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Abstract. This study addresses the problem of choosing the most suitable probabilistic model selection criterion for
unsupervised learning of visual context of a dynamic scene using mixture models. A rectified Bayesian Information
Criterion (BICr) and a Completed Likelihood Akaike’s Information Criterion (CL-AIC) are formulated to estimate
the optimal model order (complexity) for a given visual scene. Both criteria are designed to overcome poor model
selection by existing popular criteria when the data sample size varies from small to large and the true mixture
distribution kernel functions differ from the assumed ones. Extensive experiments on learning visual context for
dynamic scene modelling are carried out to demonstrate the effectiveness of BICr and CL-AIC, compared to that
of existing popular model selection criteria including BIC, AIC and Integrated Completed Likelihood (ICL). Our
study suggests that for learning visual context using a mixture model, BICr is the most appropriate criterion given
sparse data, while CL-AIC should be chosen given moderate or large data sample sizes.

Keywords: learning for vision, visual context, model selection, dynamic scene modelling, clustering, Bayesian
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1. Introduction

The problem of dynamic scene understanding can be
tackled based on building models for various activ-
ities occurring in the scene (Haritaoglu et al., 2000;
McKenna, 2000; Stauffer and Grimson, 2000; Wada
and Matsuyama, 2000; Johnson et al., 1998; Brand
et al., 1996; Oliver et al., 2000; Hongeng and Nevatia,
2001; Gong and Xiang, 2003; Brand and Kettnaker,
2000; Cohen et al., 2003). Learning visual context is
a critical step of this model-based dynamic scene un-
derstanding approach, which reduces the complexity of
activity models and makes them tractable given limited
visual observations. Visual context is scene specific. It
is thus defined differently according to the nature of
different visual tasks. For example, the visual context
of a scene can be a semantically meaningful decom-
position of spatial regions for human behaviour in-

terpretation (McKenna and Nait-Charif, 2004; Brand
and Kettnaker, 2000), or a decomposition of proto-
typic facial expressions for facial expression recogni-
tion (Tian et al., 2001; Cohen et al., 2003). We con-
sider the problem of learning visual context as mod-
elling the underlying structure of activity captured in
a dynamic scene. To this end, we propose to discover
visual context based on unsupervised learning. Specif-
ically, visual observations of activities are represented
in a feature space, and the structure and complexity of
the visual data distribution are profiled using a mix-
ture model with the number of mixture components
being determined automatically through model order
selection.

Model selection is key to unsupervised statistical
modelling of data. Suppose that a data set D arises
from one of M candidate models, the problem is to
choose the best candidate model for D following two
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considerations. First, the measure of a good model can
be based on how well a model explains the data. How-
ever, if ‘explaining’ or ‘fitting’ the data using the model
is the only criterion for model selection, complex mod-
els will be favoured over simple models and, in the
most extreme case, the ‘best’ model becomes the data
set itself. This is clearly undesirable as in many cases
a model is only useful when it can predict new data.
Therefore, for better ‘prediction’ or ‘generalization’, a
simpler model, i.e. a model with fewer parameters, is
preferred. This is the second consideration for model
selection. The principle of choosing a model that not
only best fits a given data set but also satisfies sim-
plicity is known as the Ockham’ Razor principle after
the 13th century philosopher William of Ockham, and
is widely adopted for determining model complexity,
especially in the form of probabilistic model selection
criteria (Mclachlan and Peel, 1997). Other model se-
lection criteria include heuristic methods such as Fuzzy
Hyper-Volume (FHV) (Gath and Geva, 1989) and ev-
idence density (Roberts, 1997), and cross-validation
methods (Bishop, 1995; Lange et al., 2004).

In this paper, we address the problem of choosing
the most appropriate probabilistic criteria for model
selection according to the nature of visual data. Exist-
ing probabilistic model selection criteria can be clas-
sified into two categories: (1) methods based on ap-
proximating the Bayesian Model Selection criterion
(Raftery, 1995), such as Bayesian Information Crite-
rion (BIC) (Schwarz, 1978), Laplace Empirical Crite-
rion (LEC) (Roberts et al., 1998), and the Integrated
Completed Likelihood (ICL) (Biernacki et al., 2000);
(2) methods based on the information coding the-
ory such as the Minimum Message Length (MML)
(Figueiredo and Jain, 2002), Minimum Description
Length (MDL)1 (Rissanen, 1989), and Akaike’s Infor-
mation Criterion (AIC) (Akaike, 1973). The perfor-
mance of various probabilistic model selection criteria
has been studied intensively in the literature (Roberts
et al., 1998; Figueiredo and Jain, 2002; Biernacki et al.,
2000; Raftery, 1995; Chapelle et al., 2002; Hurivich
et al., 1990; Cherkassky and Ma, 2003; Hastie et al.,
2001), which motivated the derivation of new crite-
ria. In particular, a number of previous works were
focused on mixture models (Roberts et al., 1998;
Figueiredo and Jain, 2002; Biernacki et al., 2000).
However, most previous studies assume the sample
sizes of data sets to be sufficiently large in compari-
son to the number of model parameters (Roberts et al.,
1998; Figueiredo and Jain, 2002; Biernacki et al.,

2000), except for a few works that focused on lin-
ear autoregression models (Cherkassky and Ma, 2003;
Hastie et al., 2001; Chapelle et al., 2002; Hurivich
et al., 1990). This is convenient due to the fact that
the derivations of all existing probabilistic model se-
lection criteria involve approximations that can only
be accurate when the sample size is sufficiently large,
ideally approaching infinity. Existing criteria for mix-
ture models are also mostly based on known model
kernels, e.g. Gaussian. Realistically, visual data avail-
able for dynamic scene modelling are always sparse,
incomplete, noisy and with unknown model kernels.
Therefore, existing model selection criteria based on
previous studies may not be suitable for discovering vi-
sual context given the nature of visual data commonly
available.

In the rest of the paper, we propose two novel proba-
bilistic model selection criteria to improve model esti-
mation for sparse data sets, and with unknown kernels
and severe overlapping among mixture components.
Mixture models are briefly described in Section 2. In
Section 3, we formulate a rectified Bayesian Informa-
tion Criterion (BICr) which gives a more acceptable
approximation to the Bayesian Model Selection (BMS)
criterion compared to the conventional BIC, and recti-
fies the under-fitting tendency of BIC given small data
sample sizes. However, BICr is not able to rectify the
over-fitting tendency of BIC when the true distribu-
tion kernel functions are very different from the as-
sumed ones. Integrated Completed Likelihood (ICL)
was proposed in Biernacki et al. (2000) to solve this
problem. Nevertheless, ICL performs poorly when data
belonging to different mixture components are severely
overlapped. We argue that to overcome these problems
with the existing criteria, we need to optimise explicitly
the explanation and prediction capabilities of a mix-
ture model through a model selection criterion. To this
end, we introduce in Section 4 a Completed Likeli-
hood AIC (CL-AIC) criterion, which aims to give the
optimal clustering of a given data set and best predict
unseen data. In Section 5, we analyse through syn-
thetic data experiments how the performance of BICr
and CL-AIC are affected by two factors: (1) the sample
size, and (2) whether and how the true kernel functions
are different from the assumed ones. Extensive experi-
ments are also presented in Section 6 to demonstrate the
effectiveness of BICr and CL-AIC on learning visual
context for dynamic scene understanding, compared to
that of BIC, AIC and ICL. A conclusion is drawn in
Section 7.
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2. Mixture Models

Suppose a D-dimensional random variable y follows
a K -component mixture distribution, the probability
density function of y can be written as:

p(y | θ) =
K∑

k=1

wk p(y | θk), (1)

where wk is the mixing probability for the kth mixture
component with 0 ≤ wk ≤ 1 and

∑K
k=1 wk = 1, θk

is the internal parameters describing the kth mixture
component, and θ = {θ1, . . . ,θK ; w1, . . . , wK } is a
CK dimensional vector describing the complete set of
parameters for the mixture model. Let us denote N
independent and identically distributed samples of y as
Y = {y(1), . . . , y(N )}. The log-likelihood of observing
Y given a K -component mixture model is

log p(Y | θ) =
N∑

n=1

(
log

K∑
k=1

wk p(y(n) | θk)

)
, (2)

where p(y(n) | θk) defines the model kernels, i.e., the
form of the probability distribution function for the k-
th component. In this paper, the model kernel functions
for different mixture components are assumed to have
the same form. If the number of mixture components
K is known, the Maximum Likelihood (ML) estimate
of model parameters, as given by:

θ̂ = arg max
θ

{log p(Y | θ)},

can be computed using the EM algorithm (Dempster
et al., 1977). Therefore the problem of estimating a
mixture model boils down to the estimation of K ,
known as the model order selection problem.

Denoting a K -component mixture model as MK ,
then MK ⊆ MK+1, i.e. the candidate mixture mod-
els are nested. To illustrate this, let us consider a K -
component model described by

θ = {θ1, . . . ,θK ; w1, . . . , wK−1, wK }

and a K + 1-component model described by

θ′ = {θ1, . . . ,θK ,θK+1; w1, . . . , wK−1, w
′
K , w′

K+1}.

These two models represent the same probability den-
sity function if θK+1 = θK and wK = w′

K + w′
K+1.

Consequently, p(Y | θ) is a nondecreasing function

of K and thus cannot be directly used for model order
selection.

3. Rectified Bayesian Information Criterion
(BICr)

We formulate BICr to rectify the under-fitting tendency
of BIC given sparse data. BIC was derived as an approx-
imation of the Bayesian Model Selection (BMS) cri-
terion (Raftery, 1995). This approximation is accurate
only when the sample size is sufficiently large, ideally
approaching infinity. It is shown by our experiments
(see Sections 5 and 6) and also those in (Roberts et al.,
1998; Figueiredo and Jain, 2002) that BIC tends to un-
derestimate the number of mixture components (i.e.
under-fit) when the sample size is small. We suggest
that the inaccurate approximation during the deriva-
tion of BIC based on BMS causes model under-fitting
and propose a rectified BIC (BICr) to overcome it by
providing more acceptable approximation. This intro-
duces an extra penalty term in BICr which favours large
K given sparse data.

To derive BICr, let us first briefly describe the gen-
eral BMS criterion, which chooses a model that pro-
duces the Maximum a Posteriori (MAP) probability of
observing a data set Y:

K̂ = arg max
K

{p(MK | Y)} .

Using Bayes’ rule, the posterior probability is:

p(MK | Y) = p(Y | MK )p(MK )

p(Y)
, (3)

where p(Y | MK ) is the marginal probability (likeli-
hood) of the data and p(MK ) is the a priori probability
of model MK . If no a priori knowledge exists that fa-
vors any of the candidate models, the BMS method se-
lects the model that yields the maximal marginal prob-
ability, given as:

p(Y | MK ) =
∫

p(Y | MK ,θ)p(θ | MK ) dθ, (4)

where p(θ | MK ) is the a priori probabilistic density
function of θ given MK and p(Y | MK ,θ) is the
probabilistic density function of Y given MK and its
parameters θ. For a simpler notation, we leave out the
specific model label MK in the following derivations
without losing generality.
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The analytic evaluation of the integral in Eq. (4)
is only possible for the exponential family distribu-
tions. For a more general case, Laplace approximation
is adopted to compute the marginal probability p(Y)
(see Schwarz, 1978 for details), giving:

log p(Y) = log p(Y | θ̂) + log p(θ̂) + CK

2
log(2π )

− CK

2
log N − 1

2
log |i| + O(N− 1

2 ). (5)

where CK is the dimensionality of the parameter space,
N is the sample size, θ̂ is the ML estimate of θ, i is the
expected Fisher information matrix for one observation
(Raftery, 1995), |i| is its determinant, and O(N− 1

2 ) rep-
resents any quantity such that N

1
2 O(N− 1

2 ) approaches
a constant value as N approaches infinity. The first term
on the right-hand side of Eq. (5) is of order O(N ), the
fourth term is of order O(log N ), while all the other
terms are of order O(1) or less. BIC is derived as the
negative of log p(Y) with those order O(1) or less terms
being eliminated:

BIC = − log p(Y) = − log p(Y | θ̂) + CK

2
log N .

(6)

The approximation error in BIC is thus of order O(1)
which can be significant given small N . To have a more
accurate approximation with small N , we keep the or-
der O(1) terms in Eq. (5) in the following derivation of
BICr.

Assuming that the parameters for different mixture
components are independent from each other and also
from the mixing probabilities, the parameter priori p(θ̂)
is computed as:

p(θ̂) = p(ŵ1, . . . , ŵK )
K∏

k=1

p(θ̂k). (7)

The form and parameters of the prior distributions are
determined according to four prior selection criteria:
(1) They lead to an analytic solution; (2) They repre-
sents the common situation where a little, but not much,
prior information is available; (3) They help eliminate
as many terms in Eq. (5) as possible which are of order
O(1); and (4) The order O(1) terms kept in the for-
mulation of BICr favour large K given small N , thus
rectifying the under-fitting tendency of BIC. To this

end, the Dirichlet prior (Bernardo and Smith, 1994) is
employed for the mixing probabilities:

p(ŵ1, . . . , ŵK ) = �
( ∑K

k=1 uk
)∏K

k=1 �(uk)

K∏
k=1

ŵ
uk−1
k , (8)

where uk > 0 are distribution parameters and �(·)
is the gamma function. Here we set uk to a constant
value Cu for different k to reflect the lack of knowl-
edge about the mixing probabilities,2 thus satisfying
the prior selection criteria (2). For the internal param-
eters θ̂k , independent flat priors are adopted which
are independent from the parameter estimates. More
specifically, each element of the mean vector of each
of the K components follows a flat distribution in the
range of (−ασY , ασY ) and the diagonal covariance el-
ements of each component follow a flat distribution
in the range of (0, βσY ) where σY is the maximal di-
agonal element of the covariance matrix of the data
set Y and α and β are scale parameters. We thus
have:

K∏
k=1

p(θ̂k) = 1(
2αβσ 2

Y
)K D , (9)

where D is the dimensionality of the data space. As
pointed out by Fitzgerald (1996) and Roberts et al.
(1998), the scale parameters α and β are essentially
arbitrary. We thus set

α = β = �
( K Cu

2

) 1
2K D (2π )

CK
4K D

√
2σY�(Cu)

1
2D |i| 1

4K D

(10)

to satisfy the prior selection criteria (3) and (4). Re-
placing p(θ̂) in Eq. (5) using Eqs. (7)–(10) gives:

log p(Y) = log p(Y | θ̂) + (Cu − 1)
K∑

k=1

log ŵk

− CK

2
log N + O(N− 1

2 ).

A rectified BIC is then derived as the negative
of log p(Y) with the order O(N− 1

2 ) term being
eliminated:

BICr = − log p(Y | θ̂) + (1 − Cu)
K∑

k=1

log ŵk

+ CK

2
log N . (11)
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For the particular prior distributions we choose (Eqs.
(8)–(10)), the error in the approximation of BICr is of
order O(N− 1

2 ) instead of O(1) in that of BIC. BICr
is thus a more accurate approximation of Bayesian
Model Selection and able to better select model in the
sense of maximising p(Y | MK ). Also importantly,
compared to the standard BIC formulation, BICr has
an extra penalty term

(
(1 − Cu)

∑K
k=1 log ŵk

)
derived

from the a priori probability of the model parameters.
Since 0 ≤ ŵk ≤ 1, it is easy to show that by setting
Cu < 1 we have:

(1 − Cu)
K∑

k=1

log ŵk ≤ −(1 − Cu)K log K < 0.

This extra penalty term thus weakens the effect of
the other penalty term CK

2 log N especially when K
is large with some mixture components only being
poorly supported by the data. In other words, it favors
larger K compared to BIC (prior selection criterion
(4)). Since the extra penalty term is of order O(1), its
effect is only significant when data set size is small.
This extra penalty term in BICr thus rectifies the
under-fitting tendency of BIC given spare data and
results in better model selection.

As mentioned above, by setting uk to a constant Cu

for different k, the Dirichlet prior becomes noninfor-
mative therefore reflecting the fact that there is little or
no a priori knowledge about the distribution of the mix-
ture probabilities. However, uk cannot be assigned to
arbitrary constant values. By the definition of a Dirich-
let prior, we have uk = Cu > 0. In order for the second
term of BICr (Eq. (11)) to rectify the under-fitting ten-
dency of BIC, we have uk = Cu < 1. Therefore, we
should have 0 < Cu < 1. In our experiments to be
presented in Sections 5 and 6, Cu was set to 1

2 which
resulted in satisfactory results.

Even with BICr, the problem of BIC tending to over-
fit remains when the true model kernels are very dif-
ferent from the assumed ones (e.g. typically Gaussian).
To solve this problem, we propose a Completed Like-
lihood Akaike’s Information Criterion (CL-AIC).

4. Completed Likelihood Akaike’s Information
Criterion (CL-AIC)

Given a data set Y , a mixture model MK can be used
for three objectives: (1) estimating the unknown distri-
bution that most likely generates the observed data, (2)
clustering a given data set, and (3) predicting unseen

data. Objectives (1) and (2) emphasise data explanation
while objective (3) is concerned with data prediction.
Both BIC and BICr choose the model that maximises
p(Y | MK ). They thus enforce mainly objective (1).
When the true mixture distribution kernel functions are
very different from the assumed ones, both BIC and
BICr tend to choose a model with its number of com-
ponents larger than the true number of components in
order to approximate the unknown distribution more
accurately. To better balance the explanation and pre-
diction capabilities of a mixture model, we derive a
novel model selection criterion, referred as CL-AIC.
CL-AIC utilises Completed Likelihood (CL), which
makes explicit the clustering objective of a mixture
model, and follows a derivation procedure similar to
that of AIC, which chooses the model that best predict
unseen data.

Let us first formulate Completed Likelihood (CL)
for a mixture model. The completed data for a K -
component mixture model is a combination of the data
set and the labels of each data sample:

Ȳ = {Y,Z} = {(
y(1), z(1)) , . . . ,

(
y(N ), z(N ))} ,

where Z = {z(1), . . . , z(n), . . . , z(N )}, and z(n) =
{z(n)

1 , . . . , z(n)
K } is a binary label vector such that z(n)

k = 1
if y(n) belongs to the kth mixture component and
z(n)

k = 0 otherwise. Z is normally unknown, and
must be inferred fromY . The completed log-likelihood
of Ȳ is:

C L(K ) = log p(Ȳ)

= log p(Y | θ) + log p(Z | Y,θ)

=
N∑

n=1

log
K∑

k=1

wk p(y(n) | θk)

+
N∑

n=1

K∑
k=1

z(n)
k log p(n)

k (12)

where p(n)
k is the conditional probability of y(n) belong-

ing to the kth component and can be computed as:

p(n)
k = wk p(y(n) | θk)∑K

i=1 wi p(y(n) | θi )
. (13)

The N × K matrix {p(n)
k } is known as the Fuzzy Clas-

sification Matrix (Celeux and Soromenho, 1996).
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The difference between the log-likelihood of the ob-
served data and the completed log-likelihood

−
N∑

n=1

K∑
k=1

z(n)
k log p(n)

k ≥ 0

is a random variable whose mean is the entropy of the
Fuzzy Classification Matrix:

E(K ) = −
N∑

n=1

K∑
k=1

p(n)
k log p(n)

k ≥ 0. (14)

E(K ) measures the goodness of a model in cluster-
ing the observed data. If the mixture components are
well separated, E(K ) is close to zero. E(K ) assumes
large value when the mixture components are poorly
separated.

In practice, the true parameters θ in Eq. (12) is re-
placed using the ML estimate θ̂ and the completed log-
likelihood is rewritten as:

C L(K ) =
N∑

n=1

log
K∑

k=1

ŵk p
(
y(n) | θ̂k

)
+

N∑
n=1

K∑
k=1

ẑ(n)
k log p̂(n)

k (15)

where

p̂(n)
k = ŵk p

(
y(n) | θ̂k

)∑K
i=1 ŵi p(y(n) | θ̂i )

, (16)

and

ẑ(n)
k =

{
1 if arg max j p̂(n)

j = k
0 otherwise.

(17)

CL-AIC aims to choose the model that gives the best
clustering of the observed data and has the minimal di-
vergence to the true model, which thus best predicts un-
seen data. The divergence between a candidate model
and the true model is measured using the Kullback-
Leibler information (Kullback, 1968). Given a com-
pleted data set Ȳ , we assume that Ȳ is generated by the
unknown true model M0 with model parameter θM0 .
For any given model MK and the Maximum Likeli-
hood Estimate θ̂MK , the Kullback-Leibler divergence
between the two models is computed as

d(M0,MK ) = E

[
log

(
p(Ȳ | M0,θM0 )

p(Ȳ | MK , θ̂MK )

)]
. (18)

Ranking the candidate models according to
d(M0,MK ) is equivalent to ranking them according
to

δ(M0,MK ) = E
[ − 2 log p

(
Ȳ | MK , θ̂MK

)]
.

δ(M0,MK ) cannot be computed directly since the un-
known true model is required. However, it was noted
by Akaike (1973) that −2 log p(Ȳ | MK , θ̂MK ) can
serve as a biased approximation of δ(M0,MK ), and
the bias adjustment

E
[
δ(M0,MK ) + 2 log p

(
Ȳ | MK , θ̂MK

)]
converges to 2CK when the number of data sample
approaches infinity. Our CL-AIC is thus derived as:

CL-AIC = − log p(Ȳ | MK , θ̂MK ) + CK . (19)

where CK is the dimensionality of the parameter space.
The first term on the right hand side of (19) is the com-
pleted likelihood given by Eq. (15). We thus have:

CL-AIC = −
N∑

n=1

log
K∑

k=1

ŵk p
(
y(n) | θ̂k

)
−

N∑
n=1

K∑
k=1

ẑ(n)
k log p̂(n)

k + CK , (20)

The first and third terms on the right hand side of
Eq. (20) emphasise the prediction capability of the
model. These two terms favour those candidate models
that give small generalisation error. In the meantime,
the second term favours well-separated mixture com-
ponents through minimizing entropy of assigning data
samples into different components. The second term
has the effect of selecting models that give small train-
ing error. It thus enforces the explanation capability
of the model. This results in a number of important
differences compared to existing techniques:

1. Unlike previous probabilistic model selection crite-
ria, our CL-AIC attempts to optimise explicitly the
explanation and prediction capabilities of a model.
This makes CL-AIC theoretically attractive. The ef-
fectiveness of CL-AIC in practice is demonstrated
through experiments in Sections 5 and 6.

2. Compared to a standard AIC, our CL-AIC has an
extra penalty term (the second term on the right
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hand side of Eq. (20)) which always assumes a non-
negative value. This extra penalty term makes CL-
AIC in favour of smaller K compared to AIC given
the same data set. It has been shown that AIC tends
to over-fit by both theoretical (Dempster et al., 1979;
Kass and Raftery, 1995) and experimental studies
(Shibata, 1976; Hurivich and Tsai, 1976). The extra
penalty term in our CL-AIC thus has the effect of
rectifying the over-fitting tendency of AIC.

3. Another approach for combining completed like-
lihood with an existing model selection criterion
(in this case, BIC) was proposed in Biernacki et al.
(2000) known as an Integrated Completed Likeli-
hood (ICL) criterion (Biernacki et al., 2000). How-
ever, experiments reported in (Biernacki et al.,
2000) indicated that ICL performs poorly when
data belonging to different mixture components are
severely overlapped. We suggest this is caused by
the factor that ICL is a combination of two explana-
tion oriented criteria without considering the predic-
tion capability of a mixture model. In comparison,
our CL-AIC integrates an explanation criterion with
a prediction criterion. It is thus theoretically better
justified than ICL.

5. Experiments on Synthetic Data

In this section, we illustrate the effectiveness of BICr
and CL-AIC, compared to that of BIC, AIC and ICL,
using synthetic data. Experiments on discovering vi-
sual context of three different real scenarios are pre-
sented in Section 6. The experiments presented in this
section aim to examine how the performance of dif-
ferent criteria is affected by the following two factors:
(1) the sample size and (2) whether and how the true
kernel functions are different from the assumed ones.
To this end, Gaussian mixture models were adopted
while synthetic data sets were generated using either
Gaussian or non-Gaussian kernels with sample size
varying from very small to large in comparison to
the number of model parameters. To simulate the real
world data, data belonging to different mixture com-
ponents were severely overlapped. Moreover, our syn-
thetic data were unevenly distributed among different
mixture components.

Models with the number of components K varying
from 1 to Kmax, a number that is considered to be safely
larger than the unknown true number Ktrue, were evalu-
ated. In our experiments, Kmax was 10 unless otherwise
specified. To avoid being trapped at local maxima, the

EM algorithm used for estimating model parameters θ
was randomly initialized for 20 times and the solution
that yielded the largest observation likelihood after 30
iterations were chosen. Each Gaussian component was
assumed to have full covariance. Different model se-
lection criteria were tested on data sets with sample
sizes varying from 25 to 1000 in increments of 25. The
final model selection results are illustrated using the
mean and ±1 standard deviation of the selected num-
ber of components over 50 trials, with each trial having
a different random number seed.

5.1. Gaussian Distributed Data

Let us first consider a data set generated using a 5-
component bivariate Gaussian mixture. Modelled us-
ing a Gaussian Mixture model, this represents an ideal
case where the true kernel function is identical to
the assumed one. The parameters of the true mixture
distribution are:

w1 = 0.05, w2 = 0.10, w3 = 0.20, w4 = 0.40,

w5 = 0.25;

μ1 = [1.5, 6.0]T , μ2 = [7.0, 1.0]T ,

μ3 = [6.0, 4.0]T , μ4 = [7.0, 7.0]T ,

μ5 = [3.0, 3.0]T ;

Σ1 =
[

1.89 0.25
0.25 0.50

]
, Σ2 =

[
0.72 0.14
0.14 0.34

]
,

Σ3 =
[

0.99 0.04
0.04 0.65

]
, Σ4 =

[
1.78 0.46
0.46 0.42

]
,

Σ5 =
[

1.97 0.05
0.05 0.10

]
, (21)

where wk , μk and Σk are the mixing probability, mean
vector and covariance matrix for the kth Gaussian com-
ponent respectively. Different model selection criteria
were tested on the data set with sample sizes varying
continuously from 25 to 1000 in increments of 25. The
average number of mixture components determined by
different criteria over 50 trails are plotted against the
sample size in Figs. 1(a) and (b), which shows explicitly
the under-fitting or under-fitting tendency of different
criteria. Examples of models selected by different cri-
teria are shown in Fig. 1(c). Table 1 shows examples of
the percentage of correct model order selection (over 50
trials) by different criteria give small and large sample
sizes.

Figures. 1(a) and (b) show how the performance of
different criteria were affected by the sample size of
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(c) Typical examples of the selected models
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Figure 1. Model selection results for Gaussian distributed data.
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Table 1. Percentage of correct model order selec-
tion (over 50 trials) by different criteria for synthetic
Gaussian data with 75 and 700 samples respectively.

BIC AIC ICL BICr CL-AIC

75 8 12 6 14 26

700 100 44 100 100 100

the data set. When the data set was sampled extremely
sparsely (e.g. N < 50), all 5 criteria tended to over-fit.
As the sample size increased, the number of compo-
nents determined by all the criteria decreased. In par-
ticular, BIC, BICr, ICL and CL-AIC all turned from
over-fitting to under-fitting before converging to the
true component number, with the number of compo-
nents selected by CL-AIC being the closest to the true
number given small, but not too small sample sizes.
As expected, the number of components estimated by
BICr was closer to the right number 5 compared to
BIC. Overall, AIC appeared to favor larger number of
components even when the sample size is large. It can
be seen from Fig. 1(b) that 4 out of 5 criteria, except
AIC, selected the right number of components when
the sample size was large (e.g. N > 400). It is also
noted that AIC exhibited large variations in the esti-
mated model orders no matter what the sample size was,
while other criteria had smaller variation given larger
sample sizes. This experiment suggests that given an
ideally distributed data set, our proposed criteria only
outperform the existing criteria when the sample size
is small, but not too small.

5.2. Gaussian Distributed Data Perturbed with
Random Noise

Here we consider a situation under which the true ker-
nel functions are slightly different from the assumed
ones. Each data sample from the same data set used in
Section 5.1 was perturbed with a uniformly distributed
random noise. The noise had a range of [−0.5 0.5]
in each dimension of the data distribution space. The
model selection results are presented in Fig. 2 and
Table 2. The results shown in Fig. 2 are similar to
those obtained using the noiseless Gaussian data set
(see Fig. 1) except that BIC, BICr, ICL and CL-AIC
all needed more data samples to converge to the true
model and AIC suffered more severe over-fitting. It
is also noted that when the sample size was large
(e.g. N > 500), both BIC and BICr tended to over-

Table 2. Percentage of correct model order selection
(over 50 trials) by different criteria for synthetic Noisy
Gaussian data with 100 and 725 samples respectively.

BIC AIC ICL BICr CL-AIC

100 0 10 0 4 48

725 88 64 82 90 100

fit slightly. The over-fitting tendency of BIC when the
assumed kernels are different form the true ones was
also reported in Biernacki et al. (2000).

5.3. Uniformly Distributed Data

Now we consider a situation where the true kernel
functions are very different from the assumed ones.
A synthetic 2D data set were generated with data
from each components following the uniform random
distribution:

ur(y1, y2)

=

⎧⎪⎨⎪⎩
1

(r2 − r1) × (r4 − r3)
if r1 ≤ y1 ≤ r2

and r3 ≤ y2 ≤ r4

0 otherwise

where r = [r1, r2, r3, r4] are the parameters of the
distribution. Our data set was generated using a 5-
component uniform mixture model. Its parameters
are:

w1 = 0.05, w2 = 0.10, w3 = 0.20, w4 = 0.40,

w5 = 0.25;

r1 = [−1.89, 4.07, 4.89, 7.94],

r2 = [5.58, 8.42, −0.77, 2.77],

r3 = [4, 17, 7.83, 2.23, 5.77],

r4 = [5.41, 8.59, 6.79, 7.21],

r5 = [−0.61, 6.61, 2.47, 3.53].

The model selection results are presented in Fig. 3 and
Table 3. It can be seen from Figs. 3(a) and (b) that
with a small sample size (e.g. 50 < N < 200), BIC,
ICL and BICr tended to under-fit while AIC and CL-
AIC tended to over-fit. The number of components se-
lected by BICr was the closest to the true number 5. As
the sample size increased, both BIC and BICr slightly
over-fitted and ICL slightly under-fitted, while CL-AIC
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(c) Typical examples of the selected models
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Figure 2. Model selection results for synthetic Gaussian data perturbed with uniformly distributed random noise.
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Figure 3. Model selection results for synthetic data of uniform distribution.
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Table 3. Percentage of correct model order selec-
tion (over 50 trials) by different criteria for synthetic
uniform data with 100 and 600 samples respectively.

BIC AIC ICL BICr CL-AIC

100 4 2 8 54 10

600 86 4 94 86 100

yielded the most accurate results. Again, AIC exhibited
large variations in the estimated model order no mat-
ter what the sample size was, while other criteria had
smaller variation given larger sample sizes. It is also
noted that AIC suffered from severe over-fitting and
failed to converge.

5.4. Discussions

Overall, our experiments show that BICr is capable of
rectifying the under-fitting tendency of BIC given small
sample size. When the true mixture component kernel
functions are different from the assumed ones, CL-AIC
outperforms BIC, BICr, AIC and ICL given moderate to
large sample sizes. A number of issues deserve further
discussion, concerning the merits of different criteria:

1. Our experiments also show that all criteria tend
to over-fit given extremely sparse data (e.g. N <

2CKtrue where CKtrue is the number of parameters of
the true model). Given a very small sample size,
none of the mixture components is supported well
by the data. Data samples belonging to the same
mixture component tend to be interpreted as being
drawn from different mixture components. This ex-
plains the over-fitting tendency for all the model
selection criteria.

2. Given sparse data sets, all the model selection crite-
ria are sensitive to the initialization of the EM algo-
rithm for model parameter estimation, even though
multiple initialisation strategy has been adopted to
avoid this problem. This is illustrated by the large
error bars in Figs. 1(a), 2(a), and 3(a). This problem
is caused by the fact that each mixture component is
weakly supported by the data samples given a sparse
data set.

3. As the sample size increases, some of the mix-
ture components are well supported while others
are not. Our results show that those poorly sup-
ported mixture components are treated as noise by
BIC and ICL (see examples of small sample model
estimation results in Figs. 1(c), 2(c), and 3(c)).

This explains the under-fitting tendency of BIC and
ICL given small sample. As stated earlier in Sec-
tion 3, the extra penalty term in the formulation of
BICr ( 1

2

∑K
k=1 log ŵk) favours those model candi-

dates with weakly supported mixture components.
BICr thus rectifies this under-fitting tendency given
small, but not too small samples.

4. The superiority of CL-AIC over AIC is illustrated
clearly by Figs. 1(b), 2(b), and 3(b). These figures
highlight the contribution of the extra penalty term
(the second term on the right hand side of Eq. (20))
on making CL-AIC a better model selection crite-
rion than AIC. In particular, the absolute value of
this extra penalty term grows with the sample size.
Therefore, unlike AIC, the model orders selected
by CL-AIC converge to a constant number as the
sample size increases.

5. The more the true kernel functions differ from the
assumed ones, the more likely it is for BIC and BICr
to over-estimate the number of mixture components
in order to better explain the data. On the other hand,
CL-AIC utilises both the explanation and predic-
tion capabilities of a mixture model. It is thus able
to yield better model estimation, especially given
moderate or large sample sizes.

We shall further demonstrate the above observations
through experiments for unsupervised learning of vi-
sual context of three different dynamic scenes in the
next section.

6. Discovering Visual Context

Experiments were conducted on discovering visual
context of three different dynamic scene modelling
problems. Gaussian mixture models were adopted in
our experiments while the true model kernels were un-
known and clearly non-Gaussian by observation. The
model estimation results were obtained by following
the same procedure as that of the synthetic data ex-
periments presented in the preceding section, unless
otherwise specified.

6.1. Learning Spatial Context

A tearoom scenario was captured at 8Hz over three
different days of changeable natural lighting, giving a
total of 45 minutes (22430 frames) of video data. Each
image frame has a size of 320 × 240 pixels. The scene
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Figure 4. Detecting inactivity points in a tearoom scenario.

consists of a kitchenette on the top right hand side of
the view and two dining tables located on the middle
and left side of the view respectively (see Fig. 4(a)).
Typical activities occurring in the kitchenette area in-
cluded people making tea or coffee at the work surface,
and people filling the kettle or washing up in the sink
area. Other activities taking place in the scene mainly
involved people sitting or standing around the two din-
ing tables while drinking, talking or doing the puzzle.
In total 66 activities were captured, each of them last-
ing between 100 and 650 frames. It is noted that the
same activities performed by different people can dif-
fer greatly.

In this tearoom scenario, the spatial context refers
to semantically meaningful spatial regions, especially
inactivity zones where people typically remain static
or exhibit only localised movements (e.g. sink area
and chairs). The problem of learning inactivity zones
was tackled by performing unsupervised clustering
of the inactivity points detected on motion trajecto-
ries. Firstly, a tracker based on blob matching matrix
(McKenna, 2000) was employed which yielded tem-
porally discretised motion trajectories (see Fig. 4(b)).
The established trajectories were then smoothed us-
ing an averaging filter and the speed of each per-
son tracked on the image plane was estimated. Sec-
ondly, inactivity points on the motion trajectories
were detected when the speed of the tracked peo-
ple was below a threshold. This inactivity thresh-
old was set to the average speed of people walk-
ing slowly across the view. A total of 962 inactiv-
ity points were detected over the 22430 frames (see
Fig. 4(c)). As can be seen in Fig. 4(c), these inactivity
points were mainly distributed around the semantically
meaningful inactivity zones, although they were also
caused by errors in the tracker and the fact that people
can exhibit inactivity anywhere in the scene.

Table 4. Percentage of correct model order selection
(over 50 trials) by different criteria for learning spatial
context with 144 and 960 samples respectively.

BIC AIC ICL BICr CL-AIC

144 4 14 2 38 24

960 34 8 12 36 58

Finally, inactivity points were clustered using a
Gaussian mixture model with each of the learned mix-
ture components specifying one inactivity zone. The
total number of mixture components, corresponding to
the total number of inactivity zones, was determined
using a model selection criterion. Through observation
of the captured video data, 8 inactivity zones can be
identified which correspond to the left side of the work
surface, the sink area, 4 of the chairs surrounding the
two dining tables, and 2 spots near the left dining table
where people stand while doing the puzzle. The correct
number of mixture components was thus set to 8. In our
experiments, the sample size of the data set varied from
24 to 962 in increments of 24. The maximum number
of components Kmax was set to 15. The model selection
results are shown in Fig. 5 and Table 4. It can be seen
that all five criteria tended to over-fit given extremely
sparse data sample (e.g. N < 100). When the sam-
ple size was small but not too small compared to the
number of model parameters (e.g. 100 < N < 250),
all criteria turned into under-fitting, with BICr outper-
forming the other four. As the sample size increased,
all criteria turned towards slightly over-fitting except
ICL, with the model orders selected by CL-AIC being
the closest to the true model order of 8. Examples of the
estimated models shown in Fig. 5(c) demonstrate that
each estimated cluster corresponded to one inactivity
zone when the model order was selected correctly.
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Figure 5. Model selection for learning spatial context. The visual context of spatial regions in the tearoom scene included “A”, “B”: standing
spots around the left table, “C”, “D”: two chairs around the left table, “E”, “F”: two chairs around the right table, “G”: work surface, and “H”:
sink area. They were labelled in (c) only when estimated correctly.
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6.2. Learning Facial Expression Context

The visual task of modelling the dynamics of facial ex-
pressions and performing robust recognition becomes
easier if key facial expression categories can be dis-
covered and modelled. In this experiment, we aim to
learn this important visual context using the shape of
mouth. A face was modeled using the Active Appear-
ance Model (AMM) (Cootes et al., 1998). The face
model was learned using 1790 images sized 320×240
pixels, capturing people exhibiting different facial ex-
pression continuously. Firstly, the jaw outline and the
shapes of eye, eyebrow and mouth were manually la-
beled and represented using 74 landmarks during train-
ing. Secondly, the trained model was employed to track
face and extract the shape of mouth (represented using
12 landmarks) from the test data which consisted of
613 image frames. Both the training and test data in-
cluded seven different expression categories: neutral,
smile, grin, sadness, fear, anger and surprise. Some
example test frames are shown in Fig. 6. Thirdly,
the mouth shape data extracted from the test frames
were projected onto a Mixture of Probabilistic Prin-
cipal Component Analysis (MPPCA) space (Tipping
and Biship, 1999) which was learned using the mouth
shape data labeled manually from the training data. It
was identified that only the second and third principal
components of the learned MPPCA sub-space corre-
sponded to facial expression changes. Facial expres-
sions were thus represented using a 2D feature vector
comprising the second and third MPPCA components
of the mouth shape data. Details of data collection can
be found in Zalewski and Gong (2004).

Finally, unsupervised clustering was performed us-
ing a Gaussian Mixture Model in the 2D feature space

Figure 6. Top row: examples of image frames from the test data. From left to right, the facial expressions are neutral, smile, grin, sadness, fear,
anger and surprise respectively. Bottom row: the corresponding mouth shapes extracted from the images.

with the number of clusters automatically determined
by a model selection criterion. Ideally, each cluster
corresponds to one facial expression category and the
right model order is 7. The data set was composed of
613 2D feature vectors obtained from the testing data
set. Different model selection criteria were tested with
sample sizes varying from 30 to 600 in increments of
30. The maximum number of components Kmax was
set to 15. The model selection results are shown in
Fig. 7 and Table 5. It can be seen that the perfor-
mance of different model selection criteria has simi-
lar characteristics to that demonstrated in the spatial
context learning experiment. In particular, all criteria
except AIC tended to under-estimate the number of
components when the sample size was small but not
too small (e.g. 50 < N < 200) with BICr outperfor-
ming BIC, ICL and CL-AIC. With an increasing sam-
ple size, the models selected by BIC, BICr and CL-
AIC turned towards slightly over-fitting with CL-AIC
performing better than the other two, while those se-
lected by ICL remained under-fitting. It is also noted
that AIC suffered from over-fitting whatever the sam-
ple size was. Figure 7(c) shows that, when the model
order was selected as 7, each learned cluster corre-
sponded correctly to each of the 7 facial expression
categories.

Table 5. Percentage of correct model order selection
(over 50 trials) by different criteria for learning facial ex-
pression context with 150 and 390 samples respectively.

BIC AIC ICL BICr CL-AIC

150 6 14 8 54 24

390 4 6 4 4 40
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Figure 7. Model selection for learning facial expression categories. The visual context of facial expressions included “A”: sad, “B”: smile,
“C”: neutral, “D”: anger, “E”: grin, “F”: fear, and “G”: surprise. They were labelled in (d) only when estimated correctly.
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Figure 8. Automatic event detection in an image sequence of a simulated shopping scenario. Example image frames are shown in (a) with
automatically detected scene events indicated using bounding boxes. The centroids of the 1642 scene events detected over the 19 minutes of
video are shown in (b).

6.3. Learning Scene Event Context

A simulated shopping scenario was captured at 25 Hz,
giving a total of 19 minutes of video data. The video
data was sampled at 5 frames per second with a total
number of 5699 frames of images sized 320 × 240
pixels. Some typical scenes are shown in Fig. 8(a). The
scene consists of a shopkeeper sitting behind a table
on the right side of the view. A large number of drink
cans were laid out on a display table. Shoppers entered
from the left and either browsed without paying or took
a can and paid for it.

Interpreting the shopping behaviour requires not
only the understanding of the behaviour of shoppers
and shopkeeper in isolation, but also the interactions

between them. Detecting whether a drink can is taken
by the shopper is also a key element to shopping be-
haviour interpretation. To build such a complex be-
haviour model, it is important to learn the visual con-
text which, in this case, corresponds to significant and
semantically meaningful scene changes characterised

Table 6. Percentage of correct model order selection
(over 50 trials) by different criteria for learning scene
event context with 232 and 1044 samples respectively.

BIC AIC ICL BICr CL-AIC

232 4 2 2 84 32

1044 54 2 6 48 56
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Figure 9. Model selection for learning scene event context. The estimated models are shown using the first 3 principal component of the
feature space. The visual context of scene events in the shopping scene included “A”: shopkeeper moving, “B”:can being taken, “C”:shopper
entering/leaving, “D”:shopper browsing, and “E”:shopper paying. They were labelled in (e) only when estimated correctly.
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by the location, shape and direction of the changes.
These significant scene changes, referred to as scene
events, are detected and clustered with the number
of clusters being determined using a model selection
criterion. It was observed and labeled manually that
there were largely 5 different types of scene events
captured in this scenario, caused by ‘shopper enter-
ing/leaving the scene’, ‘shopper browsing’, ‘can being
taken’, ‘shopper paying’, and ‘shopkeeper moving’ re-
spectively. Firstly, events were automatically detected
as groups of accumulated local pixel changes occurred
in the scene. An event was represented by a group of
pixels in the image plane (see Fig. 8) and defined as a
7D feature vector (see Xiang et al. (2002) for details).
A total of 1642 scene events were detected from the 19
minutes of video data (see Fig. 8(b)).

Secondly, unsupervised clustering was performed
in the 7D feature space. A Gaussian Mixture Model
was adopted. Model selection was conducted using a
data set consisting of 1642 scene events. In our experi-
ments, the sample size of the data set varied from 58 to
1624 in increments of 58. The model selection results
are presented in Figs. 9 and Table 6. Note that in Figs.
9(c) only the first 3 principal components of the feature
space are shown for visualisation. It can be seen that
when the sample size was small but not too small (e.g.
100 < N < 800), BIC, BICr and ICL all tended to
under-fit while AIC and CL-AIC tended to over-fit. In
comparison, BICr gave the best performance. As the
sample size increased, model orders selected by BIC,
BICr and CL-AIC were getting closer to the true model
order of 5 before turning into slightly over-fitting, with
CL-AIC performing slightly better than the other two.
In the meantime, ICL remained under-fitting and AIC
remained over-fitting. Examples of estimated models
shown in Fig. 9(c) demonstrate that each estimated
cluster corresponded to one scene event class when
the model order was selected correctly.

6.4. Discussions

Our experiment results demonstrate the effectiveness
of our BICr and CL-AIC model selection criteria on
unsupervised learning of visual context. More specifi-
cally, given sparse data, BICr rectifies the under-fitting
tendency of BIC and also outperforms ICL, AIC and
CL-AIC. Given moderate to large data sample sizes,
CL-AIC appears to be the best choice among the 5 cri-
teria considered. By both direct observation of the data
and comparing Figs. 5, 7 and 9 with Figs. 2 and 3, it

appears that the true kernel functions of typical visual
data are clearly non-Gaussian and severely overlapped.
It is worth pointing out that the noise that is inevitably
contained in the visual data can distribute in a very
complex manner. For instance, we notice that the noise
can form an additional cluster in the spatial context
learning case, whereas the noise appeared to distribute
randomly over the whole feature space in the scene
event context learning case. Due to the existence of
noise, most model selection criteria are more likely to
over-fit even when sufficiently large data samples are
available.

It is interesting to note that in our real data exper-
iments, there were considerable amount of variations
in the selected model orders by all the criteria even
when the sample size was large (see the error bars in
Figs. 5(a), 7(a) and 9(a)). Given large sample size, it is
unlikely that these variations were caused by variations
in the data distribution for different trials because the
data sets for different trials had most data samples in
common. These variations can only be explained by
the sensitivity of the model selection criteria to the ini-
tialization of the EM algorithm for model parameter
estimation. Again it is the noise contained in the visual
data that should be blamed.

7. Conclusion

In conclusion, two novel probabilistic model selection
criteria BICr and CL-AIC were proposed to improve
existing model selection criteria for variable data sam-
ple sizes. The effectiveness of BICr and CL-AIC were
demonstrated on discovering visual context informa-
tion for dynamic scene modelling. Their performance
is superior to that of a number of existing popular model
selection criteria including BIC, AIC and ICL. Our
study suggests that for modelling visual data using a
mixture model, BICr is the most appropriate criterion
given sparse visual data. When moderate or large data
samples are available, CL-AIC should be chosen.

Our experiment results demonstrate that given a
sparse visual data set, there are alway considerable vari-
ations in the selection model orders even when the pro-
posed BICr criterion is used. Under this situation, one
must be careful in selecting the optimal model order
and estimating model parameters. Our results seem to
suggest that selecting model structure over multiple tri-
als using BICr followed by model averaging (Hoeting
et al., 1995) could be a suitable strategy for unsuper-
vised sparse visual data modelling. Our ongoing work
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is along this line. Finally, it is worth pointing out that
BICr and CL-AIC can be readily extended to select
models for data generated by many other real world
problems which have the similar characteristics to the
visual data.
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Notes

1. MDL formally coincides with BIC, although they are conceptu-
ally different.

2. The Dirichlet prior then becomes a noninformative prior
(Bernardo and Smith, 1994).
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