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ABSTRACT
In this paper, we present a probabilistic approach to refine
image annotations by incorporating semantic relations be-
tween annotation words. Our approach firstly predicts a
candidate set of annotation words with confidence scores.
This is achieved by the relevance vector machine (RVM),
which is a kernel based probabilistic classifier in order to
cope with nonlinear classification. Given the candidate an-
notations, we model semantic relationships between words
using a conditional random field (CRF) model where each
vertex indicates the final decision (true / false) on a candi-
date annotation word. The refined annotation is given by
inferring the most likely states of these vertexes. In the CRF
model, we consider the confidence scores given by the RVM
classifiers as local evidences. In addition, we utilise Normal-
ized Google distances (NGD’s) between two words as their
contextual potential. NGD is a distance function between
two words obtained by searching a pair of words using the
Google search engine. It has a simple mathematical formu-
lation with a foundation in Kolmogorov theory. We also
propose a learning algorithm to tune the weight parameters
in the CRF model. These weight parameters control the
balance between the local evidence of a single word and the
contextual relation between words. Our experiments on the
Corel images demonstrate the effect of our approach.

Categories and Subject Descriptors
H.3.3 [Information Systems]: INFORMATION STOR-
AGE AND RETRIEVAL

General Terms
Algorithms, Experimentation

Keywords
Image Annotation, Semantic Relation, Normalized Google
Distance.
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1. INTRODUCTION
With the prevalence of digital imaging devices such as we-

bcams, phone cameras and digital cameras, image data ac-
cessible to computer users are now exponentially increased.
To that end, an urgent issue is how to browse and retrieve
this large volume of images. A possible solution is by content
based image retrieval (CBIR) where two images are consid-
ered to be similar in semantics if they are close in the space
of visual features. This is useful in the case where only image
data are available, but limited in any semantic interpreta-
tion of images. Another approach is by annotating images
with text keywords. With ideal annotations, image retrieval
can be solved by well developed techniques in text retrieval.
Unfortunately, most of the image data are unannotated or
only partially annotated. Manual annotation is impractical
for a large number of images. Although in the special case
of web images, rough annotation can be extracted from the
associated text such as the surrounding web text and tittles,
these annotations are very noisy because the associated text
are not strongly correlated with the images and they com-
pletely ignore the visual content of images. Confronted with
these challenges, automatic image annotation (AIA) aims to
improve the performance of current image retrieval systems.
The basic idea is that given a small dataset of images with
annotations, we aim to train an image annotation system
that is capable of annotating any new images automatically.

Current techniques for AIA can be summarized into two
categories. First, image annotation is formulated as an im-
age classification problem [2, 11, 5]. Specifically, each con-
cept (annotation word) is viewed as a unique class label.
For example, in a binary classification setting, we train a
single classifier for each concept individually. To annotate
new images, these classifiers are applied to a new image
one by one and the final annotation results are obtained
by ranking their posterior class probabilities [2]. Alterna-
tively, we can train a multi-class classifier altogether. This
can reduce the overall complexity of the classifier since there
are many common features shared by different concepts [5].
The advantage of the classification approach is that we have
various mature machine learning techniques available such
as Naive Bayes, SVM, Bayes Point Machines and the 2-D
multi-resolution Hidden Markov Model [11] etc. The sec-
ond approach represents annotation words and images as
features in different modalities. Image annotation is then
realized by modeling the joint distribution of the visual fea-
tures and the textual features together on the training data
and predicting the missing textual features for a given new
image. A common point of these approaches is to decompose



an image into a number of sub units such as image regions
to generate the similar form of discrete features as that of
text. For example, Barnard et al. [10] proposed a transla-
tion model for image annotation by viewing the images (a
set of blobs) and textual words as two different languages.
Other works along this line include the cross-media relevance
model (CMRM) [7], the multiple Bernoulli relevance model
(MBRM) [14], the latent Dirichlet allocation model (LDA)
[1] and the continuous relevance model (CRM) [17].

However, there is a problem remained unsolved, i.e., the
semantic gap. All the above approaches try to annotate
images based solely on their visual features. On the other
hand, our human cognitive understanding of images is far
removed from comparing low level visual features. Whilst
effort is made to improve image annotation based on visual
features alone, a number of works have begun to incorporate
semantic knowledge from different sources into image anno-
tation, complementary to the existing visual feature based
approaches. To incorporate semantic knowledge into image
annotation, there are three major issues: (i) How to rep-
resent semantic knowledge? There are mainly two types of
representation considered by existing work, we call them hi-
erarchical relationship [6, 15, 19] and flat relationship [9, 18]
respectively. In a hierarchical relationship, concepts are re-
lated by parent-and-child relation. More general concepts
are usually placed in the top level of the hierarchy. For ex-
ample, the concept scene can be divided into indoor and
outdoor. An outdoor scene can be further divided into sev-
eral categories such as sunset, beach, city etc. The sec-
ond form, flat relationship, considers pairwise relationships
between two concepts. The focus here is the relatedness
between two concepts. Two concepts can be related for a
number of reasons. For example, sunset is more related with
outdoor than with indoor and desk is more related with chair
than with lake. (ii) How to build a knowledge database? The
most popular method is to extract semantic knowledge from
existing ontologies such as WordNet [13, 6, 15, 9], which is a
semantic lexical database providing a number of possible re-
lations between English words. Manual construction [19] or
automatic learning [18] of semantic knowledge from external
datasets has also been demonstrated. (iii) How to integrate
the knowledge database into the annotation process. This
is largely dependent on the stages of an annotation process
where the knowledge is incorporated. For example, Srikanth
et al. [15] introduced ontologies the prepossessing of visual
features, i.e., the visual vocabulary to improve the trans-
lation model. Wu et al. [19] modelled the causal strength
between concepts by a directed acyclic graph (DAG) and
the annotation is inferred bases on this graph structure. Jin
et al. [9] and Wang et al. [18] integrate ontologies in the
post processing stage to refine the initial annotations.

In this paper, we present a novel ontology based image
annotation framework. Specifically, we propose a Condi-
tional Random Field (CRF) [8] framework to incorporate
the contextual relations between words as a kind of flat re-
lationship extracted automatically from Google search. For
a given image, our framework firstly predicts a candidate
set of annotation words and then refine them by integrat-
ing contextual relationships between concepts. Our work is
mostly related to that of Jin et al. [9] and Wang et al. [18],
but differs in a number of ways as follows:

(1) In the approach of Jin et al. [9], the confidence scores
of the initial annotation word are discarded in the fol-

lowing refining stages, while we take the same strategy
as that in Wang et al. [18] to keep these confidence
scores and integrate them with the contextual knowl-
edge on the annotation words in the refining stage.

(2) The ontologies used in Jin et al. [9] is provided by
a specific knowledge database (WordNet) constructed
by human experts, while ours is extracted automati-
cally from the world wide web (WWW). The WWW
is probably the largest digital text database on the
earth, and the latent semantic context information en-
tered by millions of independent users average out to
provide a meaningful sense of the contextual relations
between words. Wang et al. [18] also attempted to ex-
tract the ontologies from the Internet, but our measure
of contextual strength is motivated by the normalized
Google distance (NGD) proposed by Cilibrasi and Vi-
tanyi [4]. NGD has shown to be able to discover the
meaning of words by the extensive experiments [4].

(3) The approach of integrating ontologies into the anno-
tation in [9] is based on a rule based method which
removes the noisy words from the initial annotation,
while in [18] they model the annotation refining pro-
cess as a random walk with restarts. Different from
[18] and [9], we model the assignment decision (true/false)
of a word from the initial annotation as a conditional
binary random field. The advantage of the CRF ap-
proach is that it can provide a coherent probabilis-
tic fusion approach taking into account the individual
probabilistic label assignment and the contextual rela-
tions between annotation words simultaneously. More-
over, we provide a learning process to tune the balance
between the local evidence of each words and the con-
textual relation between words.

The rest of this paper is organized as follows: section 2
presents an overview of the key components of our automatic
image annotation refining framework. Section 3 discusses
the probabilistic binary image classification approach based
on the bag of visual words model. In section 4 we introduce
the normalized Google distance and compare it with the
ontologies in WordNet. Section 5 describes the conditional
random field which is used to fuse ontologies into image
annotation. We present our experimental results in section
6 and conclude in section 7.

2. OVERVIEW OF THE FRAMEWORK
Fig.1 illustrates the flowchart of our framework of refin-

ing image annotation. There are three key components as
described in the following,

(1) Binary image classifiers
The first key component is the binary classifiers for
each concept (here we use a concept and an annotation
word interchangeably). They provide an initial set of
annotation words for a given image. Each annotation
word is assigned with a confidence score independently
from other annotated words. This can be achieved by
many of the existing automatic image annotation algo-
rithms. The only requirement is that it can annotate
images with confidence scores. In this work, we have
proposed a bag of visual words approach for this pur-
pose.
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Figure 1: A framework for automatic image annotation. We refine candidate annotations generated using
binary classifiers by further taking into account contextual relations between words modeled by a CRF model.

(2) NGD’s from WWW
The normalized Google distances (NGD’s) is the sec-
ond key component of our framework. A NGD is a
distance value between two words extracted from the
WWW. A NGD indicates the contextual relation be-
tween two words, e.g., the word sky is more likely to
appear together with clouds than with indoor. Since
they are some sort of general knowledge independent
from the training images with annotation, we view it
as a sort of ontologies.

(3) CRF Model
The CRF model is the third component in refining the
image annotation. CRF is employed to integrate to-
gether the ontologies about textual data from WWW
and the independent mappings from visual features to
a single textual word into a coherent refined anno-
tation. In this model, annotation words with strong
positive contextual relation (e.g., sky and clouds) can
support each other while words with negative contex-
tual relation (e.g., sky and indoor) can contradict each
other.

3. BINARY IMAGE CLASSIFICATION
Image annotation can be treated as an image classifica-

tion problem as follows. For each concept, we take all the
training images which have this concept as one of its ground
truth labels as the positive samples and those which do not
have as the negative samples. After feature extraction, a
binary classifiers can be trained for each concept indepen-
dently. Thus, the critical issues here is how to extract visual
features from an image and which classification approach to
take. In our work, we take an image as a bag of visual words
and extract the histogram of visual words as the visual fea-
ture [3]. To address the second issue in image annotation,
we adopt relevance vector machine (RVM) [16] as our prob-
abilistic classifier. RVM has several advantages: (i) it is a
probabilistic classifier. (ii) it works in the kernel trick as that
in Support Vector Machines (SVM), so that it can map the
original feature space to an implicit high dimensional fea-
ture space. (iii) it is an implementation of sparse Bayesian
learning theory so that the relevance vectors involved in the
final classifiers are sparser than the support vectors involved
in a SVM classifier.

3.1 Image as a Bag of Words

We take an image as a bag of visual words. To this end,
we firstly partition an image into a number of small patches
by a regular grid. Some previous works have used the image
blob representation. An image blob is obtained by an un-
supervised image segmentation such as normalized cut seg-
mentation algorithm. We do not take this approach mainly
because, image segmentation is still an unsolved issue and
the unsupervised segmentation bring about extra computa-
tion. A regular grid is much simpler to implement. Among
the various local feature descriptors, SIFT [12] has demon-
strated its out-performance in some benchmark evaluation.
SIFT is a 128-D histogram descriptor of the gradient orien-
tation over a patch. The gradients are center-weighted by
a Gaussian weighting function. The weighted gradients are
then accumulated over 4× 4 sub-regions in each of which a
histogram of gradient orientation in 8 orientation bins are
computed. The final 128-D descriptor is the concatenated
vector of the 16 8-D sub descriptors. SIFT descriptor has
been shown to be a feature which is distinctive enough but
robust to affine transformation, additive noise and change
of illumination. The original SIFT descriptor is proposed
for grayscale images. We believe color is an informative
feature for image annotation. To combine SIFT with color
features, we concatenate SIFT with a 6-D color descriptor
for each patch, where the color descriptor include the means
and variances of the R, G and B components.

With each image patch described by a color SIFT feature
descriptor, we construct a visual vocabulary by running k-
means clustering algorithm on the local feature descriptors
extracted from a subset of the training images. The size
of the vocabulary has some influence on the classification
performance. Our initial experiments show that the classi-
fication performance is better with a larger vocabulary size.
We call the resulted clustering centers as visual words, as an
analogy to the text words. With this visual vocabulary each
image patch can be assigned to one of the visual words. At
this stage each image has been transformed into a unordered
set of visual words. The histogram of the visual words in
an image is then normalized. This is the final global feature
descriptor of an image.

3.2 Probabilistic Classification
Relevance vector machine (RVM) is a supervised learn-

ing algorithm based on the Bayesian estimation theory. It
is reported to yield nearly identical performance to, if not
better than, that of SVM in several benchmark studies. A
key feature of RVM is that it can yield a solution function



that depends on a much smaller number of kernel functions,
called relevance vectors than the number of support vectors
in SVM. This sparsity offers RVM good generalization abil-
ity and a simple structure in the classifier. What is more,
RVM is a probabilistic classifier that it predicts the class
label with a probability score.

Since RVM has a close relationship with SVM, we be-
gin with the classification function of SVM. Given training
samples xi, i = 1, 2, . . . , N , the classification function f(x)
of SVM is given by

f(x) =

N∑
i=1

wiK(x,xi) + w0

where w = (w0, w1, w2, . . . , wN ) is the model weights and
K(·, ·) is a kernel function. In RVM, this linear model is
generalized by applying the logistic sigmoid function σ(f) =
1/(1 + e−f ) to f(x) and the probability of the class label yi

given the training sample xi is given by

P (yi|xi;w) = σ{f(xi)}yi [1− σ{f(xi)}]1−yi (1)

According to Tipping [16], the parameters w, can be de-
termined using Bayesian estimation. To this end, a sparse
prior is introduced on wi. Specifically, these parameters
are assume to be statistically independent and each obeys a
zero-mean Gaussian distribution with variance α−1

i , i.e.,

P (w|α) =

N∏
i=0

N (wi|0, α−1
i )

where α = (α0, α1, . . . , αN ). The posterior likelihood of w
can then be formulated as

L(w) = P (w|α)

N∏
i=1

P (yi|xi;w)

Unlike the maximum a posterior (MAP) estimation, the
hyper-parameters α are not manually chosen but estimated
automatically through an iterative procedure (refer to [16]).
In the real implementation, most of the variance parameters
αi goes to infinity, indicating the weight wi is peaked around
zero.

4. ONTOLOGIES FROM WWW

4.1 Semantic Knowledge from WordNet
An ontology is a data model that represents a domain.

It is used to reason about the objects and the relations
between them in that domain. Over the years, intensive
effort has been made in building ontologies in a computer-
digestible form. One of such examples is WordNet, which
is trying to establish semantic relations between common
objects. WordNet is organized in a hierarchical structure in
that each word is provided with at least one synset (set of
synonyms). Most synsets are connected to other synsets via
a number of semantic relations such as hypernyms (Y is a
hypernym of X if every X is a (kind of) Y), hyponyms (Y
is a hyponym of X if every Y is a (kind of) X), antonym
(opposite meaning of each other) etc. Although these se-
mantic knowledge is readily available, how to use them in
an application is a challenging issue. As for refining image
annotation, the most popular way is to simplify the seman-
tic knowledge into the semantic similarity between concepts.

This simplification has two limitations: Firstly, a lot of de-
tailed semantic knowledge present in WordNet has been lost
in this simplification. By the semantic similarity between
concepts, we know how much they are related but we do
not know the actual reason. Secondly, WordNet does not
provide a quantitative measure of the semantic similarity
between concepts. So various measures [9] have been pro-
posed to derive the semantic similarity from WordNet, but
none of these measures are perfect and sometimes they con-
tradict with human ratings.

4.2 Normalized Google Distance
Realizing the limitations of computing the semantic sim-

ilarity from WordNet. we take a different approach. In-
stead of relying on WordNet, we resort to the largest text
database, i.e., the WWW, to mine the semantic relation
between concepts automatically. The method, called the
normalized Google distance (NGD) is firstly proposed by
Cilibrasi et al. [4]. NGD is a measure of semantic rela-
tion between two words obtained by just typing them as the
search term in Google’s search engine. It has solid founda-
tion in Kolmogorov complexity theory while has a concise
mathematical formulation as follows,

NGD(w1, w2) =
max{log f(w1), log f(w2)} − log f(w1, w2)

log M −min{log f(w1), log f(w2)}
(2)

where w1 and w2 represent the two words in considera-
tion. f(w1) and f(w2) are the numbers of the webpages
returned by Google search engine when typing w1 and w2

as the search term respectively. f(w1, w2) is the number of
webpages returned when typing w1 and w2 together as the
search term. M is the index size of Google. To understand
how the formulation in Eq.(2) comes out, firstly we define
the semantic relation between two words w1 and w2 as the
following distance function,

D1(w1, w2) = min{p(w1|w2), p(w2|w1)} (3)

where

p(w1|w2) =
p(w1, w2)

p(w2)
=

f(w1, w2)/M

f(w2)/M
=

f(w1, w2)

f(w2)

and p(w2|w1) is similar. The same D1 distance function as
that in Eq.(3) has been taken to measure the semantic re-
lation between concepts by Wang et al. [18]. However, the
direct use of the D1 distance does not give good results in
experiments according to [4]. One reason is that the differ-
ence among small probabilities have increasing significance
when smaller probabilities are involved. Another reason is
that two notions that have very small probabilities each and
have D1 distance ε are much less similar than two notions
that have much larger probability and have the same dis-
tance. To resolve the first problem, we take the negative
logarithm of the items being minimized, resulting in

D2(w1, w2) = max{log 1/p(w1|w2), log 1/p(w2|w1)}
To resolve the second problem, we normalize D2(w1, w2)
with the maximum of log 1/p(w1) and log 1/p(w2). Alto-
gether the following normalized distance is obtained

D3(w1, w2) =
max{log 1/p(w1|w2), log 1/p(w2|w1)}

max{log 1/p(w1), log 1/p(w2)}
Finally replace the probabilities p(w1), p(w2), p(w1|w2) and
p(w2|w1) with the corresponding frequencies divided by the



index size M , we can get the formulation in Eq.(2). In sum-
mary, NGD has several attributes: (a) It is a distance value
ranging from 0 to ∞ but most of the NGD’s are between
0 and 1; (b) The smaller the NGD is, the stronger the se-
mantic relation is. (c) NGD is scale robust, meaning that
it is relatively stable with the change of the index size M .
(d) NGD is NOT a metric. It does not obey the triangle
inequality rule.

The original NGD is obtained by analyzing the search
statistics of generic webpages. For the problem of image
annotation, we are more interested in the text description
of images. This can be viewed as a special domain NGD. A
possible solution is searching the terms on the Google Images
instead of the Google search. But Google Images are too
noisy and the index size is much smaller than Google search.
So we propose an intuitive method by searching a term w
only in a subset of webpages which contain at least one word
from a list of anchor words (image, images, photo, photos,
picture and pictures). The underlying intuition is that these
webpages are more likely to be related to image data. This
method has another advantage: M is now reliable to be
estimated by counting the number of webpages containing
any anchor word. This is important since the full index size
of Google is a miracle and it is changed as time goes on.

4.3 Compare NGD to WordNet
Since both NGD and WordNet provide a semantic similar-

ity between concepts, it is worthwhile to have a comparison.
From the definition of NGD, we can find that NGD is ac-
tually a measure of the contextual relation, while WordNet
focuses on the semantic meaning of words. Nevertheless,
in [4], the authors have shown that how the semantic re-
lation derived from NGD can be consistent with that of
WordNet. To know more details, readers are referred to
[4]. Here we give some examples to have an intuitive un-
derstanding of their difference. Firstly, we show that NGD
pays more attention to contextual relations rather than se-
mantics. An example is given by three concepts: mountain,
rock and lake. From the perspective of WordNet, the se-
mantic relation between mountain and rock is stronger than
that between mountain and lake because rocks constitute a
mountain, but NGD(mountain, lake)= 0.3127, which is less
than NGD(mountain, rock)= 0.4498. The reason is that
mountain and lake appear more frequently together in the
text description of images. Secondly, NGD suppresses syn-
onyms but WordNet prefers to synonyms. An example is
given by the words by and with. As these two words are
exchangeable in many occasions, either one of them appear
in an occasion but not both of them. This results in a NGD
value of 3.51, which means they strongly contradict with
each other. However, their semantic relation in WordNet is
very strong since they are synonyms to each other. Thirdly,
NGD is more subjective than WordNet. An example is given
by the relation of (USA,poor) and (Kenya,poor). The two
NGD’s are 0.5639 and 0.9893 respectively. But there is no
reason to believe USA is even poorer than Kenya. The ex-
planation is that many webpages contain both of the words
USA and poor for whatever reasons. In short, both of NGD
and WordNet can provide some measure of words related-
ness but have different focuses.

5. REFINEMENT BY ONTOLOGY
The probabilistic classifiers described in section 3 can pre-
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Figure 2: (a) An illustration of the CRF model for
annotation refining. Each vertex represents a binary
random variable. The numbers besides the edges in-
dicate the contextual strengths. (b)An illustration
of a refined annotation represented by an indicator
vector. The first line of words is the candidate an-
notation, the underlined words are removed in the
refined annotation.

dict a candidate set of annotation words with confidence
scores for a given image. These confidence scores are solely
based on the visual features. While if we take an annota-
tion as a concise form of text description of images, they are
more than several disjoint words. Particularly, like a normal
text paragraph, the context plays an important role in the
language usage. Thus, we propose a method to model this
context and refine the image annotation by a global deci-
sion considering not only a single annotation word but also
their pairwise contextual relations. Specifically, we propose
a probabilistic framework based on the conditional random
field to refine the annotation. In this framework, the final
decision of a candidate annotation word is represented by
a binary random variable where true means it is assigned
to the image finally and false otherwise. We view the con-
fidence score of each word provided by the binary classifier
as a sort of local evidence of its corresponding random deci-
sion variable. Furthermore, we view the semantic distance
between the annotation words as a sort of potential between
these random variables. The CRF modeling of contextual
relation between words is illustrated in Fig. 2.

5.1 Conditional Random Field (CRF)
A conditional random field (CRF) is an undirected graph-

ical model in which each vertex represents a random variable
whose distribution is to be inferred, and each edge represents
a dependency between two random variables. In a CRF, the
distribution of each discrete random variable yi in the graph
is conditioned on an input sequence x. In mathematics, the
conditional probability of y = (y1, y2, . . . , yn) given x is for-
mulated as,

P (y|x) =
eψ(y,x;Θ)

∑
y′ e

ψ(y′,x;Θ)

where

ψ(y,x; Θ) =
∑

i

∑

k

θ1
kf1

k (yi, i,x)+
∑
i,j

∑

l

θ2
l f2

l (yi, yj , i, j,x)

(4)
is the potential function. i, j are used to index the vertexes.
f1

k (yi, i,x) and f2
l (yi, yj , i, j,x) are the node feature func-

tion and edge feature function respectively (multiple fea-



ture functions can be used), which are application depen-
dent. Θ = {θ1, θ2} are the model parameters to learn. For a
graphic model with complex structure, the learning process
will be expensive. What is more, the training data is usu-
ally sparse compared to the high-dimension of the parameter
vector. This means that the model learned from the training
data does not have good generalization ability in the future
new data. Thus, we keep the framework of CRF but reduce
the number of parameters to learn by setting most of the
parameters as a prior knowledge. Specifically, we change
the potential function in Eq. (4) to the following,

ψ(y,x; Θ) = α1 ∗
∑

i

ω1(yi, i,x) + α2 ∗
∑
i,j

ω2(yi, yj , i, j)

where, ω1 indicates the local evidence of the state of yi. It
is dependent on the image observation x. ω2 is the a prior
parameters indicates the contextual potential between the
states of two variables yi and yj . We take the local evidence
as the logarithm of the confidence score given by a binary
classifier, i.e.,

ω1(yi = 1, i,x) = log PRV M (c(yi) = 1|x) (5)

ω1(yi = 0, i,x) = log [1− PRV M (c(yi) = 1|x)] (6)

Here, we use c(yi) to indicate the concept actually repre-
sented by yi and PRV M is the classification probability ac-
cording to Eq.(1). We assume the contextual potential is in-
dependent from x and can be obtained as general knowledge
provided by the NGD. We convert a NGD into contextual
potentials by the following,

ω2(yi, yj , i, j) =

{ − log NGD(c(yi), c(yj)) if yi = yj = 1
0 otherwise

The underlying assumption is that only when a concept is
present in the image, it has influence to the other concepts.
In this simplified CRF model, the parameters to learn, Θ =
{α1, α2}, are the weight parameters to control the balance
between local evidence and contextual potential.

5.2 Parameter Estimation
It is hard to manually choose the weight parameters Θ =

{α1, α2} since the local evidence and contextual potentials
come from difference sources. So we propose a learning algo-
rithm which can estimate the two weights from a validation
set. Suppose we have a training set and a validation set,
the sample of each set is an image with its ground truth an-
notation words. The algorithm goes as follows: Firstly, we
train an image classifier for each concept separately on the
training set, as described in section 3. Secondly, for each
image in the validation set, these classifier are applied to
produce a confidence score for each word from the annota-
tion vocabulary. Thirdly, the annotation words with the top
10 confidence scores or those appear in the ground truth an-
notation are selected as the candidate set of words. Finally,
construct the indicator vector y for each image and learn Θ
by maximizing the log posterior of Θ as

L(Θ) =
∑

k

log P (yk|xk)− α1
2

2σ2
− α2

2

2σ2

where k indexes the samples in the validation set. We fit a
Gaussian prior with parameter σ on the Θ to prefer to small
values of α1 and α2. The indicator vector is constructed
in such a way that yi is true if the corresponding concept

appears among the words with top confidence scores and
also in the ground truth labels, otherwise it is false.

We maximize L(Θ) by the deepest gradient descent algo-
rithm. To this end, we need to calculate the first derivative
of L(Θ) with respective to α1 and α2. Here we focus on the
derivative of the log likelihood of a single sample. This is
given by the following equation,

∂ log P (y|x)

∂α1
=

∑
i

ω1(yi, i,x)−
∑

y′
P (y′|x)

∑
i

ω1(yi
′, i,x)

=
∑

i

ω1(yi, i,x)−
∑

i

∑

y′
P (y′|x)ω1(yi

′, i,x)

=
∑

i

ω1(yi, i,x)−
∑

i

∑

yi
′

P (yi
′|x)ω1(yi

′, i,x) (7)

Similarly, the first derivative with respective to α2 can be
derived as,

∂ log P (y|x)

∂α2
=

∑
i,j

ω2(yi, yj , i, j)−
∑
i,j

∑

yi
′,yj

′
P (yi

′, yj
′|x)ω2(yi

′, yj
′, i, j) (8)

The two marginalized probabilities, P (yi|x) and P (yi, yj |x),
can be calculated by belief propagation [8]. Given Eq. (7)
and (8), the computation of the first derivative of L(Θ) is
straightforward.

5.3 Automatically Refine Image Annotation
Given the learned best parameters Θ̂ and a candidate an-

notation for an image, we can refine this annotation by in-
ferring the most likely state of each indicator variable by the
marginalized probability

y∗i = arg max
yi

P (yi|x; Θ̂) yi ∈ {0, 1} (9)

Alternatively, we can infer the most likely state of the indi-
cator vector all together by

y∗ = arg max
y

P (y|x; Θ̂)

Both of these two approaches have its own advantages. By
the first approach, we can rank the annotation words by
their marginalized probabilities. By the second, we can de-
cide the length of the annotation automatically. In this work
we have taken the first method.

6. EXPERIMENT
The dataset used in our experiment is the same subset

of Corel images as that used in [10]. It contains 5000 color
images, each of which has 1 ∼ 5 caption words. There are
totally 374 caption words. We partition the whole dataset
into three subsets: 4000 images as the training set, 500 im-
ages as the validation set and 500 images as the testing set.

The first step is training a RVM classifier for each concept.
We begin from extracting the color-SIFT descriptors from
all the images. We then collect 10,0000 color-SIFT feature
descriptors from a subset of the training images and cluster-
ing them into 1000 clusters by running k-means clustering
algorithm. This is our visual vocabulary. After this, we
extract a normalized histogram of the visual words for each
image. At this stage, we are ready to construct a training set
for each concept and train a RVM classifier. These binary



classifiers are then applied to each image in the validation
set and testing set. The result of this is a candidate set of
annotation words with confidence score for each image. The
second step is training the weight parameters of the CRF
model on the validation set. To this end, we construct the
training data (the indicator vectors) for the CRF model as
discussed in section 5. We use Google search engine to com-
pute the pairwise NGD of all the 374 words. These NGD
values are stored and fitted to the CRF model together with
the confidence scores provided by the RVM classifiers. We
initialized the weight parameters as α1 = α2 = 0.1 and
run the iterative optimization algorithm. To obtained the
refined annotation on the test set, the best weight parame-
ters, the pairwise NGD values, the confidence scores of the
candidate annotation are fitted together to the CRF model.
The top 10 words from the candidate annotation of each
image is chosen as the basis of refinement. We rerank these
10 words by their marginalization probability as that in Eq.
(9).

To evaluate the performance of the refined annotation,
we select the top ranked words from the candidate anno-
tation and refined annotation words respectively and com-
pared the precision and recall values on the top 50 words
with the best performance by RVM. The recall value of a
specific vocabulary word w is calculated as the number of
images correctly annotated with w divided by the number
of images with w annotated in the ground truth annotation.
The precision value is calculated as the number of images
correctly annotated with w divided by the total number of
images annotated with w. We compare our method with the
Random Walk with Restarts (RWR) approach of Wang et
al. [18]. Both of the refining methods take the probabilis-
tic annotations by RVM as the initial annotations. Fig. 3
shows averaged the precision and recall values with differ-
ent number of top words selected. From the figure we can
find that Random Walk with Restarts (RVM RWR) can im-
prove the annotation performance of RVM but our method
outperforms RWR consistently. The less top words selected
as annotation, the better the improvement. This is because
the contextual relation between correctly annotated words
can enhance their rankings. Fig. 4 shows some sample im-
ages and their automatic annotations. From these samples,
we can find that words which have not been selected by
the RVM approach have chance to be selected after refine-
ment because of the support from other annotation words
(e.g., lake in the first example). On the other hand, words
have been selected by the RVM approach are possible to be
excluded in the refined annotation because of its negative
contextual relation with other words (e.g., cat in the forth
sample).

7. CONCLUSIONS
In this paper, we presented a probabilistic framework to

refine image annotation by incorporation semantic relation
between annotation words. Our framework firstly predicts
a candidate set of annotation words with confidence scores.
This is achieved by the relevance vector machine, which is
a probabilistic classifier working in the kernel trick. Given
the candidate annotation, we model the context relation be-
tween words by a conditional random field model. In the
CRF model, each vertex indicate the final decision of a can-
didate annotation word. Its local evidence is given the the
confidence score produced by the RVM classifiers. Its con-

(a)

(b)

Figure 3: Compare the performances of the anno-
tations generated by RVM and the refined anno-
tations generated by Random Walk with Restarts
(RVM RWR) and CRF (RVM CRF). (a) the aver-
age precision by selecting different number of top
ranked words. (b) the average recall by selecting
different number of top ranked words.

text relation is given by the normalized Google distance.
The NGD is a distance function between two words obtained
by just typing these two words as the search terms in the
Google search engine. It has a simple mathematical formu-
lation but has a solid theory foundation. We also propose
a learning algorithm to learn the weight parameters in the
CRF model. These weight parameters control the balance
between the local evidence of a single word and the con-
text relation between words. Our experiment results on the
Corel images have shown the effect of our approach. We
believe that the semantic knowledge from different sources
are complementary to each other. In the future, we will
research how to combine together the semantic knowledge
from NGD and other sources such as WordNet to achieve a
better annotation performance.
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