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Faster Person Re-Identification:
One-shot-Filter and Coarse-to-Fine Search

Guan’an Wang*, Xiaowen Huang*, Shaogang Gong, Jian Zhang, Wen Gao

Abstract—Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID
methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort.
However, a very long code is needed for high accuracy (e.g. 2048), which compromises search speed. In this work, we introduce a new
solution for fast ReID by formulating a novel Coarse-to-Fine (CtF) hashing code search strategy, which complementarily uses short and
long codes, achieving both faster speed and better accuracy. It uses shorter codes to coarsely rank broad matching similarities and
longer codes to refine only a few top candidates for more accurate instance ReID. Specifically, we design an All-in-One (AiO) module
together with a Distance Threshold Optimization (DTO) algorithm. In AiO, we simultaneously learn and enhance multiple codes of
different lengths in a single model. It learns multiple codes in a pyramid structure, and encourage shorter codes to mimic longer codes
by self-distillation. DTO solves a complex threshold search problem by a simple optimization process, and the balance between
accuracy and speed is easily controlled by a single parameter. It formulates the optimization target as a Fβ score that can be optimised
by Gaussian cumulative distribution functions. Besides, we find even short code (e.g. 32) still takes a long time under large-scale
gallery due to the O(n) time complexity. To solve the problem, we propose a gallery-size-free latent-attributes-based One-Shot-Filter
(OSF) strategy, that is always O(1) time complexity, to quickly filter major easy negative gallery images, Specifically, we design a
Latent-Attribute-Learning (LAL) module supervised a Single-Direction-Metric (SDM) Loss. LAL is derived from principal component
analysis (PCA) that keeps largest variance using shortest feature vector, meanwhile enabling batch and end-to-end learning. Every
logit of a feature vector represents a meaningful attribute. SDM is carefully designed for fine-grained attribute supervision,
outperforming common metrics such as Euclidean and Cosine metrics. Experimental results on 2 datasets show that CtF+OSF is not
only 2% more accurate but also 5× faster than contemporary hashing ReID methods. Compared with non-hashing ReID methods, CtF
is 50× faster with comparable accuracy. OSF further speeds CtF by 2× again and upto 10× in total with almost no accuracy drop.

Index Terms—Person Re-Identification, Hashing, Coarse-to-Fine, Latent Attribute, One-Shot-Filter, Computer Vision, Deep Learning
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1 INTRODUCTION

P ERSON re-identification (ReID) [1], [2], [3] aims to match
images of a person across disjoint cameras, which is

widely used in video surveillance, security and smart city.
Many methods [2], [4], [5], [6], [7], [8], [9], [10], [11] have
been proposed for person ReID. However, for higher accu-
racy, most of them utilize a large deep network to learn high-
dimensional real-value features for computing similarities
by Euclidean distance and returning a rank list by quick-
sort [12]. Quick-sort of high-dimensional deep features can
be slow, especially when the gallery set is large. Table 1
shows that the query time per ReID probe image increases
massively with the increase of the ReID gallery size; and
counting-sort [13] is much more efficient than quick-sort, in
which the former has a linear complexity w.r.t the gallery
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size (O(n)) whilst the latter has a logarithm complexity
(O(nlogn)).

Several fast ReID methods [14], [15], [16], [17], [18],
[19], [20], [21] have been proposed to increase ReID speed
whist retaining ReID accuracy. The common main idea is
hashing, which learns a binary code instead of real-value
features. To sort binary codes, the inefficient Euclidean dis-
tance and quick-sort are replaced by the Hamming-distance
and counting-sort [13]. Table 2 shows that computing a
Hamming distance between 2048-dimensional binary-codes
is 229× faster than that of a Euclidean distance between
real-value features.

Different from common image retrieval tasks, which are
category-level matching in a close-set, ReID is instance-
level matching in an open-set (zero-shot setting). For image
retrieval in the ImageNet [22], the classes of training and
test sets are the same and imagery appearances of different
classes diverse a lot, such as dog, car, and airplane. In
contrast, the training and test ReID images have completely
different ID classes without any overlap (ZSL) whilst the
appearances of different persons can be very similar to sub-
tle changes (fine-grained) on clothing, body characteristics,
gender, and carried-objects. The ZSL and fine-grained char-
acteristics of ReID require state-of-the-art hashing-based fast
ReID models [21] to employ very long binary codes, e.g.
2048, in order to retain competitive ReID accuracy. However,
the binary code length affects significantly the cost of com-
puting Hamming distance. Table 2 shows that computing
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TABLE 1
ReID search time per probe image by quick-sort (real-value) and

counting-sort (binary). The latter is much faster.

Gallery Query Time (s)
Size Quick-Sort Counting-Sort

1× 104 1.0× 10−1 2.7× 10−3

1× 105 4.3× 10−1 2.7× 10−2

1× 106 6.4× 100 2.6× 10−1

1× 107 1.1× 102 2.7× 100

Per Sample - 2.6× 10−7

Complexity O(nlogn) O(n)

TABLE 2
Comparing Euclidean- and Hamming- distances, Euclidean and longer

lengths are slow to compute.

Code Length Computation Time (s)
Euclidean Hamming

32 6.8× 10−5 2.4× 10−6

128 2.6× 10−4 2.8× 10−6

512 1.0× 10−3 4.4× 10−6

2, 048 3.9× 10−3 1.7× 10−5

a Hamming distance between two 2048-dimensional binary
codes takes 1.7 × 10−5 seconds, which is 7× slower than
computing that of 32-dimensional binary codes at 2.4×10−6

seconds. This motivates us to solve the following problem:
How to yield higher accuracy from hashing-based ReID
using shorter binary codes.

To that end, we propose a novel Coarse-to-Fine (CtF)
search strategy for faster ReID whilst also retaining com-
petitive accuracy. At test time, our model (CtF) first uses
shorter codes to coarsely rank a gallery, then iteratively
utilises longer codes to further rank selected top candidates
where the top-ranked candidates are defined iteratively by
a set of Hamming distance thresholds. Thus, the long codes
are only used for a decreasingly fewer matches in ranking
in order to reduce the overall search time whilst retaining
ReID accuracy. This is an intuitively straightforward idea
but not easily computable for ReID due to three difficulties:
(1) Coarse-to-fine search requires multiple codes of different
lengths. Asymmetrically, computing them with multiple
models is both time-consuming and sub-optimal. (2) The
coarse ranking must be accurate enough to minimise miss-
ing true-match candidates in fine-grained ranking whilst
keeping their numbers small, thus reduce the total search
time. Paradoxically, shorter codes perform much worse than
longer codes in ReID task therefore hard to be sufficiently
accurate. (3) The set of distance thresholds for guiding the
coarse search affect both final accuracy and overall speed.
How to determine automatically these thresholds to balance
optimally accuracy and speed is both important and non-
trivial.

In this work, we propose a novel All-in-One (AiO) mod-
ule together with a Distance Threshold Optimization (DTO)
algorithm to simultaneously solve these three problems. The
AiO module can simultaneously learn and enhance multiple
codes of different lengths in a single model. It progressively
learns multiple codes in a pyramid structure, where the
knowledge from the bottom long code is shared by the

query

final rank list

G1 G2 G3

G1 G2 G3

images of distance < t2 rank by b2

all images rank by b1

G1 G2 G3

images of distance<tN-1 rank by bN-1

G1 G2 G3

images of distance<tN rank by bN

G1 G2 G3

...

Fig. 1. Illustration of coarse-to-fine (CtF) search strategy. A Coarse-to-
Fine (CtF) hashing code search strategy to speed up ReID, where Q
is a query image, {Gi}3i=1 are the positive images in the gallery set,
B = {bk}Nk=1 are binary codes of lengths L = {lk}Nk=1, T = {tk}Nk=2
are Hamming distance thresholds where gallery images are selected by
each tk for further comparison by increasingly longer codes bk.

Attributes LookUp Table

Attribute Corresponding Images

upper white IMG2, IMG4, IMG5, IMG6, IMG10, IMG12, ...

... ...

long hair IMG2, IMG3, IMG6, IMG8, IMG9, IMG11, ...

shoes white IMG2, IMG6, IMG10, IMG11, IMG12, IMG15, ....

age young IMG1, IMG3, IMG6, IMG9, IMG10, IMG11, ....

Confident Attributes

upper white, long hair, shoes white

(b)

(c)

Matched Images

Attribute Corresponding Images

intersection IMG2, IMG6, ...

(a)

Fig. 2. Illustration of one-shot-filter (OSF) strategy. (a) Given a query
image, predict its attributes and select top 3 most confident attributes.
(b) Construct attributes lookup table of gallery images. This stage is
done offline. (c) Index gallery images that have the 3 selected attributes.
Since the attribute lookup table can be constructed offline and indexing
operation is very fast under some popular database softwares, such as
MySQL, one-shot-filter significantly speed Re-ID up.

top short code. We promote shorter codes to mimic longer
codes by both probability- and similarity- distillation. This
makes shorter codes more powerful without importing extra
teacher networks. The DTO algorithm solves a complex
threshold search problem by a simple optimization process
and the balance between search accuracy and speed is easily
controlled by a single parameter. It explores a Fβ score as the
optimization target formulated as Gaussian cumulative dis-
tribution functions. So that we can estimate its parameters
by the statistics of Gaussian probability distributions mod-
eling the distances of positive and negative pairs. Finally, by
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TABLE 3
Brief introduction to the proposed method. The proposed method includes two core strategies: CtF and OSF. OSF filters easy negative gallery

samples and CtF ranks remaining gallery ones. To kindly support the two strategies, we design AiO + DTO and LAL + SDM, respectively.

Method Two Strategies Key Components

Faster ReID
speeds ReID up by 10×
Figure 5

Coarse-to-Fine (CtF) Search:
long-short code retrieval
speeds ReID up by 5×
Figure 1, Algroithm 2

All-in-One (AiO) Module:
enhance short code upto 40%
Figure 3
Distance Threshold Optimization (DTO) Algrithom:
find optimal thresholds with complexity O(1)
Algorithm 1

One-Shot-Filter (OSF) Strategy:
retrieval by attribute indexing
further speeds ReID up by 2×
Figure 2, Algorithm 3

Latent-Attribute-Learning (LAL) Module:
batch training and end-to-end optimization for PCA
Figure 4
Single-Direction-Metric (SDM) Loss:
differentiable Jaccard Metric for attributes
Equation 18

Test Details Given a query, OSF firstly filters easy negative gallery samples with latent attributes,
then CtF ranks remaining gallery ones with mixed long-short binary codes

maximizing the Fβ score, we compute iteratively optimal
distance thresholds.

Although the proposed CtF significantly speeds retrieval
up by reducing the distance computation times of longer
codes, it still requires computing distances between short
codes. Specifically, the time complexity of computing dis-
tance between m queries and n galleries is O(mn). This
also affects the retrieval speed a lot when mn is very
large. The discussion above inspires us to find a way in
that totally the distance computation can be avoided, thus
the complexity can be dramatically reduced to O(1). An
intuitive idea is retrieving with semantic attributes (such
as clothes color, carrying, gender). Constructing a look-up
table where keys are attributes and values are corresponding
images . Thus, retrieval by ranking is upgraded to retrieval
by indexing1. However, this solution asks for accurate and
generalizable semantic attributes prediction, which is not
always accessible in practical. Besides, training a attribute
model is also expensive. Another solution is to utilise logits
in an image feature vector as attributes. For example, a 2048-
dimensional feature vector may indicates 2048 attributes.
However, feature vectors learned by common embedding
layer (such as Linear layer) [23] and identity loss [2], [10]
leads to dense knowledge (huge and fined-grained char-
acteristics) and bidirectionally-activation features Attributes
prefers to sparse knowledge (a few but significant charac-
teristics) and single-directional attributes (True or False).

To overcome the challenges above, we propose a novel
Latent-Attribute-Learning (LAL) module together with a
Single-Direction-Metric (SDM) Loss. LAL is derived from
principal component analysis (PCA) that keeps largest vari-
ance (significant characteristics) using a shortest feature vec-
tor (a few of characteristics), meanwhile enabling batch and
end-to-end learning. Every logit of a feature vector repre-
sents a meaningful attribute. SDM is carefully designed for
fine-grained attribute supervision, outperforming common
metrics such as Euclidean and Cosine metrics. It is based on
Jaccard metric and powered by gradient computation.

1. indexing can be extremely fast under many database softwares
such as Oracle, MySQL.

Our contributions can be summarised below, a brief
version is displayed in Table 3.

(1) We propose a novel ReID method that speeds
retrieval up whilst keeps accuracy. It consists of two
main strategies, Coarse-to-Fine (CtF) and One-Shot-Filter
(OSF). CtF utilises mixed long-short code search, and OSF
upgrades retrieval-by-ranking with retrieval-by-indexing.
Given a query, OSF first filters very easy negative gallery
samples, and then CtF ranks the remaining gallery samples.

(2) The Coarse-to-Fine (CtF) strategy includes an All-in-
One (AiO) module and a Distance Threshold Optimization
(DTO) algorithm. The AiO module learns multiple codes
of different lengths in a pyramid structure and enhances
them via probability- and similarity-distillation loss. The
DTO algorithm finds the optimal thresholds for coarse-to-
fine search by concluding the threshold search task to a Fβ
distance optimization problem.

(3) The One-Shot-Filter (OSF) strategy consists of a
Latent-Attribute-Learning (LAL) module and a Single-
Direction-Metric (SDM) loss. The LAL module automati-
cally learns potential attributes with only identity labels
not attribute labels. It is derived from principal component
analysis (PCA) and enables batch and end-to-end learning.
The SDM loss is an IOU-like metric, which is derived from
the Jaccard metric and powered by gradient computation,
outperforms common Euclidean and Cosine metrics.

(4) Extensive experimental results on Market-1501 and
DukeMTMC-ReID datasets show that our proposed CtF is
50× faster than non-hashing ReID methods, 5× faster and
2% more accurate than hashing ReID methods. OSF further
speeds CtF up by 2× and upto 10× in total with almost
no accuracy drop. Experiments on MSMT also validate its
effectiveness on large-scale dataset. Besides, experiments
on different baselines show its scalability to different back-
bones.

2 RELATED WORKS

In this paper, we try to solve the fast ReID task under the
framework of hashing by proposing an All-in-One (AiO)
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hashing learning module and a Distance Threshold Opti-
mization (DTO) algorithm. Thus, we mainly discuss the
related works including non-fast person re-identification
(ReID) task, fast ReID task and hashing algorithm.

2.1 Person Re-Identification
Person re-identification addresses the problem of match-
ing pedestrian images across disjoint cameras [1]. The key
challenges lie in the large intra-class and small inter-class
variation caused by different views, poses, illuminations,
and occlusions. Existing methods can be grouped into hand-
crafted descriptors [4], [5], [6], metric learning methods [7],
[8], [9] and deep learning algorithms [2], [10], [11], [24], [25],
[26], [27], [28], [29]. The goal of hand-crafted descriptors
is to design robust features. Metric learning aims to make
a pair of true matches have a relatively smaller distance
than that of a wrong match pair in a discriminant manner.
Deep learning algorithms adopt deep neural networks to
straightly learn robust and discriminative features in an
end-to-end manner and achieve the best performance. Here,
we mainly show some deep learning methods. For example,
Zheng et al. [2] learn identity-discriminative features by fine-
tuning a pre-trained CNN to minimize a classification loss.
In [10], Hermans et al. show that using a variant of the triplet
loss outperforms most other published methods by a large
margin. In [11], a network named Part-based Convolutional
Baseline (PCB) is proposed to learn fine-grained part-level
features with a uniform partition strategy. However, all
the ReID methods above learn real-value features for high
accuracy, which is slow.

2.2 Hashing Algorithm
Hashing algorithm mainly divided into unsupervised and
(semi-)supervised ones. Unsupervised hashing methods
(LSH [30], SH [31], ITQ [32]) employ unlabeled data even no
data. (Semi-)Supervised (KSH [33], SDH [34]) utilize labeled
information to improve binary codes. Recently, inspired
by powerful deep networks, some deep hashing methods
(CNNH [35], DPSH [36], SSGAH [37], ABML [38], ) have
been proposed and achieve much better performance. They
usually utilize a CNN to extract meaningful features, for-
mulate the hashing function as a fully-connected layer with
tanh/sigmoid activation function, and quantize features by
signature function. The framework can be optimized with
a related layer or some iteration strategies. However, all the
hashing methods are designed for close-set category-level
retrieval tasks, which cannot be directly used for person
ReID, an open-set fine-grained search problem.

2.3 Fast Person Re-Identification
Fast ReID methods aims to search in a fast speed meanwhile
obtaining accuracy as high as possible. The main idea of
those methods is hashing algorithm, which learns binary
code instead of real-value features. Based on the binary
codes, the inefficient Eulidean distance and quick-sorting
can be replaced by efficient Hamming distance and counting
sort. Zheng et al. [15] learn cross-view binary codes using
two hash functions for two different views. Wu et al. [16]
simultaneously learn both CNN feature and hash functions

to get robust yet discriminative features and similarity-
preserving binary codes. CSBT [18] solves the cross-camera
variations problem by employing a subspace projection to
maximize intra-person similarity and inter-person discrep-
ancies. In [17] integrate spatial information for discrimi-
native features by representing horizontal parts to binary
codes. ABC [21] improves binary codes by implicitly fits
the feature distribution to a pre-defined binary one with
Wasserstein distance. However, all the fast ReID methods
take very long binary codes (e.g. 2048) for high accuracy.
Different from them, we propose a coarse-to-fine search
strategy which complementarily uses codes of different
lengths, obtaining not only faster speed but also higher
accuracy.

3 PROPOSED METHOD

In this paper, we propose a novel fast Re-ID method for
fast and accurate ReID, which includes two core ideas, i.e.
one-shot-filter (OSF) and coarse-to-fine (CtF) search strate-
gies. The former filters major easy negative gallery samples
using attributes. To flexibly and accurately learn attributes,
a Latent-Attribute-Learning (LAL) module together with a
Single-Direction-Metric (SDM) loss are proposed to learn
without manual annotation. The latter efficiently search the
remaining gallery samples with mixed shot-long binary
codes. We design an All-in-One (AiO) module together
with a Distance Threshold Optimization (DTO) algorithm.
The AiO learns and enhances multiple codes of different
lengths in a single module. The latter finds the optimal
distance thresholds to balance time and accuracy with time
complexity O(1). The CtF speeds ReID up by 5× and the
OSF further speeds the CtF up by 2×, getting a 10× faster
speed in final.

3.1 Coarse-to-Fine Search

As we illustrated in the introduction section, although the
long binary codes can get high accuracy, it takes much
longer time than short codes. This motivates us to think
about that can we reduce the usage of long codes to fur-
ther speed hashing ReID methods up. Thus, a simple but
efficient solution is complementarily using both short and
long codes. Here, shorter codes fast return a rough rank list
of gallery, and longer codes carefully refine a small number
of top candidates. Figure 1 show its procedures. Although
the idea is straightforward, as discussed in paragraph 4 of
section 1, there are three difficulties blocking the idea. To
solve the problems, we propose an All-in-One (AiO) module
and a Distance Threshold Optimization (DTO) algorithm.
Please see the next two parts for more details.

3.1.1 All-in-One Module
The All-in-One (AiO) module aims to simultaneously learn
and enhance multiple codes of different lengths in a single
model, whose architecture can be seen in Figure 3. Specif-
ically, it first utilizes a convolutional network to extract
the real-value feature vectors, then learns multiple codes
of different lengths in a pyramid structure, finally enhances
the codes by encouraging shorter codes mimic longer codes
via self-distillation.
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Fig. 3. All-in-One (AiO) module. It learns and enhances multiple codes
of different lengths in a single module with a code pyramid structure and
self-distillation learning.

Learn Multiple Codes in a Pyramid Structure. The code
pyramid learns multiple codes of different lengths, where
the shorter codes are based on the longer codes. With such
a structure, we can not only learn many codes in one shot,
but also share the knowledge of longer codes with shorter
codes. The equations are as below:

v0 = F (x), vk = FCk(vk−1), k ∈ 1, 2, ..., N, (1)

where x is input image, F is the CNN backbone, N is
the code number, V = {vk}Nk=1 are the real-value feature
vectors with different lengths L = {lk}Nk=1, FCk is the
fully-connected layers with lk−1 input- and lk output-sizes.
After getting real-value features of different lengths, we can
obtain their binary codes B = {bk}Nk=1 in the following
equation.

bk = sign(bn(vk)), (2)

where bn is the batch normalization layer, sign is the sym-
bolic function. We use the batch normalization layer because
it normalizes the real-value features to be symmetric to 0
and reduces the quantization loss.

Enhance Codes with Self-Distillation Learning. As we
discussed in the introduction section, the coarse ranking
must be accurate enough to minimise missing true-match
candidates in fine-grained ranking. Inspired by [39], [40], we
introduce self-distillation learning to enhance the multiple
codes in a single module without importing extra teacher
network. Different from conventional distillation models,
which imports an extra large teacher network to supervise
a small student network, we perform distillation learning in
a single network and achieve better performance, which is
important for fast ReID.

Specifically, our self-distillation learning is composed of
a probability- and a similarity- distillation. The probability-

Algorithm 1. Distance Threshold Optimization

Input: Trained Model in Eq.(2), Validation Data (Xv, Yv)
Output: Thresholds {Ti}Ni=2

1: for k = {1, 2, ..., n− 1} do a

2: Bk: Extract binary codes with length lk via Eq.(2)
3: Dr : Hamming distances of positive pairs (bik, b

j
k)

4: Dn: Hamming distances of negative pairs (bik−1, b
j
k−1)

5: PDF r, PDFn: PDF of Dr and Dn of in Eq.(7)
6: CDF r, CDFn: CDF of Dr and Dn in Eq.(7)
7: tn+1: Maximize Fβ score in Eq.(8) and return tn+1

8: return T = {ti}Ni=2

a. yi = yj in positive pairs, yi 6= yj in negative pairs, PDF is proba-
bility distribution function, CDF is cumulative Distribution Function.

distillation transfers the instance-level knowledge in a from
of softened class scores. Its formulation is given by

Lpro =
1

N − 1

N−1∑
k=1

Lce(σ(
zk+1

T
), σ(

ẑk
T

)), (3)

where Lce(·, ·) denotes the cross-entropy loss, σ is the
softmax function, ẑk/zk+1 means the output logits of the
binary code bk/bk+1, ẑk means it act as a teacher and fixed
during training, T is a temperature hyperparameter, which
is set 1.0 empirically. The similarity-distillation transfers the
knowledge of relationship from longer codes to shorter one,
whose formulation is in Eq.(4). This is motivated by that as
an image search task, ReID features should also focus on the
relationship among samples, i.e. to what extent the sample
A is similar/dissimilar to sample B.

Lsim =
1

N − 1

N−1∑
k=1

∑
i,j

|| 1

lk+1
Gi,jk+1 −

1

lk
Ĝi,jk ||

2, (4)

whereGi,jk /G
i,j
k+1 is the Hamming distance between bik/b

i
k+1

and bjk/b
j
k+1, bi/jk/k+1 is the binary code of image xi/xj with

length lk/lk+1, the Ĝ means that G acts as a label and
is fixed during the optimization process, thus contributes
nothing to the gradients.

Overall Objective Function and Training. Recent pro-
gresses on ReID have shown the effectiveness of the classi-
fication [2] and triplet [10] losses. Thus, our final objective
function includes our proposed probability- and similarity-
distillation losses together with the classification and triplet
losses as the final objective function. The formulation can be
found in Eq.(5),

Lctf = Lce + Ltri + λprobLprob + λsimLsim (5)

Considering that the mapping function sgn in Eq.(2) is dis-
crete and Hamming distance in Eq.(2) is not differentiable,
a natural relaxation [36] is utilised in Eq.(5) by replacing
sgn with tanh and changing the Hamming distance to the
inner-product distance. Finally, our All-in-One module can
be optimized in an end-to-end way by minimizing the loss
in Eq.(5).

3.1.2 Distance Threshold Optimization
After getting the multiple codes of different lengths B =
{bi}Ni=1, we can perform the Coarse-to-Fine (CtF) search.
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There are two tips in CtF search, i.e. high accuracy and
fast speed. For fast speed, the candidate number returned
by coarse search should be small. For high accuracy, the
candidates returned by coarse search should include rele-
vant images as more as possible. But the two requirements
are naturally conflicting. Thus, it is important to find the
proper thresholds to optimally balance the two targets, i.e.
both high accuracy and fast speed. One simple solution is
brute search via cross-validation. However, the search space
is too large. For example, if we have multiple binary codes
of lengths L = {32, 128, 512, 2048}, the complexity of the
brute search will be

∏
L > 4× 109 times.

In this part, we propose a novel Distance Threshold Opti-
mization (DTO) algorithm which solves the time-consuming
brute parameter search task with a simple optimization
process. Specifically, inspired by [41], we first explicitly
formulate the two sub-targets as two scores in Eq.(6), i.e.
precision (P ) and recall (R) scores. Then we balance the two
sub-targets by mixing the two scores with a single parameter
β and get Fβ score in Eq.(6).

P =
TP

TP + FP
, R =

TP

TP + FN
, Fβ = (β2 + 1)

PR

β2P +R
(6)

Here, TP is the number of relevant images in the can-
didates, FP is the number of non-relevant images in the
candidates and FN is not retrieved relevant samples. As
we can see, the precision score P means the rate of relevant
images in the candidates. Usually a high P means a small
candidate number, which is good for fast speed. The recall
score R represents the rate of returned relevant samples
in the total relevant samples. A high R score means more
returned relevant samples, which is important for high
accuracy. The Fβ mixed the precision and recall scores with
a parameter β, which considers both speed and accuracy.

PDF (t) =
1

σ
√

2π
exp(− (t− u)2

σ
√

2
)

CDF (t) =
1

2
(1 + erf

t− u
σ
√

2
)

(7)

Fβ =
CDF r(β2 + 1)

CDFn + CDF r + β2(1− CDFn + CDF r)
(8)

Considering that TP/FP/FN are statistics which cannot be
optimized, we replace them with two Gaussian cumula-
tive distribution functions in form of Eq.(7) (right), whose
parameters u and σ are estimated by fitting a validation
set using the Gaussian probability distribution function in
Eq.(7) (left). Finally, by maximizing the Fβ in Eq.(8), we can
get the optimal distance thresholds T = {tk}Nk=2 balanced
by β.

3.1.3 Summary of CtF
In the training stage, we minimize Lctf in Eq.(5). In the
testing stage, the details are summarised in Algorithm 2.

3.2 One-Shot Filter

As we illustrated in the introduction section, although the
Coarse-to-Fine (CtF) search strategy significantly speeds
retrieval up meanwhile keeps high accuracy, it still gets an

Algorithm 2. Coarse-to-Fine Strategy

Input: a Query Data xq , a set of Gallery Data Xg = {xi}Ng

i=1,
Trained AiO Module in Eq.(2), Thresholds {Ti}Ni=2

Output: Ranked Gallery Data X̂g = {x̂i}Ng

i=1

1: Xkpt: Initialize kept gallery data as Xg
2: X̂g : Initialize ranked gallery data as Xkpt
3: for k = {1, 2, ..., n− 1} do
4: Dk: Hamming distances between xq and Xkpt under

code length lk
5: Xkpt: Rank Xkpt with Dk in ascend
6: X̂g : Record rank results with X̂g[: len(Xkpt)] = Xkpt
7: Xkpt: Select gallery data to be refined withXkpt = Xkpt[:
np.argwhere(Xkpt < Tk)]

8: return X̂g

O(mn) time complexity for distance computation where m
and n are query and gallery sizes, respectively. This moti-
vates us to find a way in which total distance computation
is avoided and an O(1) time complexity is obtained.

One intuitive idea is upgrading retrieval-by-ranking
problem to a retrieval-by-indexing problem, where a look-
up table can be constructed and some advanced databases
(Oracle, MySQL) are naturally utilised to speed retrieval up.
For example, given an male, all female can be filtered. How-
ever, this idea requires accurate and generalizable attribute
prediction. Consequently, lots of attribute annotation is
needed, which limits its flexibility. An alternative is viewing
every logit of an identity-feature vector as a latent attribute.
For example, a 2048-dimensional feature may indicates 2048
attributes. However, existing Re-ID models learn identity-
features in metric of Euclidean and Cosine, which is not
suitable for attribute representation. The former represents
fine-grained information (such as texture) with dense fea-
tures (such as 2048-dimension). The latter only asks for a
few of remarkable information (such as gender) with sparse
attributes (e.g. 27 attributes for Market-1501).

To solve the problem above, we propose a Latent-
Attribute Learning (LAL) module and a Single-Direction-
Metric (SDM) loss. The former formats latent-attribute learn-
ing problem as a feature decomposition procedure in sphere
space, naturally getting sparse, principal and explainable
latent attributes. The latter optimizes latent-attribute in a
Jaccard metric, outperforming either Euclidean or Cosine
metrics. Please see corresponding section for details.

3.2.1 Latent-Attribute Learning Module
The Latent-Attribute Learning (LAL) module is inspired by
the principal component analysis (PCA). We first review
PCA and then adapt it to our task.

Review Principal Component Analysis (PCA). The
PCA is defined as an orthogonal linear transformation that
transforms the data to a new coordinate system such that
the greatest variance by some scalar projection of the data
comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second
coordinate, and so on. The formulation of PCA is as below:

Xout = XinUT

s.t. Λ = UΣUT

I = UUT
(9)
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Fig. 4. Latent-Attribute Learning (LAL) module. It learns latent attributes
with the largest variance. Xin and Xout mean the input feature and
output attributes, respectively. X′in = ZeroMean(Xin) is input feature
with zero mean.

In the equation above, Xin ∈ Rn×dl is a set of zero-meaned
features with long dimension, Xout ∈ Rn×ds is a set of
features with short dimension, Σ ∈ Rdl×dl is the covariance
of long features, U ∈ Rds×dl is the top ds eigenvectors,
Λ ∈ Rds×ds is the diagonal matrix with eigenvalues in
diagonal elements and zeros in non-diagonal elements.

Adapt to Batch Learning with Moving Average Covari-
ance. Inspired by PCA, which reduces several long features
into several short features whilst keeping the greatest vari-
ance, a short feature vector can be viewed as several latent
attribute logits and U can be viewed as latent attributes
ds. However, U is post-calculated from a global statistic Σ,
which fails to deal with end-to-end optimization and batch
training. In this part, we propose a novel Latent-Attribute
Learning (LAL) modules to learn a latent attribute, which
keep the least attributes, end-to-end optimizable, batch
trainable. The LAL module contributes to two key improve-
ments, (1) enabling end-to-end optimization by replacing U
with a trainable function Uθ(Σ), (2) enabling batch training
with moving average covariance Σ = ηΣ + (1 − η)Σbatch,
where η is set 0.9 empirically.

Adapt to End-to-End Learning with Trainable Eigen-
vectors. The detailed structure of LAL module is displayed
in Figure 4. It includes a zero mean part, moving average
covariance part, an eigenvector learning part. The zero-
mean part ZeroMean consists of a linear layer from 2048
to 512, a batch normalization layer with untrainable param-
eters (weight and bias are set 1 and 0, respectively), and a
normalization layer which normalizes every feature to be
norm 1. The moving average covariance part first compute
covariance Σbatch within a batch, then calculate moving
average covariance Σ with strategy Σ = ηΣ + (1−η)Σbatch.
The eigen-vectors learning part utilise a function Uθ(·),
which consists of a linear layer, a batch normalization layer,
a leakyReLU layer with ratio 0.1 and a linear layer. It
predicts eigenvectors given moving average covariance, i.e.
U = Uθ(Σ). Besides, a ReLU layer is used to constrain value

to be alway positive. The final formulation of LAL module
is as below:

Xout = ReLU(ZeroMean(Xin)Uθ(Σ)T )

s.t. Σ = Uθ(Σ)TΛΦUθ(Σ)

I = Uθ(Σ)Uθ(Σ)T
(10)

where ΛΦ is a square matrix with trainable diagonal ele-
ments and the others zero.

Objective Function of LAL module. The final LAL mod-
ule converts the two constraints to be two losses including
an identity loss Lidenti and an orthogonality loss Lorth.

Lidenti = ||I − Uθ(Σ)Uθ(Σ)T ||2
Lorth = ||Σ− Uθ(Σ)TΛΦUθ(Σ)||2

(11)

Discussion. The proposed LAL module is derived from
principal component analysis (PCA) and powered by batch
learning and trainable eigenvector abilities. The batching
learning ability is similar to incremental PCA [42], which
estimates the top eigenvector incrementally. However, the
incremental PCA still computes the eigenvector in a sta-
tistical way, which is indifferentiable and fails to apply to
a deep learning pipeline. Our proposed LAL module is
specifically designed for latent attribute learning in a deep-
learning pipeline and a novel single-direction-metric loss is
proposed, which guarantee its optimization with stochastic
gradient descent.

3.2.2 Single-Direction-Metric Loss
The LAL module would like to learn latent attributes. How-
ever, existing metrics (e.g. Euclidean, Cosine) fail to deal
with attributes, that require an IOU-like metric. Here, we
utilise Jaccard Similarity to metric attributes and improve it
to be an end-to-end version. This part is inspired by [43],
[44] and improved to adapt person re-identification triplet
loss.

Review Jaccard Similarity. The Jaccard Similarity mea-
sures two sets. It is defined as the size of the intersection
divided by the size of the union of two sets. Given two
sets A and B, the Jaccard Similarity is computed using the
following formula:

J (A,B) =
|A ∩B|
|A ∪B|

, (12)

where |·| denotes the cardinality of a set. Using C-dimension
binary vectors {0, 1}C to represent set A and B, where
each channel denotes a specific attribute, 1 means activated
attribute and 0 means deactivated attribute, the Jaccard
Similarity between these two sets is computed by:

J (A,B) =

∑C
c=1 A[c] ∧B[c]∑C
c=1 A[c] ∨B[c]

, (13)

where ∧ and ∨ denote logic-AND and logic-OR opearators,
and the operators [·] return the element at the position c
in the attribute set. To make the Jaccard Similarity adap-
tive to this continuous variable, we use minimization and
maximization to approximate the bit-wise AND and OR
operators in Eq.(14), respectively. For given two attribute
sets g1 and g2, the Jaccard Similarity is redefined by:

J (g1,g2) =

∑C
c=1min(g1[c],g2[c])∑C
c=1max(g1[c],g2[c])

, (14)
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Algorithm 3. One-Shot Filter

Input: Trained LAL module Uθ(·) in Eq.(10), a Query Data xq ,
a set of Gallery Data Xg = {xi}Ng

i=1, Filter Threshold γ
Output: Kept Gallery Data X̂g = {xi}N̂g

i=1, N̂g is the number of
kept data, N̂g < Ng

Construct Latent Attribute LookUpTable (Offline)

1: Gg = {gi}Ng

i=1: Extract latent attribute vectors of gallery
data Xg via LAL, Gg ∈ [0, 1]Ng×C , C is attribute number

2: LookUpTable: Init LookUpTable as a dictionary
3: for c = {1, 2, ..., C} do
4: LookUpTable[c] = np.argwhere(Gg[:, c] >0).tolist()

Filter with Latent Attribute LookUpTable (Online)

1: gq : Extract the latent attribute vector of the query data xq
via LAL, gq ∈ [0, 1]C

2: aq = np.argsort(gq , order=’descend’)[:γ].tolist(): get top γ
activated attribute indexes of the query data xq

3: X̂g = intersection([LookUpTable[i] for i in aq]): find gallery
data whose aq attributes are all activated

4: Return: X̂g

where c denotes the attribute index. Further, to smooth
the min/max operators, we introduce a Softmax-Jaccard
Similarity:

J (g1,g2) =

∑C
c=1(wmin

1 [c] · g1[c] + wmin
2 [c] · g2[c])∑C

c=1(wmax
1 [c] · g1[c] + wmax

2 [c] · g2[c])
,

(15)

wmin
k [c] =

e−τ ·gk[c]∑N
n=1 e

−τ ·gn[c]
,wmax

k [c] =
eτ ·gk[c]∑N
n=1 e

τ ·gn[c]
,

(16)
where, wmin

k /wmax
k is softmin/softmax of gk[c] along k:

k = 1, 2, ..., N , N is the batch size, τ is the smoothing factor.
Normalization. To keep the Js(·, ·) belong to range [0, 1],

we normalize wmin
k /wmax

k when computing gi and gj :

wmin
i [c] =

wmin
i [c]

Rmin
,wmin

j [c] =
wmin
j [c]

Rmin
,

s.t. Rmin = wmin
i [c] + wmin

j [c],

wmax
i [c] =

wmax
i [c]

R
,wmax

j [c] =
wmax
j [c]

Rmax
,

s.t. Rmax = wmax
i [c] + wmax

j [c].

(17)

Single-Direction-Metric (SDM) loss. SDM loss is de-
fined in the equation below, where gn means the attribute of
sample xn, gn− is attribute of a negative sample of xn, gn+

belongs to a positive sample of xn, δ is a margin parameter.

Lsdm =
N∑
n=1

[δ + J (gn, gn+)− J (gn, gn−)]+, (18)

3.2.3 Summary of OSF
This section summarises the training and testing details in
Eq.(19) and Algorithm 3, respectively.

Training Stage. In the training stage, overall objective
function of the proposed One-Shot-Filter (OSF) strategy is
shown in the equation below, where λ∗ are corresponding
weights.

Losf = λsdmLsdm + λidentiLidenti + λorthLorth (19)

AiO

LAL a

G
A

P

b1
b2

bn
...

Lce

Ltri
Lpro

Lsim

Lsdm
Lidenti
Lorth

data 
forward

data forward 
without gradient GAP global average

pooling

Fig. 5. Overview of our proposed method. AiO and LAL are All-in-One
(Figure 3) and Latent-Attributes-Learning (Figure 4) modules, respec-
tively. L∗ means losses in Eq.(5) and Eq.(19), respectively.

Testing Stage. In the testing stage, as shown in Algo-
rithm 3, OSF includes two steps: (1) offline construct latent
attribute look-up table and (2) online filter negative samples
with the latent attribute look-up table. Specifically, given a
trained latent-attribute-learning (LAL) module in Eq.(10), a
query data xq , a set of gallery data Xg = {xi}

Ng

i and filter
threshold γ, OSF first constructs a look-up table, whose keys
are attribute indexes and values are corresponding gallery
data indexes. The look-up table is only initialized one time
and reused for all queries. Then, given a query data, OSF ex-
tracts its attribute vector, selects top γ most confident ones,
and finds gallery data that own all the γ attributes activated.
γ is a hyper-parameter to balance accuracy and speed. A
larger γ filters more negative images, contributing to faster
speed, but may discard more positive samples, harming
accuracy. Oppositely, a smaller γ guarantees accuracy with
less speed improvement. We set γ = 1 via cross-validation.

3.3 Overall Framework
Overall framework of our proposed method is shown in
Figure 5. A convolutional neural networks (CNN) module
together with a global average pooling (GAP) extracts fea-
ture vectors of input images. Following that, two branches,
i.e. AiO and LAL together with corresponding losses learn
binary codes and latent attributes. Its objective function is
shown below:

L = Lce + Ltri + λprobLprob + λsimLsim
+ λsdmLsdm + λidentiLidenti + λorthLorth

(20)

In testing stage, given a query image and a set of gallery
images, OSF is first utilised to filter major simple negative
samples, then CtF gradually ranks remaining gallery sam-
ples with mixed long-short code.

4 EXPERIMENTS

4.1 Dataset and Evaluation Protocols
Datasets. We extensively evaluate our proposed method on
two common datasets (Market-1501 [45] and DukeMTMC-
reID [46]) and one large-scale dataset (Market-1501+500k
[45]). The Market-1501 dataset contains 1,501 identities
observed under 6 cameras, which are splited into 12,936
training, 3,368 query and 15,913 gallery images. The Market-
1501+500k enlarges the gallery of Market-1501 with extra
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500,000 distractors, making it more challenging for both
accuracy and speed. DukeMTMC-reID contains 1,404 iden-
tities with 16,5522 training, 2,228 query and 17,661 gallery
images.

Evaluation Protocols. For accuracy, we use stan-
dard metrics including Cumulative Matching Characteristic
(CMC) curves and mean average precision (mAP). All the
results are from a single query setting. To evaluate speed,
we use average query time per image, including distance
computation and sorting time. For fair evaluation of query
time, we do not use any parallel algorithm for distance
computation and sorting.

4.2 Implementation Details
We implemented our method with Pytorch on a PC with
2.6Ghz Intel Core i5 CPUs, 10GB memory, and a NVIDIA
RTX 2080Ti GPU. For a fair comparision and following
most ReID methods [21], [23], we use Resnet-50 [47] as the
CNN backbone. In training stage, each image is resized to
256 × 128 and augmented by horizontal flip and random
erasing [48]. A batch data includes 64 images from 16
different persons, where every person includes 4 images.
The lengths L = {lk}Nk=1 of multiple codes are empirically
set {32, 128, 512, 2048}. The margin in the triplet loss in
Eq.(5) is 0.3. The framework is optimized by Adam [49] with
total epochs 120. Its initial learning rate is 0.00035, which
is warmed up for 10 epochs and decayed to its 0.1× and
0.01× at 40 and 70 epochs. We randomly split the training
data into a training and a validation set according to 6 : 4,
then decide the parameters via cross-validation, After that,
we train our method with the whole training data. λprob and
λsim in Eq.(5) are set as 1.0 and 1,000, and β in Eq.(8) is set
2.0. λsdm, λidenti and λorth are set 1.0.

4.3 Comparisons with Non-Hashing ReID Methods
Non-hashing ReID use longer real-value features, such as
2048-dimensional float64 features, for a better accuracy.
This significantly affects their speed, i.e. query time. Table 4
shows that our proposed CtF (including AiO) method is
significantly faster than non-hashing ReID methods (two
orders of magnitude). CtF also achieves very competitive
accuracy with close Rank-1 (93.7% vs. 94.1%) and mAP
(87.6% vs. 86.4%) scores of the very popular baseline ReID
mehtod BoT [23] on Market-1501 and DukeMTMC-reID,
and better than most the other non-hashing methods using
different feature length, of which methods have features
shorter than 2,062 (e.g. PSE [50], IDE [2], PN-GAN [51],
CamStyle [53], PIE [73]) and methods have features longer
than 10,240 (e.g. SPReID [61], PCB [11], VPM [63]). Overall,
longer feature usually contributes to higher accuracy but
with slower speed. For example, SPReID, PCB and VPM
take features longer than 10,240 and achieves 92%-93% and
83%-84% Rank-1 scores on Market-1501 and DukeMTMC-
reID datasets, respectively. The others utilize features no
longer than 2,048 achieving Rank-1 score less than 92%
and 80%. On the other hand, the query speed of those
methods with long features is much slower. For example,
PCB takes 6.9s and 6.3s for query each image on the
two datasets respectively. This is 3-4× slower than IDE
with 2s on either dataset. Specifically, CtF+OSF performs

much faster than non-hashing methods and significantly, it
achieves comparabale accuracy with real-value feature mod-
els. For example, CtF+OSF achieves 95.5%/91.4% Rank-
1 scores on Market-1501/DukeMTMC-reID, as compared
to LUPersonNL having 96.6%/92.0% respectively. This is
because CtF (including AiO) utilizes all-in-one module to-
gether with coarse-to-fine search strategy, which not only
learns powerful binary code, but also complementarily uses
short and long codes for both high accuracy and fast speed.
Meanwhile, OSF filters simple hard negative samples with
very fast look-up table, which significantly reduces gallery
size.

4.4 Comparisons with Hashing ReID Methods
Hashing ReID methods learn binary codes using a hashing
algorithm. Binary codes are good for speed but sacrifice
model accuracy. To mitigate this problem, the state-of-the-
art hashing ReID methods usually employ long codes such
as 2048. In binary coding, 2048 is relatively very long as
compared to the more commonly used 512 length, un-
like in real-value feature length compared above. Table
5 shows that CtF (with AiO) not only achieves the best
accuracy (even compared to much shorter code length used
by other hashing methods), but also is significantly faster
than existing hashing ReID methods (even compared to the
same code length used by other hashing methods). Overall,
hashing ReID methods usually perform much worse than
non-hashing methods. For example, best non-hashing ReID
methods achieves 93.3% and 84.3% mAP scores on Market-
1501 and DukeMTMC-reID respectively. But the best hash-
ing ReID method only obtains 88.8% and 79.4% Rank-1
scores. Moreover, existing hashing ReID models can increase
accuracy by using longer code length and compromising
speed. For example, ABC with 512-dimensional binary
codes achieves 69.4%/69.9% Rank-1 scores and 9.8/7.5 ×
10−2s query time per probe image. When using 2048 binary
codes, its Rank-1 scores increase to 81.4%/82.5% with query
time slow down to 2.8/2.0× 10−1s. This observation is also
verified with our method CtF (with AiO) using different
code lengths. Importantly, our method CtF+OSF signifi-
cantly outperforms all existing hashing ReID methods in
terms of both accuracy and speed (5× faster). Specifically,
CtF with AiO achieves high accuracy very close to AiO
without CtF using 2048 code length, but yields significant
speed advantage that is comparable to much shorter 128
binary code length. Besides, OSF further speeds up by
around 2× with almost no accuracy drop. Finally, powered
by CtF and OSF, our proposed method outperforms state-of-
the-art hashing ReID method SIAMH by 1.2%/2.0% mAP
scores and 11.7 × /10× faster querying speed on Market-
1501/DukeMTMC-reID datasets.

4.5 Evaluation on Stronger Baselines
A typical person ReID model includes three modules, i.e.
backbone (e.g. ResNet [47], ViTB16 [68]) to extract feature
maps from images, neck (PCB [11], MGN [60]) to refine
features and head (e.g. Triplet [10], IDE [2]) to train those
features. For example, BoT [23], one of the popular non-
hashing ReID methods, utilises the ResNet-50 backbone
to extract feature maps, a global average pooling (GAP)
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TABLE 4
Comparisons with non-hashing ReID methods on Market-1501 and DukeTMTC-reID. Existing non-hashing ReID methods can be grouped into

global features, local features, stronger backbones and better pre-training. If not specified, the ImageNet [22] pre-trained ResNet-50 [47] backbone
as default. B: binary code, R: real-value feature. Longer real-value features usually have higher accuracy but slower query speed. Our CtF+OSF

has very fast query speed (two orders of magnitude faster) and comparable accuracy with non-hashing ReID methods. Besides, CtF+OSF is
scalable to stronger baselines such as LUPNL (better pre-training) [70], VITB16 (stronger backbone) [68] and MGN (fine-grained features) [60].

Methods Year
Code Market-1501 DukeMTMC-reID

Type Length R1(%) mAP(%) Q.Time(s) R1(%) mAP(%) Q.Time(s)
global features
PSE [50] CVPR’18 R 1,536 78.7 56.0 - - - -
PN-GAN [51] ECCV’18 R 1,024 89.4 72.6 - 73.6 53.2 -
IDE [52] Arxiv’16 R 2,048 88.1 72.8 - 69.4 55.4 -
Camstyle [53] CVPR’18 R 2,048 88.1 68.7 - 75.3 53.5 -
MHN-6(IDE) [54] ICCV’19 R 2,048 93.6 83.6 - 87.5 75.2 -
SFT(IDE) [55] ICCV’19 R 2,048 93.4 82.7 - 86.9 73.2 -
BoT [23] CVPRW’19 R 2,048 94.1 85.7 2.2× 100 86.4 76.4 2.0× 100

M3 [56] CVPR’20 R 2,048 95.4 82.6 - 84.5 68.5 -
KPM&GSRW [57] TPAMI’21 R 2,048 93.7 86.8 - 83.4 71.3 -
GoogleNet+PGR [52] TPAMI’22 R 2,048 93.8 77.2 - 83.4 71.3 -
OQGFF [58] ICTAT’21 R 2,048 95.8 88.5 - 90.4 78.3 -
IS-GANDC [59] TPAMI’21 R 2,048 96.1 89.4 - 90.8 80.3 -
fine-grained features
MGN [60] MM’18 R 2,048 95.1 87.5 - 89.0 79.4 -
SCSN(3stages) [56] CVPR’20 R 2,304 95.7 88.5 - 90.1 79.0 -
HONet [29] CVPR’20 R 4,096 94.2 84.9 - 86.9 75.6 -
SPReID [61] CVPR’18 R 10,240 92.5 81.3 - 84.4 71.0 -
PCB [11] ECCV’18 R 12,288 93.8 81.6 6.9× 100 83.3 69.2 6.3× 100

PCB-U+RPP [62] TPAMI’21 R 12,288 94.0 84.8 - 85.9 76.4 -
MHN-6(PCB) [54] ICCV’19 R 12,288 95.1 85.0 - 89.1 77.2 -
VPM [63] ICCV’19 R 14,336 93.0 80.8 - 83.6 72.6 -
CGFE+FGFE [64] CVPR’21 R 14,336 94.8 87.7 - 87.4 74.9 -
RANGEv2 [65] PR’22 R 14,336 94.7 86.8 - 87.0 78.2 -
stronger backbones
OSNet [66] TPAMI’22 R 512 94.8 86.7 9.8× 10−1 88.7 76.6 7.5× 10−1

ViT [67] CVPR’22 R 2,048 95.0 86.3 - 89.4 78.0 -
ViTB16 [68] ICCV’21 R 3,840 95.2 89.5 - 90.7 82.6 -
better pre-training
LUPerson [69] CVPR’21 R 2,048 96.3 91.0 - 91.0 82.1 -
LUPersonNL [70] CVPR’22 R 2,048 96.6 91.9 2.2× 100 92.0 84.3 2.0× 100

CFS+ViTB16 [71] ArXiv’21 R 7,680 96.0 93.3 - - - -
PASS+ViTB16 [72] ECCV’22 R 7,680 96.7 93.2 - - - -
Ours
(BoT as baseline)
BoT+CtF Ours B mixed 93.7 84.0 4.6× 10−2 87.6 74.8 3.7× 10−2

BoT+CtF+OSF Ours B mixed 93.7 83.9 2.4× 10−2 87.4 74.5 2.0 ×10−2

Ours
(stronger baselines)
ViTB16+BoT+CtF+OSF Ours B mixed 94.7 86.7 2.4× 10−2 90.0 79.5 2.0 ×10−2

LUPNL+ViTB16+BoT+CtF+OSF Ours B mixed 95.2 89.0 2.4× 10−2 91.1 81.2 2.0 ×10−2

LUPNL+ViTB16+MGN+CtF+OSF Ours B mixed 95.5 90.0 2.4× 10−2 91.4 81.4 2.0× 10−2
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TABLE 5
Comparisons with state-of-the-art hashing ReID methods on Market-1501 and DukeTMTC-reID. CtF achieves a good balance between accuracy

and speed. OSF furhter speeds CtF up with almost no accuracy drop. CtF and OSF are scalable to stronger baselines such as LUPNL (better
pre-training) [70], VITB16 (stronger backbone) [68] and MGN (fine-grained features) [60].

Methods Years
Code Market-1501 DukeMTMC-reID

Length R1(%) mAP(%) Q.Time(s) R1(%) mAP(%) Q.Time(s)
DRSCH [74] TIP’15 512 17.1 11.5 - 19.3 13.6 -
DSRH [75] CVPR’15 512 27.1 17.7 - 25.6 18.6 -
HashNet [76] ICCV’17 512 29.2 19.1 - 40.8 28.6 -
CSBT [18] CVPR’17 512 42.9 20.3 - 47.2 33.1 -
PDH [17] TIP’17 512 44.6 24.3 - - - -
DCH [77] CVPR’18 512 40.7 20.2 - 57.4 37.3 -
DeepSSH [78] ICIP’18 512 46.5 24.1 - - - -
ABC [21] ICME’19 512 69.4 48.5 9.8× 10−2 69.9 52.6 7.5× 10−2

SSGAH* [37] ECCV’18 512 89.5 72.7 9.8× 10−2 80.0 62.2 7.5× 10−2

ABML [38] TNNLS’21 512 90.6 74.7 9.8× 10−2 82.9 65.0 7.5× 10−2

DLBC [79] MM’20 2,048 94.6 87.4 2.8× 10−1 88.7 78.5 2.0× 10−1

SSR [80] NC’21 2,048 94.8 86.0 - 88.4 78.6 -
SIAMH [81] TIP’21 2,048 95.4 88.8 2.8× 10−1 90.1 79.4 2.0× 10−1

Ours
(BoT as baseline)
BoT+CtF Ours 32 only 60.0 37.7 3.4× 10−2 49.5 28.7 2.3× 10−2

BoT+CtF Ours 128 only 88.9 71.0 4.2× 10−2 78.6 59.4 3.2× 10−2

BoT+CtF Ours 512 only 92.8 82.2 9.8× 10−2 85.4 71.6 7.5× 10−2

BoT+CtF Ours 2,048 only 93.7 85.4 2.8× 10−1 87.7 75.7 2.0× 10−1

BoT+CtF Ours mixed 93.7 84.0 4.6× 10−2 87.6 74.8 3.7× 10−2

BoT+CtF+OSF Ours mixed 93.7 83.9 2.4× 10−2 87.4 74.5 2.0× 10−2

Ours
(stronger baselines)
SIAMH+CtF+OSF Ours mixed 95.0 88.0 2.4× 10−2 89.8 78.6 2.0 ×10−2

ViTB16+BoT+CtF+OSF Ours mixed 94.7 86.7 2.4× 10−2 90.0 79.5 2.0 ×10−2

LUPNL+ViTB16+BoT+CtF+OSF Ours mixed 95.2 89.0 2.4× 10−2 91.1 81.2 2.0 ×10−2

LUPNL+ViTB16+MGN+CtF+OSF Ours mixed 95.5 90.0 2.4× 10−2 91.4 81.4 2.0× 10−2

neck to get global feature vectors, and IDE/Triplet heads
(linear layers with cross-entropy and triplet loss) to train
them. PCB uses the ResNet-50 backbone to extract feature
maps, a PCB neck to split a feature map to 6 local feature
vectors (e.g. body, legs, feet), and 6 corresponding IDE heads
(linear layers with cross-entropy losses) to train them. Our
proposed CtF and OSF are kinds of heads, where the former
maps real-value features to binary codes of different lengths
and the latter learns latent attributes. Thus, they should be
able to be applied to any baseline with different backbones
and necks. As shown in Table 4, recent progress on Re-ID
methods can be grouped into global features, fine-grained
features, stronger backbones and better pre-training. The
first two can be viewed as necks and the last two backbones.
To validate the scalability of CtF and OSF to backbones and
necks, we report metrics on stronger baselines, including a
more advanced backbone (VITB16 [68]), a better backbone-
pertaining strategy (LUPersonNL [70]) and a better neck
(MGN). Powered by the three advanced modules, mAP
scores of CtF+OSF on Market-1501/DukeMTMC-reID are

improved by 6.1% and 6.9% again. This demonstrates the
scalability of Ctf and OSF to backbones and necks.

4.6 Evaluation on Large-Scale ReID dataset

This section evaluates our proposed method on the large-
scale dataset MSMT [82]. MSMT includes 4,101 identities
and 126,441 images, which is more challenging than Market-
1501 and DukeMTMC-reID datasets. Experimental results
are shown in Table 6. As we can see, firstly, the performance
of both non-hashing and hashing methods on MSMT is
much worse than on Market-1501 and DukeMTMC-reID,
showing that larger datasets are usually more complicated
than smaller ones. For example, the best non-hashing ReID
method LUPersonNL gets 93.3%/84.3% mAP scores on
Market-1501/DukeMTMC-reID, but only 66.1% on MSMT.
This is because that larger dataset (i.e. more identities) in-
troduces more hard negative samples and leads to frequent
false alarms. Secondly, hashing methods perform worse
than non-hashing methods and the phenomenon becomes
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TABLE 6
Comparisons with state-of-the-art non-hashing and hashing ReID
methods on the large-scale dataset MSMT. Results show that our

proposed CtF+OSF performs well on large-scale dataset.

Methods
Code
Type

R1
(%)

mAP
(%)

Q.Time(s)

GoogleNet+PGR [52] R 63.0 36.9 -
PCB-U+RPP [62] R 69.8 43.6 -
KPM&GSRW [57] R 71.8 47.8 -
OSNet [66] R 79.1 55.1 -
LUPerson [69] R 85.1 66.1 -
LUPersonNL [70] R 86.0 68.0 -
ViTB16 [68] R 86.2 69.4 -
PASS+ViTB16 [72] R 89.7 74.3 1.1× 102

R101+DLBC [79] B 78.9 56.4 -
SIAMH [81] B 83.2 62.5 6.8× 10−1

PASS+ViTB16+CtF+OSF (Ours) mixed 86.5 69.4 7.2× 10−2

worse on MSMT. For example, the mAP gap on Market-
1501 betweeen the best non-hashing and hashing methods
(i.e. PASS+ViTB16 and SIAMH) are 4.4%. but the mAP
gap on MSMT is 11.8%. The reason is that more identities
require more fine-grained cues but the quantization process
of binary code often loses them. Finally, compared non-
hashing methods, our proposed CtF+OSF achieves compa-
rable accuracy with much faster speed. Further, CtF+OSF
beats state-of-the-art hashing methods with aspect to both
accuracy and speed. This is because CtF (including AiO)
utilizes all-in-one module, which enriches cues of binary
codes with self-distillation (delivers cues from longer codes
to shorter codes), and OSF filters negative samples with a
look-up table, which naturally avoids quantization loss.

4.7 CtF Analysis
Analysis of AiO. The All-in-One (AiO) module aims to
learn and enhance multiple codes of different lengths in
a single model. It uses code pyramid (CP) structure and
self-distillation (SD) learning. Results are in Table 7. Firstly,
longer codes contribute to better accuracy. This can be
seen in all settings no matter whether CP or SD is used
and what code type is. Secondly, when using short codes,
real-value features is much better than binary ones. But
for long codes, they obtain similar accuracy. For example,
the 32-dimensional real-value feature obtains 82.7% Rank-
1 score, outperforming the 32-dimensional binary code by
60%, where the latter achieved only 25.5%. But when using
2048 code length, binary codes and real-valure features both
achieve approx. Rank-1 94% and mAP 84%. This suggests
that the quantization loss of short codes is significantly
worse than that of longer codes. Thirdly, learning with code
pyramid (CP) structure or self-distillation (SD) improves
short codes significantly. For example, CP+SD boosts the
32-dimensional binary codes from 25.5% to 60.0% in Rank-
1 score, upto 35% gain. It is evident that both code pyramid
(CP) structure and self-distillation (SD) learning contribute
to the effectiveness of the coarse-to-fine (CtF) search strat-
egy, and significantly improve model performance.
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Fig. 6. Analysis of the Distance Threshold Optimization (DTO) module.
DTO can well balance accuracy and speed with β. With the increase of
β, the accuracy increases and speed becomes slow gradually.

Analysis of DTO. We further analyzed parameter β
of the Distance Threshold Optimization (DTO) algorithm,
which controls the balance between ReID accuracy and
speed. Figure 6 show the model accuracy and speed using
different β value on Market-1501 and DukeMTMC-reID.
Firstly, it is evident that the value of β has a good control of
accuracy and speed, increasing β slows down the speed but
improves accuracy. For example, when β = 10−2, ReID is
fastest at approx. 0.03 and 0.02 seconds to ReID each probe
image on Market-1501 and DukeMTMC-reID, but with mAP
scores only at 40% and 30%. In contrast, β = 101 gives
high mAP 85% and 75%, but the query speed is 5× slower
at approx. 0.1 and 0.2 seconds. Secondly, when β is close
to 100, Rank-1 and mAP are almost peaked with a good
balance on speed.

Analysis on Larger Gallery. Gallery size affects sig-
nificantly ReID search accuracy and speed. To show the
effectiveness of our proposed Coarse-to-Fine (CtF) search
strategy, we evaluated it on a large-scale ReID dataset
Market1501+500k. The dataset is based on the Market-1501
and enlarged with 500, 000 distractors. We compare our CtF
with three ReID methods, including a non-hashing ReID
method with 2048-dimensional real-value features, a hash-
ing ReID model with long binary codes of 2048-dimension,
and a hashing ReID model with short binary codes of 32-
dimension. The experimental results are shown in Figure 7.
We can observe the following phenomenons.

Firstly, with the increase of gallery size, for all meth-
ods, the Rank-1 and mAP scores decrease, and the ReID
speed per probe image slows down gradually. The reason
is that more gallery images is more likely to contain more
difficult samples. They make ReID search more challenging.
Also, the extra gallery images significantly increase the time
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TABLE 7
Analysis of the All-in-One (AiO) module. CP: learn multiple codes in a pyramid structure, otherwise separate models. SD: enhance binary codes

via self-distillation. B and R mean binary codes and real-value features, respectively.

AiO CP SD
Feature Rank-1(%) mAP(%)

Type 32 128 512 2048 CtF 32 128 512 2048 CtF
× × × B

! × × B 25.5 84.8 92.3 93.8 92.5 33.9 67.5 81.4 85.3 75.1
! ! × B 54.4 87.8 92.7 93.8 93.0 35.0 72.2 81.7 85.3 80.2
! ! ! B 60.0 88.9 92.9 93.8 93.7 37.7 71.0 82.0 85.3 84.0
upper bound R 82.7 90.9 93.4 94.2 - 66.7 78.9 84.3 85.4 -

Fig. 7. Experimental results on large-scale ReID dataset Market-1501+500k. Our Coarse-to-Fine (CtF) get a high accuracy comparable with non-
hashing ReID method of long code and fast speed comparable with hashing ReID method of short code.

for computing all the distance comparisons and sorting
required for ReID each probe image. Secondly, the non-
hashing method with 2048-D real-value feature achieves the
best accuracy but the worst time. This is because the real-
value feature is more discriminative but slow to compute
and sort. Thirdly, for hashing ReID methods, the 2048-D
binary code obtains comparable ReID accuracy to that of
the non-hashing model, but 10× faster. This is because
Hamming distances and counting sort are faster to compute.
ReID speed of 32-D binary code is 5× faster than that of
2048-D binary codes, but its accuracy drops dramatically.
Finally, the proposed CtF model achieves a comparable ac-
curacy to that of the non-hashing method but the advantage
of similar speed to that of a hashing ReID method of 32-
D binary code. Critically, the advantage is independent of
the gallery size. Overall, these experiments demonstrate the
effectiveness of CtF for a large-scale ReID task.

Analysis of time and space complexity. We analyse the
effect of CtF on time and space complexity. As in TABLE 8,
we utilise 4 metrics (3 for time and 2 for space), including
FLOPs (float-pointing operations of inference one image),
PARAMS (total parameter number of the model), LATENCY
(latency of inferring an image) and STORAGE (disk of
binary codes per image) and MEM (inference-time memory
cost per image). Please note that all metrics above have
already considered the backbone module. All metrics are
evaluated under ResNet-50 [47] backbone and 128×256 im-

TABLE 8
Complexity analysis of the CtF module. The CtF module carries little

time and space consuming. Please find details in context.

Metrics w/o CtF w/ CtF Increase
FLOPs 2.70235G 2.70347G 1.0026x
PARAMS 27.61117M 28.7314M 1.0405x
STORAGE 0.25KB 0.332KB 1.32x
MEM 71.65MB 71.66MB 1.00001x
LATENCY 1.8ms 1.9ms 1.056x

age size using public tools thop2 and torchstat3. We evaluated
LATENCY using the PyTorch backend, without employing
ONNX or TRT, on a single 3090 GPU, with a batch size
of 256. Experimental results show that the CtF module
takes almost no extra inference-time time complexity and
no inference-time space complexity. The reason is that the
All-in-One (AiO) module includes only three Linear layers
and takes 2048× 512 + 512× 128 + 128× 32 = 1M FLOPs
thus makes no effect to a ResNet-50 backbone which takes
2.7G FLOPs. Only one noticeable metric is STORAGE which
takes 1.32× increase compared to the baseline version.
But it should be acceptable considering 5× matching-time

2. https://github.com/Lyken17/pytorch-OpCounter
3. https://github.com/Swall0w/torchstat
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Fig. 8. Analysis of the proposed One-Shot-Filter (OSF) strategy on Market-1501 dataset. (a) OSF is complementary with CtF, further speeding CtF
up with less accuracy drop. (b) The proposed Latent-Attribute-Learning (LAL) module is better than common Linear and MLP modules, achieving
higher speed with less accuracy drop. (c) The proposed Single-Direction-Metric (SDM) Loss performs better than Euclidean and Cosine metrics.

Fig. 9. Parameter analysis of One-Shot-Filter (OSF) strategy. λsdm, identi and λorth are weights in Eq.(20). OSF is robust to parameters.

speedup.

4.8 OSF Analysis
OSF is Complementary with CtF. The proposed Coarse-
to-Fine (CtF) and One-Shot-Filter (OSF) Strategies are com-
plementary with each other. Relationship between accuracy
(mean average precision, mAP) and speed (query time) of
Market-1501 dataset is shown in Figure 8(a), where points
of CtF (yellow star) are with different parameters β of
Eq.(6) (from left to right are10−2 to 101), ones of CtF+OSF
(red square) set β = 2.0 and uses different parameters γ
in Algorithm 3 (from left to right are 0, 1, 2, 3, 4 and 5
respectively). As we can see, CtF well balances accuracy

and speed with parameter β. Increasing β slows down the
speed but improves accuracy. For example, when β = 10−2,
ReID is fastest at approx. 0.03 to ReID each probe image on
Market-1501, but with mAP scores only at 40% and 30%.
In contrast, β = 101 gives high mAP 85%, but the query
speed is 5× slower at approx. 0.1 and 0.2 seconds. When
β is close to 100, Rank-1 and mAP are almost peaked with
a good balance on speed. Besides, γ has good control of
accuracy and speed. Increasing γ slows down the speed
but improves accuracy. For example, from γ = 6, ReID
is fastest at about 10ms per query image but has low
accuracy at 40% mAP and 85% Rank-1. Further, OSF is
complementary with OSF. Powered by OSF, CtF (β = 2)
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is speeded up again with less accuracy drop. For example,
based on CtF(β = 2.0), increasing γ reduces speed from
46ms to about 18mswhile increasing β only reduce to about
38m. In summary, CtF+OSF speed up CtF from 46ms to
24ms with almost no accuracy drop.

Effectiveness of the Latent-Attribute-Learning (LAL)
Module. The proposed LAL module is derived from princi-
pal component analysis (PCA) that keep the largest variance
with the least dimensions, whilst keeping the ability of
batch and end-to-end learning. To verify its advantages,
we compare LAL with several variants, including a Fully-
Connected-Layer (Linear) and Multiple-Layer-Perception
(MLP). The experimental results are shown in Figure 8(b).
As we can see, all three versions (LAL, Linear and MLP)
could achieve faster speed than a single CtF under the
acceptable cost of accuracy, demonstrating the effectiveness
and robustness of the proposed One-Shot-Filter (OSF) strat-
egy. Among them, our LAL performs best, speeding up 2×
with almost no accuracy drop. Specifically, when γ = 1,
CtF+OSF(LAL) speeds up CtF from 46ms to 24mswith only
0.1% mAP and 0.02% Rank-1, while Linear and MLP get
slower speed at 40ms and 35ms and large accuracy drop by
2% mAP and 0.5% Rank-1.

Analysis of the Single-Direction-Metric (SDM) Loss.
SDM loss is specifically designed for the attributed. In this
part, we compare SDM with common Euclidean and Cosine
metrics. The experimental results are shown in Figure 8(c).
As we can see, with either Euclidean, Cosine or SDM,
the proposed One-Shot-Filter (OSF) strategy performs well,
showing it effectiveness and robustness. Secondly, Cosine
and Euclidean metrics own similar performance. For exam-
ple, CtF+OSF(Euclidean) (η = 1) speed CtF from 45ms to
27ms with about 1.0% Rank-1 and 0.5% mAP drop, and
CtF+OSF(Cosine) (η = 1) only get a 34ms with similar ac-
curacy. Finally, our proposed CtF+OSF(SDM) has the fastest
speed at 24mswith less accuracy drop. Experimental results
show that the proposed SDM performs better than common
Euclidean and Cosine metrics.

Parameter Analysis. In this part, we analyze three pa-
rameters that effect OSF, including λsdm, λidenti and λorth of
Eq.(20). The experimental results are displayed in Figure 9.
We can observe several phenomenons. Firstly, non-zero pa-
rameters perform better (higher accuracy and faster speed)
than zero-parameters ), demonstrating that OSF is robust
to the three parameters. Secondly, among the three losses
(Lsdm, Lidenti and Leigen), Lsdm affects a lot, followed by
Leigen and Lidenti. Specifically, removing Lsdm, i.e. setting
λsdm = 1, significantly reduces Rank-1 and mAP from
93.7% and 83.9% to 91.0% and 68.0%, respectively, and
slow speed down from 24ms to 35ms. Removing Lidenti
and Leigen only slightly reduce accuracy and slown speed
down. Removing Lidenti/Leigen leads to about 0.5%/0.2%
rank-1 and 0.3%/0.3% mAP drops, and 3ms/11ms speed
slower.

4.9 Scalability Analysis

Recently, lots of ReID methods are proposed to improve
accuracy by polishing real-value features with more ad-
vanced backbone architectures, person-related backbone
pre-training strategies and more refined local cues. Our

proposed One-Shot-Filter (OSF) and Coarse-to-Fine (CtF)
Search strategies are based on real-value features and fur-
ther used to speed up search stage, which is complementary
existing real-value ReID methods. In this section, we apply
OSF and CtF to three typical real-value methods to show the
complementary.

This section valids the effectiveness of our proposed
One-Shot-Filter (OSF) and Coarse-to-Fine (CtF) Search
strategies under different backbones and larger dataset
MSMT [82]. MSMT includes 4, 101 identities and 126, 441
images. The baselines refer TransReID [68] and their codes
except for mapping the final layer to 2, 048 dimensions with
an extra linear layer for a fair comparison. We analyze two
kinds of popular backbones including CNN series (ResNet-
50 [47], ResNet-101 [47], ResNet-152 [47], ResNeSt50 [83],
ResNeSt200 [83]) and transformer series (DeiT-S/16 [84],
DeiT-B/16 [84], ViT-B/16 [84], ViT-B/16s=14 [85], ViT-
B/16s=12 [85]). Details are shown in Table 9.

As we can see, with larger (e.g. more layers) and more
advanced backbones (e.g. using transformers instead of
CNNs), the baseline methods get higher accuracy. Of course,
the query times are equal since they all use 2, 048 di-
mensional real-value features. Powered by our proposed
OSF and CtF, the query times are dramatically reduced
meanwhile, keeping accuracies comparable.

5 CONCLUSION

In this work, we proposed novel One-Shot-Filter together
with Coarse-to-Fine (CtF) search strategy for faster person
re-identification whilst also improving accuracy on con-
ventional hashing ReID. OSF upgrade retrieval-by-ranking
to retrieval-by-indexing, which filters easy negative sam-
ples by attribute matching. OSF include two key compo-
nents which are Latent-Attribute-Learning (LAL) module
and Single-Direction-Metric Loss. The former learns latent
attributes without explicit attribute annotation. The latter
optimizes latent attributes in an IOU-like metric, which per-
forms better than common Euclidean and Cosine metrics.
CtF first coarsely ranks a gallery using shorter binary codes,
then iteratively utilises longer binary codes to further refine
on ranking selected top candidates with increasing accuracy.
To implement the CtF strategy, a novel All-in-One (AiO)
module together with a Distance Threshold Optimization
(DTO) algorithm are formulated. The former simultane-
ously learns and enhances multiple binary codes of different
lengths in a single model. The latter solves the complex
parameter search task by a simple optimization process.
The balance between search accuracy and speed is easily
controlled by a single parameter. Extensive experiments
show that our method is 5× faster than existing hashing
ReID methods but achieves comparable accuracy with non-
hashing ReID models that are 50× slower. Based on CtF,
OSF further speeds querying up by 2× with almost no
accuracy drop.
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TABLE 9
Scalability analysis on different backbones and larger dataset MSMT [82]. Our proposed method works well and stably under different backbones,

which significantly speed searching up meanwhile keep comparable accuracy.

Backbones
Backbone

Complexity
Baseline OSF+CtF (Ours)

MAP(%) Rank-1(%) Q.Time(s) MAP(%) Rank-1 (%) Q.Time(s)
ResNet50 1× 51.2 75.1 2.8× 101 49.7 74.8 1.2× 10−1

ResNet101 1.48× 54.0 76.8 2.8× 101 51.9 76.4 1.2× 10−1

ResNet152 1.96× 55.2 78.0 2.8× 101 53.3 77.5 1.2× 10−1

ResNeSt50 1.86× 61.3 82.0 2.8× 101 59.4 81.8 1.2× 10−1

ResNeSt500 3.12× 63.1 83.5 2.8× 101 61.1 83.3 1.2× 10−1

DeiT-S/16 0.97× 55.0 76.4 2.8× 101 53.5 76.0 1.2× 10−1

DeiT-B/16 1.79× 61.5 81.9 2.8× 101 59.9 81.7 1.2× 10−1

ViT-B/16 1.79× 61.3 81.8 2.8× 101 59.9 81.6 1.2× 10−1

ViT-B/16s=16 2.14× 63.7 82.7 2.8× 101 62.0 82.4 1.2× 10−1

ViT-B/16s=12 2.81× 64.4 83.5 2.8× 101 62.8 83.1 1.2× 10−1

Fundamental Research Funds for the Central Univer-
sities (2023JBMC057), and China Scholarship Council
(201904910606).
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