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Abstract

An approach is proposed for robust online behaviour recognition and abnor-
mality detection based on discovering natural grouping of bebaviour patterns
through unsupervised learning and a time accumulative reliability measure.
A novel behaviour learning model and a run-time accumulative reliability
measure are introduced to determine both the natural groupings of possible
normal behaviour classes without manual labelling and whensufficient visual
evidence has become available for differentiating ambiguities among differ-
ent behaviour classes observed online. This ensures behaviour recognition at
the shortest possible time and robust abnormality detection.

1 Introduction
One of the critical functionalities of an automatic video-based behaviour monitoring sys-
tem is to detect abnormal behaviour and recognise normal behaviour reliablyon-the-fly.
A novel behaviour modelling approach is proposed in this work based on discovering nat-
ural grouping of bebaviour patterns through unsupervised learning and by introducing a
time accumulative reliability measure on visual features available at a given time. Our
approach differs from previous approaches in the followingaspects: (1) Different classes
of behaviour patterns are discovered automatically. This is to avoid the laborious process
of manual labelling and the bias in manual labelling caused by the inconsistency of hu-
man interpretation of behaviour. (2) A novel relevance learning algorithm is employed for
clustering behaviour patterns using the eigenvectors of the behaviour affinity matrix. The
number of behaviour classes is automatically determined using only the relevant eigenvec-
tors. Unlike previous unsupervised feature relevance learning algorithms such as [4, 2],
our algorithm is specially tailored for fast and robust selection of relevant eigenvectors
of the behaviour affinity matrix. (3) A novel time-accumulated reliability measure is in-
troduced to determine when sufficient visual features have become available in order to
overcome any ambiguity among different behaviour classes observed online due to insuf-
ficient visual evidence at a given time instance. This ensures robust behaviour recognition
and abnormality detection at the shortest possible time, asopposed to previous work such
as [14, 3, 6] which requires completed behaviour patterns. Our approach is also advanta-
geous over previous approaches using theMaximum Likelihood(ML) method [13, 3, 6].
Such as a ML based approach makes a forced decision on behaviour recognition at each
time instance without considering the reliability and sufficiency of the accumulated visual
evidence. Consequently, it can be error prone. The effectiveness and robustness of our
approach is demonstrated through experiments using noisy and sparse data sets collected
from both indoor and outdoor surveillance scenarios.



2 Behaviour Modelling
A continuous videoV is segmented intoN segmentsV = {v1, . . . ,vn, . . . ,vN} so that
each segment contains approximately a single behaviour pattern [10, 14]. A discrete event
based approach is adopted for behaviour representation [11]. First, an adaptive Gaussian
mixture background model is used to detect foreground pixels. Second, the foreground
pixels in a vicinity are grouped into a blob using the connected component method. Each
blob with its average pixel-change-history value greater than a threshold is then defined
as an event. An event is represented as a 7-dimensional feature vector capturing location,
shape and motion information. Third, classification is performed in a 7D feature space
using a Gaussian Mixture Model (GMM). The number of event classesKe is determined
automatically using Bayesian Information Criterion (BIC)[7]. The learned GMM is used
to classify each detected event into one ofKe event classes. Finally, the behaviour pattern
captured by thenth video segmentvn, consisting ofTn image frames, is represented as
a behaviour pattern feature vectorPn=[pn1, . . . ,pnt, . . . ,pnTn

], where thetth element
pnt is aKe dimensional variable:pnt = [p1

nt, ..., p
k
nt, ..., p

Ke

nt ]; pnt is computed from the
tth image frame ofvn wherepk

nt is the posterior probability that an event of thekth event
class has occurred in the frame given the learned GMM.

2.1 Behaviour Affinity Matrix
Consider a training data setD = {P1, . . . ,Pn, . . . ,PN} consisting ofN behaviour pat-
terns, wherePn is thenth behaviour pattern feature vector as defined above. We aim to
first discover the natural grouping of the training behaviour patterns upon which a behav-
iour model can be based. This is an unsupervised clustering problem with the number of
clusters unknown. However, there are two characteristics of the behaviour feature vectors
that make the clustering problem challenging: (1) Each feature vector can be of different
length therefore requires dynamic warping before they can be compared with. Conven-
tional clustering approaches such as K-means and mixture models thus cannot be applied
directly. (2) A definition of a distance/affinity metric among these variable length feature
vectors is not simply Euclidean therefore requires a nontrivial string similarity measure.

We propose to utilise Dynamic Bayesian Networks (DBNs) to provide a dynamic rep-
resentation of each behaviour pattern feature vector in order to both address the need for
dynamic warping and provide a string similarity metric. More specifically, each behav-
iour pattern in the training set is modelled using a DBN. To measure the affinity between
two behaviour patterns represented asPi andPj , two DBNs denoted asBi andBj are
trained onPi andPj respectively using the EM algorithm [1, 5]. The affinity between

Pi andPj is then computed as:Sij = 1
2

{

1
Tj

log P (Pj |Bi) + 1
Ti

log P (Pi|Bj)
}

, where

P (Pj |Bi) is the likelihood of observingPj givenBi, andTi andTj are the lengths ofPi

andPj respectively. DBNs of different topologies can be used. In this work, we employ a
Multi-Observation Hidden Markov Model (MOHMM) [3]. The number of hidden states
for each hidden variables in the MOHMM is set toKe, i.e. the number of event classes1.

The eigenvectors of an affinity matrixS = {Sij} can then be employed directly
for data clustering. However, it has been shown in [9, 8] thatit is more desirable to
perform clustering based on the eigenvectors of the normalised affinity matrixS̄, defined
as S̄ = L− 1

2 SL− 1

2 whereL is anN ×N diagonal matrix withLii =
∑

j Sij . The

1Ke reflects the complexity of the behaviour patterns, so is the number of hidden states. So it is appropriate
to set these two to be equal.



remaining problem is to first determine the number (order) ofbehaviour classesK before
clustering the behaviour patterns in the training set.

2.2 Selecting Relevant Eigenvectors for Behaviour Clustering
We assume that the number of clustersK is between 1 andKm, a number considered to
be sufficiently larger than the true value ofK. We setKm = 1

5N whereN is the number
of training samples2. The training data set is now represented using theKm largest
eigenvectors, denoted asDe = {x1, . . . ,xn, . . . ,xN}, with the nth behaviour pattern
being represented as aKm dimensional feature vectorxn = [e1n, . . . , ekn, . . . , eKmn],
whereekn is thenth element of thekth largest eigenvectorek.

Because only the firstK largest eigenvectors are needed for groupingK clusters
[12, 9], there are certainly redundant/irrelevant eigenvectors among theKm largest eigen-
vectors. It is important to identify those irrelevant but large eigenvectors because that (1)
irrelevant features degrade the accuracy of learning, and (2) the dimension of the features
space (Km) is high compared to the sample size (N ) resulting in learning subject to the
curse of dimensionality. To overcome these problems, we derive here a novel eigenvector
relevance learning algorithm. Specifically, we proposed tomeasure the relevance of an
eigenvector according to how well it can separate a data set into separate groups.

We denote the likelihood of thekth eigenvectorek being relevant asRek
. Ap-

parently, we have0 ≤ Rek
≤ 1. We assume that the elements ofek, ekn follow

two different distributions depending on whetherek is relevant. The probability den-
sity function (pdf) ofekn is thus formulated as a mixture model of two components:
P (ekn|θekn

) = (1−Rek
)P (ekn|θ

1
ekn

)+Rek
P (ekn|θ

2
ekn

) whereθekn
are the parameters

describing the distribution,p(ekn|θ
1
ekn

) is the pdf ofekn whenek is irrelevant/redundant
andP (ekn|θ2

ekn
) otherwise. Rek

acts as the weight or mixing probability of the sec-
ond components. The distribution ofekn is assumed to be a single Gaussian to reflect
the fact thatek cannot be used for data grouping when it is irrelevant:P (ekn|θ

1
ekn

) =
N (ekn|µk1, σk1) whereN (.|µ, σ) denotes a Gaussian of meanµ and covarianceσ. We
assume the second component ofP (ekn|θekn

) as a mixture of two Gaussians to reflect
the factek can separate one group of data from others when it is relevant: P (ekn|θ

2
ekn

) =
wkN (ekn|µk2, σk2) + (1 − wk)N (ekn|µk3, σk3) wherewk is the weight of the first
Gaussian inP (ekn|θ

2
ekn

). There are 8 parameters required for describing the distribu-
tion of ekn: θekn

= {Rek
, µk1, µk2, µk3, σk1, σk2, σk3, wk}. The maximum likelihood

(ML) estimate ofθekn
can be estimated using the following algorithm. First, the para-

meters of the first mixture componentθ1
ekn

are estimated asµk1 = 1
N

∑N

n=1 ekn and

σk1 = 1
N

∑N

n=1(ekn − µk1)
2. The rest 6 parameters are then estimated using EM.

Since our relevance learning algorithm is essentially a local searching method, it could
be sensitive to parameter initialisation especially in thepresence of noise [1]. To overcome
this problem, oura priori knowledge on the relevance of each eigenvector is utilised to
set the initial value ofRek

. Specifically, we set the initial value ofRek
, R̃ek

= λ̄k where
λ̄k ∈ [0, 1] is the normalised eigenvalue forek with λ̄1 = 1 andλ̄Km

= 0.
The estimatedR̂ek

provides a continuous-value measurement of the relevance of ek.
Since a ‘hard-decision’ is needed for dimension reduction,we simply eliminate thekth
eigenvectorek if R̂ek

< 0.5 and weight the relevant eigenvectors usinĝRek
. This gives us

a new data set denoted asDr = {y1, . . . ,yn, . . . ,yN}. We model the distribution ofDr

using a Gaussian Mixture Model (GMM) for behaviour pattern clustering. The Bayesian

2As a rule of thumb, ifK >
1

5
N , the training data set would be too sparse for model training.



Information Criterion (BIC) is then employed to select the optimal number of components
K, denoted asKo, corresponding to the number of behaviour classes. Each behaviour
pattern in the training data set is then labelled as one of theKo behaviour classes using the
learned GMM. It is found by our experiments (see Section 4) that the number of behaviour
classes could be severely under-estimated without relevant eigenvector selection.

2.3 A Composite Behaviour Model using Mixture of MOHMMs
To build a model for the observed/expected behaviour, we first model thekth behav-
iour class using a MOHMMBk. The parameters ofBk, θBk

are estimated using all the
patterns in the training set that belong to thekth class. A behaviour modelM is then
formulated as a mixture of theKo MOHMMs. Given an unseen behaviour pattern, rep-
resented as a behaviour pattern feature vectorP as described in Section 2, the likelihood
of observingP givenM is P (P|M) =

∑K

k=1
Nk

N
P (P|Bk), whereNk is the number of

training behaviour patterns that belong to thekth behaviour class.

3 Abnormality Detection with Reliability Measure
An unseen behaviour pattern of lengthT is represented asP = [p1, . . . ,pt, . . . ,pT ].
At the tth frame, the accumulated visual information for the behaviour pattern, denoted
asPt = [p1, . . . ,pt], is used for online reliable abnormality detection and behaviour
recognition. First, the normalised log-likelihood of observing P at thetth frame given the
behaviour modelM is computed aslt = 1

t
log P (Pt|M). lt can be computed by extend-

ing the forward part of the forward-backward procedure [5] for HMM to MOHMM 3. We
then measure the abnormality ofP at each framet usingQt:

Qt =







l1 if t = 1

(1 − α)Qt−1 + α(lt − lt−1) otherwise
(1)

whereα is an accumulating factor determining how important the visual information ex-
tracted from the current frame is for abnormality detection. Compared tolt as an indicator
of normality/abnormality,Qt could add more weighting to more recent observations. Ab-
normality is detected at framet if Qt < ThA whereThA is a threshold4. Note that it
takes a time delay forQt to stabilise at the beginning of evaluating a behaviour pattern due
to the nature of the forward-backward procedure. The lengthof this time period, denoted
asTw is related to the complexity of the MOHMM used for behaviour modelling5.

Beyond abnormality detection, our model is also employed toperform normal behav-
iour classification. At each framet a behaviour pattern needs to be recognised with a
reliability measure as one ofKo behaviour classes whenQt > ThA. To this end, we
measure the reliability of a decision onP belonging to thekth behaviour class as:

rk =
Nk

N
P (Pt|Bk)

∑

i6=k
Ni

N
P (Pt|Bi)

(2)

rk is the ratio of the probability ofPt belonging to thekth behaviour class and that ofPt

belonging to the otherKo − 1 classes. It is a function oft. Pt is reliably recognised as

3The complexity of computinglt is O(Ke
2) and does not increase witht.

4ThA is determined in practice according to the detection and false alarm rate required by each particular
surveillance application.

5We setTw = 3Ke in our experiments reported later in the experiment section.



thekth behaviour class only whenrk > Thr, a threshold6. When there is more than one
rk greater thanThr, the behaviour pattern is recognised as the class with the largestrk.

For comparison, the commonly usedMaximum Likelihood(ML) method recognises
Pt as thekth behaviour class whenk = arg maxk {P (Pt|Bk)}. Using the ML method,
recognition has to be performed at each single frame withoutconsidering how reliable
and sufficient the accumulated visual evidence is. This often causes errors especially
when there are ambiguities among different classes (e.g, a behaviour pattern can be ex-
plained away equally well by multiple plausible behavioursat its early stage). Compared
to the ML method, our approach holds the decision on behaviour recognition unless suf-
ficient evidence has been accumulated to overcome ambiguities. The recognition results
obtained using our approach are thus more reliable comparedto those obtained by ML.

4 Experiments
4.1 Corridor Entrance/Exit Human behaviour Monitoring

(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

Figure 1: Behaviour patterns in a corridor scene. (a)–(f) show image frames of typical
behaviour patterns belonging to the 6 behaviour classes listed in Table 1. Events detected
during each behaviour pattern are shown by colour-coded bounding boxes in each frame.

A CCTV camera was mounted on the ceiling of an office entry corridor, monitoring
people entering and leaving the office area (see Fig. 1). The office area is secured by an
entrance-door which can only be opened by scanning an entry card on the wall next to the
door (see middle frame in Fig. 1(b)). Two side-doors were also located at the right hand
side of the corridor. Typical behaviours occurring in the scene would be people entering
or leaving either the office area or the side-doors, and walking towards the camera. For
this experiment, a data set was collected over 5 different days consisting of 6 hours of
video totalling 432000 frames captured at 20Hz with320×240 pixels per frame. This
data set was then segmented into sections separated by any motionless intervals lasting
for more than 30 frames. This resulted in 142 video segments of actual behaviour pattern
instances. Each segment has on average 121 frames.
Model training — Each training set consist of 80 randomly selected video segments
without any behaviour class labelling of the video segments. The remaining 62 segments
were used for testing later. This model training exercise was repeated 20 times and in each

6Thr should be greater than one. In our experiments we found thatThr = 10 led to satisfactory results.



C1 Office area to near end of the corridorC2 Near end of the corridor to office area
C3 Office area to side-doors C4 Side-doors to office area
C5 Near end of the corridor to side-doorsC6 Side-doors to near end of the corridor

Table 1: Six classes of commonly occurred behaviour patterns in the corridor scene.
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Figure 2: An example of model training. (a): The normalised behaviour affinity. (b): the
learned relevance for theKm largest eigenvectors. The first 7 largest eigenvectors were
determined as relevant features for clustering. (c) and (d)show the BIC model selection
results without and with relevant eigenvector selection respectively.

trial a different model was trained using a different randomtraining set. Given each train-
ing set, 4 classes of discrete events were detected and classified using automatic model
order selection in clustering (see Figure 1). Over the 20 trials, on average 6 eigenvec-
tors were automatically determined as being relevant for clustering with smallest 4 and
largest 9. The number of clusters for each training set was determined automatically as
2 and 6 in every trial without and with relevant eigenvector selection respectively (see
Fig. 2(c)&(d)). By observation, each discovered data cluster mainly contained samples
corresponding to one of the 6 behaviour classes listed in Table 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate (mean)

D
e

te
c
ti
o

n
 r

a
te

 (
m

e
a

n
 a

n
d

 s
td

)

C1 C2 C3 C4 C5 C6 Abnormal

C1

C2

C3

C4

C5

C6

Abnormal

(a) (b)

Figure 3: The performance of abnormality detection and behaviour recognition for the
corridor scene. (a): The mean and±1 standard deviation of the ROC curves for abnor-
mality detection obtained over 20 trials. (b): Confusion matrix for behaviour recognition.
Each row represents the probabilities of that class being confused with all the other classes
averaged over 20 trials. The main diagonal of the matrix shows the the fraction of patterns
correctly recognised and is as follows: [.68 .63 .72 .84 .92 .85 .85].

Abnormality detection — To measure the performance of the learned models on ab-
normality detection, each behaviour pattern in the testingsets was manually labelled as
normal if there were similar patterns in the corresponding training sets and abnormal
otherwise. On average, there were 7 abnormal behaviour patterns in each testing set.
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Figure 4: (a): An abnormal behaviour pattern where two people attempted to enter an
office area without an entry card. It resembles C2 in the earlystage. (b): The behaviour
pattern was detected as abnormality from Frame 62 till the end based onQt. (c): The be-
haviour pattern between Frame 40 to 53 was recognised reliably as C2 based onrk before
being detected as an abnormality. (d) The behaviour patternwas wrongly recognised as
C3 before Frame 20 using ML. (e): A normal C3 behaviour pattern. Note that it can be
interpreted as either C1 or C3 before the person entered the sidedoor. (f): The behaviour
pattern was detected as normal throughout usingQt. (g): It was recognised reliably as
C3 from Frame 83 till the end based onrk. (h): The behaviour pattern was recognised
prematurally and unreliably as either C1, C2, or C3 before Frame 83 using ML.

The detection rate and false alarm rate of abnormality detection are shown in the form
of a ROC curve. Fig. 3(a) shows that high detection rate and low false alarm rate can
be achieved.ThA was set to−0.2 in the rest results unless otherwise specified, which
gave an abnormality detection rate of85.4 ± 2.9% and false alarm rate of6.1 ± 3.1%.
Fig. 4(b)&(f) show examples of online reliable abnormalitydetection results obtained by
monitoring the value ofQt over time.α was set to0.1 for computingQt.
Recognition of normal behaviours —To measure the performance of behaviour recog-
nition results, the normal behaviour patterns in the testing sets were manually labelled
into different behaviour classes. A normal behaviour pattern was recognised correctly



if it was detected as normal and classified into the right behaviour class. The behaviour
recognition results is illustrated as a confusion matrix shown in Fig. 3(b). Overall, the
recognition rates had a mean of77.9% and standard devation of4.8% for the 6 behav-
iour classes over 20 trials. Examples of online behaviour recognition are shown in Fig. 4.
Based onrk, normal behaviour patterns were reliably and promtly recognised after suf-
ficient visual evidence was available (see Fig. 4(c) & (g)). On the contrary, based on the
ML method decisions on behaviour recognition were made prematurally and unreliably
due to the ambuiguities among different behaviour classes (see Fig. 4 (d)&(h)).

4.2 Aircraft Docking Area Behaviour Monitoring

Figure 5: Typical, visually detectable behaviour patternsin an aircraft docking scene.

Now we consider an outdoor scenario. A fixed CCTV camera was mounted at an
aircraft docking area, monitoring the aircraft docking procedure. Typical visually de-
tectable behaviour patterns in this scene involved the aircraft, the airbridge and various
ground vehicles (see Fig. 5(a)). The captured video sequences have a very low frame
rate of 2Hz which is common for CCTV surveillance videos. Each image frame has a
size of 320×240 pixels. Our database for the experiments consists of 72776 frames of
video data (around 10 hours of recording) that cover different times of different days un-
der changing lighting conditions.The video was segmented automatically using an online
segmentation algorithm proposed in [10], giving 59 video segments of actual behaviour
pattern instances. Each segment has on average 428 frames.

A1 Aircraft arrives A2 Airbridge connected A3 Frontal cargo service
A4 Frontal catering service A5 Aircraft departs A6 Airbridge disconnected

Table 2: Six classes of commonly occurred behaviour patterns in the airport scene.

Model training — A training set now consisted of 40 video segments and the remaining
19 were used for testing. 20 trials were conducted, each of which had a different ran-
dom training set. Given each training set, eight classes of discrete events were detected
and classified automatically (see Fig. 7(a)&(e)). On average 7 eigenvectors were auto-
matically determined as being relevant for clustering withsmallest 4 and largest 10. The
number of clusters for each training set was determined automatically as 2 and 6 in every
trial without and with relevant eigenvector selection respectively. By observation, each
discovered data cluster mainly contained samples corresponding to one of the 6 behaviour
classes listed in Table 2.
Abnormality detection — Fig. 6(a) shows that high detection rate and low false alarm
rate can be achieved.ThA was set to−0.5 in the rest results unless otherwise specified,
which gave an abnormality detection rate of79.2±8.3% and false alarm rate of5.1±3.9%.
Fig. 7(b)&(f) show examples of online reliable abnormalitydetection.
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Figure 6: The performance of abnormality detection and behaviour recognition for the
airport scene. (a): The mean and±1 standard deviation of the ROC curves. (b): Confu-
sion matrix for behaviour recognition. The main diagonal ofthe matrix is: [.65 .58 .83
.72 .87 .80 .79].

Recognition of normal behaviour patterns —Overall, the recognition rates were72.1±
5.4% for the 6 behaviour classes over 20 trials (see Fig. 6(b)). Examples of online reliable
behaviour recognition are shown in Fig. 7. Again, the results show that our approach is
superior to the ML based approach in that normal behaviour patterns can be reliably and
promptly recognised after sufficient visual evidence has become available to overcome
the ambiguities among different behaviour classes.

5 Conclusions
Compared to the corridor scene experiments, our results on the airport scene were ob-
tained using much more noisy and sparse data sets. These results further demonstrate
the effectiveness and robustness of our algorithm. In conclusion, we presented a novel
approach for robust online behaviour recognition and abnormality detection based on
discovering natural grouping of bebaviour patterns through unsupervised learning and
a time accumulative reliability measure. Our approach is advantageous over previous ap-
proaches, such as [14, 13, 3, 6], in that it is online, robust and capable of dealing with
ambiguities among different behaviour pattern classes.
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