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Abstract

This paper proposes a novel approach for facial expression recognition
by boosting Local Binary Patterns (LBP) based classifiers. Low-cost LBP
features are introduced to effectively describle local features of face images.
A novel learning procedure, Conditional Mutual Information based Boosting
(CMIB), is proposed. CMIB learns a sequence of weak classifiers that max-
imize their mutual information about a candidate class, conditional to the
response of any weak classifier already selected; a strong classifier is con-
structed by combining the learned weak classifiers using theNaive-Bayes.
Extensive experiments on the Cohn-Kanade database illustrated that LBP
features are effective for expression analysis, and CMIB enables much faster
training than AdaBoost, and yields a classifier of improved classification per-
formance.

1 Introduction

Automatic facial expression recognition has attracted much attention [5, 14] in recent
years. Though much progress has been made [4, 3, 2, 13], recognizing facial expression
with a high accuracy remains to be difficult due to the complexity and variety of facial
expressions. Facial expression recognition involves two vital aspects: facial feature rep-
resentation and classifier design. Facial feature representation is to derive a set of features
from original face images which minimizes within-class variations of expressions whilst
maxmizes between-class variations. If inadequate features are used, even the best clas-
sifier could fail to achieve accurate recognition. There aretwo common approaches to
extract facial features: geometric feature-based methodsand appearance-based methods
[14]. Gabor-wavelet appearance features were demonstrated to be more effective than
geometric features [17], and more robust in low-resolutionfacial expression recognition
[13]. In Donato et al’s experiments [4], Gabor wavelet representation also performed best.
Although Gabor-wavelet representations have been widely adopted [17, 2, 13], it is com-
putationally expensive to convolve face images with multi-banks of Gabor filters in order
to extract multiscale and orientational coefficients.

Local Binary Patterns (LBP) were proposed originally for texture analysis [11]. Re-
cently Ahonen et al [1, 8] presented LBP based face detectionand recognition, where the
facial area is equally divided into small regions to extractLBP features. However, the



LBP features extracted from equally divided sub-regions suffers from fixed size and posi-
tions. By shifting and scaling a sub-window over face images, much more features could
be obtained, which yield a more complete description of faceimages. For the very large
number of LBP features introduced by shifting and scaling a sub-window, boosting learn-
ing [7] can be utilised to learn the most effective LBP features and boost weak classifiers
to a strong classifier.

In this work, we first exploit Local Binary Patterns as low-cost discriminative appear-
ance features for facial expression recognition (Section 2). Our motivation is that face
images can be seen as a composition of micro-patterns which can be effectively described
by LBP. Compared to Gabor wavelets, LBP features can be derived very fast in a single
scan of raw images, whilst still retaining enough facial information in a compact represen-
tation. We then utilize boosting learning to learn a small set of optimal LBP features from
a very large LBP feature pool. In addition to AdaBoost (Section 3), we further propose
a novel learning procedure, Conditional Mutual Information based Boosting (CMIB), to
boost LBP-based weak classifiers for improved expression recognition (Section 4). CMIB
enables efficient learning of a sequence of weak classifiers by maximising their mutual
information about a candidate class, conditional to the response of any weak classifier
already selected, thus avoiding the selection of ineffective weak classifiers. In Section 5,
extensive experiments using the Cohn-Kanade database showthat LBP features are effec-
tive for expression analysis, and CMIB outperforms AdaBoost in boosting LBP features
for expression recognition. Conclusions are drawn in Section 6.

2 Local Binary Patterns (LBP)

The original LBP operator was introduced by Ojala et al [11].The operator labels the
pixels of an image by thresholding a 3×3 neighbourhood of each pixel with the center
value resulting in a binary number (see the left side of Fig 1). Then the histogram of the
labels was used as a texture descriptor.

Figure 1: Left: The basic LBP operator [1]. Right: Two examples of the extended LBP
[11]: a circular(8,1) neighborhood, and a circular(12,1.5) neighbourhood.

The small 3×3 neighbourhood of the basic LBP opterator can not capture dominant
features with large scale structures. Hence the operator was extended to use neighbour-
hood of different sizes [11]. Using circular neighbourhoods and bilinearly interpolating
the pixel values allows any radius and number of pixels in theneighbourhood. Examples
of the extended LBP are shown in the right side of Fig 1, where(P,R) denotesP sampling
points on a circle of radius ofR. Further extension of LBP introduced uniform patterns
[11]. A Local Binary Pattern is called uniform if it containsat most two bitwise transitions
from 0 to 1 or vice versa when the binary string is considered circular.

Here we adopt the notationLBPu2
P,R for LBP operators: the subscript represents using

the operator in a(P,R) neighbourhood, and the superscriptu2 indicates using only uni-



form patterns and labelling all remaining patterns with a single label. A histogram of a
labelled imagefl (x,y) can be defined as

Hi = ∑
x,y

I( fl (x,y) = i), i = 0, . . . ,n−1 (1)

wheren is the number of of different labels produced by the LBP operator and

I(A) =

{

1 A is true
0 A is false

(2)

This histogram contains information about the distribution of the local micro-patterns,
such as edges, spots and flat areas, over the whole image.

Face images can be seen as a composition of micro-patterns which can be effectively
describled by the LBP histograms. In [1], face images were equally divided into small
regions to extract LBP features (see the left side of Fig 3 foran illustration). However, this
LBP feature extraction scheme suffers from fixed LBP featuresize and positions. Here
we propose to learn discriminative LBP features using boosting learning from a large LBP
features pool obtained by shifting and scaling a sub-windowover face images.

3 AdaBoost

AdaBoost, introducted by Freund and Schapire [7, 12], provides a simple yet effective
approach for stagewise learning of a nonlinear classification function. AdaBoost learns a
small number of weak classifiers whose performance are just better than random guess-
ing, and boosts them iteratively into a strong classsifier ofhigher accuracy. The process
of AdaBoost maintains a distribution on the training samples. At each iteration, a weak
classifier which minimizes the weighted error rate is selected, and the distribution is up-
dated to increase the weights of the misclassified samples and reduce others’ weights.
AdaBoost has been successfully used in many problems such asface detection [16].

Here we apply AdaBoost to boost LBP-based weak classifiers. For weak classifier,
we adopt template matching as follows. In training, the LBP histograms in a given class
are averaged to generate a histogram template for this class. In recognition, a nearest-
neighbour classifier is adopted: the input histogram is matched with the closest template.
We select the Chi square statistic(χ2) as the dissimilarity measure for histograms:

χ2(S,M) = ∑
i

(Si −Mi)
2

Si +Mi
(3)

whereSandM are two LBP histograms.
However, Li and Zhang [10] have shown recently that a strong classifier learned by

AdaBoost is suboptimal, and proposed FloatBoost by incorporating Floating Search into
AdaBoost. FloatBoost uses a backtrack mechanism after eachiteration of AdaBoost to
remove those weak classifiers that are ineffective in reducing error rate. Compared to
AdaBoost, FloatBoost is reported to yield a strong classifier consisting of fewer weak
classifiers whilst improving classification performance. However, FloatBoost increases
the training time massively compared to that for AdaBoost. In contrast, we proposed in
the following a novel learning method to avoid selecting of ineffective weak classifiers in
each iteration of learning but is also very fast in training.



4 Conditional Mutual Information based Boosting

Motivated by the Conditional Mutual Information (CMI) based binary feature selection
proposed recently [6], we propose here a Conditional MutualInformation based Boosting
(CMIB) scheme for effecient learning.

CMI based Feature Selection —Mutual Information (MI) is a basic concept in informa-
tion theory. It estimates the quantity of information shared between random variables. For
two random variabelsU andV, their mutual informationI(U ;V) is defined as follows:

I(U ;V) = H(U)−H(U |V) = H(V)−H(V|U) (4)

whereH() is the entropy of the random variable. The entropyH(U) quantifies the uncer-
tainty ofU . For a discrete random variableU , H(U) is defined as

H(U) = − ∑
u∈U

p(u) logp(u) (5)

Herep(u) represents the marginal probability distribution ofU . The conditional entropy
H(U |V) quantifies the remaining uncertainty ofU , whenV is known.

Given M samples with theN featuresX1, . . . ,XN, and the target classification vari-
ableY, feature selection is to findK featuresXν(1), . . . ,Xν(K) that optimally characterizes
Y. Mutual Information based feature selection is to select featuresν(1), . . . ,ν(K) which
individually maximize the mutual informationI(Y;Xν(l)).

However, selection based on such a criterion cannot ensure weak dependency among
features, and can lead to redundant and poorly informative families of features. Recently
Fleuret [6] proposed a Conditional Mutual Information (CMI) maximization criterion to
select features. The essence is that a featureX can be discarded if there is one feature
Xν already picked such thatX andY are conditionally independent givenXν . Conditional
Mutual Information is defined as

I(U ;V|W) = H(U |W)−H(U |W,V) (6)

that measures the information shared betweenU andV whenW is known. IfV andW
carry the same information aboutU , the two terms on the right are equal, and the CMI
is zero, even if bothV andW are individually informative. On the contrary ifV brings
information aboutU which is not already contained inW, the difference is large.

For feature selection, a featureX′ is good only ifI(Y;X′|X) is large for everyX already
picked. This means thatX′ is good only if it carries information aboutY, and if this
information has not been caught by any of theX already picked. An iterative procedure
for a CMI based feature selection can be defined as

ν(1) = argmax
n

I(Y;Xn) (7)

∀k,1≤k<K,ν(k+1)=argmax
n

{

min
l≤k

I(Y;Xn|Xν(l))
}

(8)

I(Y;Xn|Xν(l)) is small either ifXn contains no information aboutY or if such information
was already inXν(l). Note that the equivalent criterion was also proposed in [15].



CMI based Boosting (CMIB) — We propose to learn a small set of weak classifiers from
a large classifier pool using CMI, and boost them into a strongclassifier. We regard the
output of a weak classifier as a random variable, a ‘feature’ for the candidate class; and
employ the CMI maxizimation criterion to select the effective ‘features’, i.e. the charac-
terizing weak classifiers. CMIB learns a sequence of weak classifiers which maximize
their mutual information about a candidate class, conditional to the response of any weak
classifier already selected. So a weak classifier similar to those that were already learned
will not be selected, even if it is individually powerful as it does not carry additional
information about the candidate class.

After learning weak classifiers, a strategy is needed to perform final classification
by combining the learned weak classifiers. CMIB adopts the Naive-Bayes to make the
final decision based on outputs of the weak classifiers, not the voting procedure used in
AdaBoost. A Naive-Bayes classifier is simple but highly effective if the features can be
assumed to be largely independent for a given class. As the weak classifiers learned by
CMIB are by their very nature weakly dependent, it is reasonable to use the Naive-Bayes
to combine them for final classification. If usingc to represent the value of the class
variable, andx1, · · · ,xk for the features, a Naive Bayesian classifier is defined as

ĉ = argmax
c

p(c)
k

∏
i=1

p(xi |c) (9)

The proposed CMIB algorithm is summaried in Fig 2. CMIB learns weak classifiers
that are both individually informative and weakly dependent. Crucially, CMIB avoids
selecting unfavorable weak classifiers in each iteration, while FloatBoost [10] delects
ineffective weak classifiers after each iteration.

AdaBoost usually requires very expensive training time. The improved performance
of FloatBoost also pays the price for 5 times longer trainingtime than AdaBoost [10].
In constrast, CMIB promises very fast training. The fast training is very significant for
any incremental or adaptive learning when the size of the initial available training data is
small but accumulating over time. (The fast training of CMIBwill be illustrated in the
follwing experiments. )

5 Experiments

Psychophysical studies indicate that basic emotions have corresponding universal facial
expressions across all cultures. This is reflected by most current facial expression recogni-
tion systems [3, 13, 2] that attempt to recognize a set of prototypic emotional expressions
including disgust, fear, joy, surprise, sadness and anger.In this section we evaluate per-
formance on both 6-class prototypic expression recognition and 7-class expression recog-
nition by including the neutral expression.

Dataset —The Cohn-Kanade Facial Expression Database [9] was used here. This database
consists of 100 university students aged from 18 to 30 years,of which 65% were female,
15% were African-American, and 3% were Asian or Latino. Subjects were instructed to
perform a series of 23 facial displays, six of which were prototypic emotions mentioned
above. Image sequences from neutral to target display were digitized into 640×490 pixel
arrays.



Given a training setS= {(x1,y1), . . . ,(xm,ym)} whereyi ∈ {−1,1}
and the size of the final strong classifierT:

1. Train weak classifiersH1(x), . . . ,HN(x) based on training
samples, whereN is the total number of weak classifiers

2. Fort = 1, . . . ,T,

• If t = 1, chooseHt(x) = H j(x), such that

j = argmax
n

I(Y;Hn(x)) (10)

• If t > 1, chooseHt(x) = H j(x), such that

j = argmax
n

{

min
l<t

I(Y;Hn(x)|Hl (x))
}

(11)

3. Output the final strong classifier as

f (x) = argmax
y

p(y)
T

∏
i=1

p(Hi(x)|y) (12)

Figure 2: Conditional Mutual Information based Boosting.

For our experiments, we selected 320 image sequences from the database. The only
selection criterion was that a sequence could be labeled as one of the six basic emotions.
The sequences come from 96 subjects, with 1 to 6 emotions per subject. For each se-
quence, the neutral face and three peak frames were used. To evaluate generalization
performance, a 10-fold Cross-Validation testing scheme was adopted.

Following Tian [13], we normalized the faces to a fixed distance of 55 pixels between
the centers of the two eyes. It is observed that the width of a face is roughly twice this
distance, and the height is roughly triple. Hence, facial images of 110×150 pixels were
cropped from original frames based on the two eyes location.No further alignment of
facial features such as alignment of mouth [17] was performed in our algorithms. Due to
LBP’s gray-scale invariance, there was no attempt made to remove illumination changes
[13] in our algorithm.

Expression Recognition using LBP —Experiments were performed to evaluate the ef-
fectiveness of LBP features for facial expression recognition. Here a face image was
equally divided into small sub-regions from which LBP features were extracted and con-
catenated into a single, spatially enhanced feature histogram [1]. The extracted histogram
represents the local texture and global shape of face images. We divided 110×150 pixels
facial images into 18×21 pixels regions giving 42 (6×7) sub-regions in total (as shown
in Fig. 3). We adopted the 59-binLBPu2

8,2 operator for each sub-region. The length of the
extracted histogram is 2478 (59×42).

We adopted template matching as the classifier for its simplicity. In training, the
histograms of face images in a given class are averaged to generate a histogram template



Figure 3: Left: A face image divided into 6×7 sub-region. Right: The weights set for
weighted dissimilarity measure. Black squares indicate weight 0.0, dark gray 1.0, light
gray 2.0 and white 4.0.

for this class. In recognition, a nearest-neighbour classifier is adopted: the histogram of
the input image is matched with the closest template.

For dissimilarity measure, we selected Chi square statistic (χ2) described in Section
3. It is observed that facial features contributing to facial expressions mainly lie in re-
gions such as eye and mouth regions. These regions contain more useful information for
expression classification. Therefore, a weight can be set for each region based on its im-
portance, as shown in Fig 3. This particular weight set was designed empirically based
on observation. Our weighted(χ2) statistic is then given as

χ2
w(S,M) = ∑

i, j
wj

(Si, j −Mi, j)
2

Si, j +Mi, j
(13)

whereSandM are two LBP histograms,wj is the weight for regionj.
The template matching achieved the generalization performance of 84.5% and 79.1%

for the 6-class task and the 7-class task respectively. Based on the tracked geometric facial
features (eyebrows, eyelids, and mouth), Cohen et al [3] adopted Bayesian network clas-
sifiers to classify 7-class emotional expressions on the Cohn-Kanade database. The best
performance of 73.2% was obtained by them using Tree-Augmented-Naive Bayes (TAN)
classifiers. Comparison in Table 1 illustrates that our simple template matching using LBP
outperforms geometric features based TAN classifier. The experiments demonstrated that
the low-cost LBP features are discriminative for facial expression recogniton.

Methods (Feature + Classifier) Recogniton Results

LBP + Template Matching 79.1%

Geometric Feature + TAN [3] 73.2%

Table 1: Comparisons between the geometric features based TAN [3] and our LBP-based
template matching.

Expression Recognition using Boosted LBP —By shifting and scaling a sub-window,
16,640 LBP features in total were extracted from each face image. We adopted CMIB
and AdaBoost to learn a small subset (in tens) of effective LBP features, and then rec-
ognize facial expressions using the boosted strong classifiers. CMIB and AdaBoost used
the same weak classifier described in Section 3. For AdaBoost, we used the generailized
multi-class multi-label AdaBoost.MH algorithm proposed in [12].

Training Computational Complexity:We plot the average training time of CMIB and Ad-
aBoost as a function of the number of weak classifiers in Fig 4.The experiments were



run on a standard 2.0Ghz PC with Matlab implementation. It can be seen that CMIB
performs significantly fast than AdaBoost, especially whenthe number of learned weak
classifiers increases. For example, CMIB selects top 100 weak classifiers with an average
time of 1.5t, while AdaBoost needs 38.3t for the same task. (The varation in AdaBoost
running time was due to network load and system load, since weconducted experiments
with Matlab installed in a central server. Even with such variation, we can still observe
that the training time of AdaBoost is linear in number of rounds. )
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Figure 4: Training time of CMIB and AdaBoost, as a function ofthe number of weak
classifiers. Up to 100 weak classifiers are considered.

Classification Accuracy:We conducted expression recognition using the strong classifiers
boosted by CMIB and AdaBoost. The generalization performance in 6-class and 7-class
recognition are shown in Fig 5, as a function of the number of weak classifiers. Here a
strong classifier is composed of up to 200 weak classifiers.
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Figure 5: Generalization performance of 10-fold Cross-Validation, as a function of the
number of weak classifiers. Left:6-class; Right: 7-class.

The following conclusions can be drawn from the results shown in Fig 5: (1) The gen-
eralization performance is clearly improved for both the 6-class and 7-class recognition
tasks by boosting LBP-based classifiers over that of LBP without boosting (i.e., with uni-
formly divided sub-regions). (2) CMIB achieves as good or better recognition results than



Methods Recogniton Results

Boosting LBP with CMIB 86.7%

Boosting LBP with AdaBoost 84.6%

Boosting Gabor wavelets with AdaBoost [2] 85.0%

Table 2: Comparisons between the Gabor-wavelets-based boosting [2] and our LBP-based
boosting.

AdaBoost, though AdaBoost performs better when using less than 40-60 weak classifiers.
CMIB performs consistently better when more weak classifiers are learned. Bartlett et al
[2] performed similar experiment on the Cohn-Kanade database using AdaBoost to learn
Gabor-wavelet features. Comparisons summaried in Table 2 illustrate that boosting LBP
with CMIB performs better, while boosting LBP with AdaBoostperforms comparably to
boosting Gabor-wavelet features. (3) CMIB improves its recognition performance when
the number of weak classifiers increases, while AdaBoost maydecrease its recognition
rates with more weak classifiers learned. Since CMIB avoids ineffective weak classifiers
in learning, more weak classifiers will produce better recognition performance. In con-
trast, the performance of the classifier boosted by AdaBoostmay degenerate when adding
the unfavorable weak classifiers.
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Figure 6: Outputs of classifiers for samples Joy, Surprise, and Neutral. The first row:
CMIB ; the second row:AdaBoost.

Between-Class Discriminative Robustness:Due to the limitation of space, we only show
here the outputs of boosted classifiers of different expressions for samples “Joy”, “Sur-
prise”, and “Neutral” in Fig 6. It can be seen that the different weak classifiers being
learned by CMIB and AdaBoost have some impact on not only the recognition accuracy,
but also the robustness of recognition. Weak classifiers learned by CMIB provide bet-
ter discriminative ability in between-class seperation than that of AdaBoost, resulting in
more robust recognition.



6 Conclusions

This paper presented a novel method for facial expression recognition by boosting Local
Binary Patterns (LBP) based classifiers. Low-cost LBP features were introduced to effec-
tively describle appearance features of expression images. A novel learning procedure,
Conditional Mutual Information based Boost (CMIB), was proposed for efficient learning.
Extensive experiments illustrated that LBP features are effective for expression analysis,
and CMIB is superior to AdaBoost in training complexity and classification performance.
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