes.

5 Conclusions

Compared to the corridor scene experiments, our result®mitport scene were ob-
tained using much more noisy and sparse data sets. Thedts festher demonstrate

the effectiveness and robustness of our algorithm. In caimh, we presented a novel
approach for robust online behaviour recognition and afatity detection based on
discovering natural grouping of bebaviour patterns thhougsupervised learning and
a time accumulative reliability measure. Our approach iathgeous over previous ap-
proaches, such as [14, 13, 3, 6], in that it is online, robust @pable of dealing with

ambiguities among different behaviour pattern classes.
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