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Abstract

This paper proposes a novel approach for facial expressicognition
by boosting Local Binary Patterns (LBP) based classifiersw-cost LBP
features are introduced to effectively describle localdess of face images.
A novel learning procedure, Conditional Mutual Informatizased Boosting
(CMIB), is proposed. CMIB learns a sequence of weak classiffeat max-
imize their mutual information about a candidate class,dit@nal to the
response of any weak classifier already selected; a strasgifiér is con-
structed by combining the learned weak classifiers usind\thige-Bayes.
Extensive experiments on the Cohn-Kanade database dtadtithat LBP
features are effective for expression analysis, and CMibks much faster
training than AdaBoost, and yields a classifier of improviedsification per-
formance.

1 Introduction

Automatic facial expression recognition has attracted maiftention [5, 14] in recent
years. Though much progress has been made [4, 3, 2, 13],niegugfacial expression
with a high accuracy remains to be difficult due to the comipfeand variety of facial
expressions. Facial expression recognition involves tital aspects: facial feature rep-
resentation and classifier design. Facial feature reptatsemis to derive a set of features
from original face images which minimizes within-classiations of expressions whilst
maxmizes between-class variations. If inadequate femtame used, even the best clas-
sifier could fail to achieve accurate recognition. Theretar® common approaches to
extract facial features: geometric feature-based methndsappearance-based methods
[14]. Gabor-wavelet appearance features were demorgtiatee more effective than
geometric features [17], and more robust in low-resolutamial expression recognition
[13]. In Donato et al's experiments [4], Gabor wavelet reprgation also performed best.
Although Gabor-wavelet representations have been wididpted [17, 2, 13], it is com-
putationally expensive to convolve face images with miidtitks of Gabor filters in order
to extract multiscale and orientational coefficients.

Local Binary Patterns (LBP) were proposed originally fotttee analysis [11]. Re-
cently Ahonen et al [1, 8] presented LBP based face deteatidirecognition, where the
facial area is equally divided into small regions to extlaBP features. However, the



LBP features extracted from equally divided sub-regiorffessifrom fixed size and posi-
tions. By shifting and scaling a sub-window over face imagasch more features could
be obtained, which yield a more complete description of faxages. For the very large
number of LBP features introduced by shifting and scalingtawindow, boosting learn-
ing [7] can be utilised to learn the most effective LBP featiand boost weak classifiers
to a strong classifier.

In this work, we first exploit Local Binary Patterns as lowstdiscriminative appear-
ance features for facial expression recognition (SectjonCQur motivation is that face
images can be seen as a composition of micro-patterns whicheeffectively described
by LBP. Compared to Gabor wavelets, LBP features can beatrigry fast in a single
scan of raw images, whilst still retaining enough faciabmmfiation in a compact represen-
tation. We then utilize boosting learning to learn a smdlbd@ptimal LBP features from
a very large LBP feature pool. In addition to AdaBoost (Set®8), we further propose
a novel learning procedure, Conditional Mutual Informatimsed Boosting (CMIB), to
boost LBP-based weak classifiers for improved expressitogration (Section 4). CMIB
enables efficient learning of a sequence of weak classifieradximising their mutual
information about a candidate class, conditional to thearse of any weak classifier
already selected, thus avoiding the selection of ineffeatieak classifiers. In Section 5,
extensive experiments using the Cohn-Kanade databasethbkBP features are effec-
tive for expression analysis, and CMIB outperforms AdaBaodoosting LBP features
for expression recognition. Conclusions are drawn in adi

2 Local Binary Patterns (LBP)

The original LBP operator was introduced by Ojala et al [1The operator labels the
pixels of an image by thresholding ax33 neighbourhood of each pixel with the center
value resulting in a binary number (see the left side of FigThlen the histogram of the
labels was used as a texture descriptor.

(Threshold Binary: 11010011
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Decimal: 211
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Figure 1. Left: The basic LBP operator [1]. Right: Two exaegbf the extended LBP
[11]: a circular(8,1) neighborhood, and a circulét2 1.5) neighbourhood.

The small 3x 3 neighbourhood of the basic LBP opterator can not captungrmimt
features with large scale structures. Hence the operateew@nded to use neighbour-
hood of different sizes [11]. Using circular neighbourhs@ahd bilinearly interpolating
the pixel values allows any radius and number of pixels imgtighbourhood. Examples
of the extended LBP are shown in the right side of Fig 1, wiiBrR) denoted® sampling
points on a circle of radius d®. Further extension of LBP introduced uniform patterns
[11]. A Local Binary Pattern is called uniform if it contaiasmost two bitwise transitions
from 0 to 1 or vice versa when the binary string is considemsditar.

Here we adopt the notatidrBP,;{ﬁ for LBP operators: the subscript represents using
the operator in dP,R) neighbourhood, and the supersctigtindicates using only uni-



form patterns and labelling all remaining patterns withragkg label. A histogram of a
labelled imagef; (x,y) can be defined as

Hi:ZI(ﬁ(x,y):i), i=0,...,n—1 (1)
Xy
wheren is the number of of different labels produced by the LBP ofzerand
1 Aistrue
H(A) = { 0 Aisfalse (2)

This histogram contains information about the distribataf the local micro-patterns,
such as edges, spots and flat areas, over the whole image.

Face images can be seen as a composition of micro-patteicls edn be effectively
describled by the LBP histograms. In [1], face images wenrgakhy divided into small
regions to extract LBP features (see the left side of Fig afatlustration). However, this
LBP feature extraction scheme suffers from fixed LBP feasize and positions. Here
we propose to learn discriminative LBP features using bogétarning from a large LBP
features pool obtained by shifting and scaling a sub-windeer face images.

3 AdaBoost

AdaBoost, introducted by Freund and Schapire [7, 12], glesia simple yet effective
approach for stagewise learning of a nonlinear classifindtinction. AdaBoost learns a
small number of weak classifiers whose performance are gistrtthan random guess-
ing, and boosts them iteratively into a strong classsifidrigher accuracy. The process
of AdaBoost maintains a distribution on the training sarapl&t each iteration, a weak
classifier which minimizes the weighted error rate is selécand the distribution is up-
dated to increase the weights of the misclassified sampkbsetuce others’ weights.
AdaBoost has been successfully used in many problems suaheadetection [16].

Here we apply AdaBoost to boost LBP-based weak classifieos wieak classifier,
we adopt template matching as follows. In training, the LBRdgrams in a given class
are averaged to generate a histogram template for this. claggcognition, a nearest-
neighbour classifier is adopted: the input histogram is heatavith the closest template.
We select the Chi square statistj¢?) as the dissimilarity measure for histograms:

2 (S —M)?
XSM) =3 "5 ®3)
whereSandM are two LBP histograms.

However, Li and Zhang [10] have shown recently that a strdagsifier learned by
AdaBoost is suboptimal, and proposed FloatBoost by inaatprig Floating Search into
AdaBoost. FloatBoost uses a backtrack mechanism afterigaealion of AdaBoost to
remove those weak classifiers that are ineffective in redueiror rate. Compared to
AdaBoost, FloatBoost is reported to yield a strong clagsansisting of fewer weak
classifiers whilst improving classification performanceowéver, FloatBoost increases
the training time massively compared to that for AdaBoostcdntrast, we proposed in
the following a novel learning method to avoid selectingraffective weak classifiers in
each iteration of learning but is also very fast in training.



4 Conditional Mutual Information based Boosting

Motivated by the Conditional Mutual Information (CMI) bakbinary feature selection
proposed recently [6], we propose here a Conditional Munhfalkmation based Boosting
(CMIB) scheme for effecient learning.

CMI based Feature Selection —Mutual Information (Ml) is a basic concept in informa-
tion theory. It estimates the quantity of information slitllbetween random variables. For
two random variabeld andV, their mutual information(U;V) is defined as follows:

[(U;V)=HU)-HU|V)=H(V)-H(V|U) 4)

whereH () is the entropy of the random variable. The entréffy) ) quantifies the uncer-
tainty ofU. For a discrete random variallle H (U) is defined as

HU)=- Z) p(u)logp(u) (5)

ue!

Herep(u) represents the marginal probability distributionlbf The conditional entropy
H (U |V) quantifies the remaining uncertaintyldf whenV is known.

Given M samples with théN featuresXs,..., Xy, and the target classification vari-
ableY, feature selection is to find featuresX, ), ..., X, k) that optimally characterizes
Y. Mutual Information based feature selection is to seleatfieesv(1),...,v(K) which
individually maximize the mutual informatiarfY; X, ;) ).

However, selection based on such a criterion cannot enseaik dependency among
features, and can lead to redundant and poorly informadivelies of features. Recently
Fleuret [6] proposed a Conditional Mutual Information (QNiaximization criterion to
select features. The essence is that a feafucan be discarded if there is one feature
X, already picked such that andY are conditionally independent givé§. Conditional
Mutual Information is defined as

[(U;VIW) =H(U|W)-HUW,V) (6)

that measures the information shared betwdesndV whenW is known. IfV andW
carry the same information about the two terms on the right are equal, and the CMI
is zero, even if botl/y andW are individually informative. On the contraryVf brings
information about which is not already contained W, the difference is large.

For feature selection, a featuxéis good only ifl (Y; X’|X) is large for every already
picked. This means tha’ is good only if it carries information aboitt, and if this
information has not been caught by any of Xalready picked. An iterative procedure
for a CMI based feature selection can be defined as

v(1) = argmax (Y; %) (7)
vk, 1<k<K,v(k+1)=argmax rlrlipl(Y;Xn|XV(|))} (8)

L(Y; Xn[Xy(1y) is small either ifX, contains no information abodtor if such information
was already irX, ;). Note that the equivalent criterion was also proposed ih [15



CMI based Boosting (CMIB) — We propose to learn a small set of weak classifiers from
a large classifier pool using CMI, and boost them into a stidagsifier. We regard the
output of a weak classifier as a random variable, a ‘featunettfe candidate class; and
employ the CMI maxizimation criterion to select the effeetifeatures’, i.e. the charac-
terizing weak classifiers. CMIB learns a sequence of weassiflars which maximize
their mutual information about a candidate class, conditito the response of any weak
classifier already selected. So a weak classifier simildrdsd that were already learned
will not be selected, even if it is individually powerful asdoes not carry additional
information about the candidate class.

After learning weak classifiers, a strategy is needed tooperffinal classification
by combining the learned weak classifiers. CMIB adopts thiwéNBayes to make the
final decision based on outputs of the weak classifiers, movdting procedure used in
AdaBoost. A Naive-Bayes classifier is simple but highly efifee if the features can be
assumed to be largely independent for a given class. As thé& wlassifiers learned by
CMIB are by their very nature weakly dependent, it is reabtmto use the Naive-Bayes
to combine them for final classification. If usirgto represent the value of the class
variable, and, - - - , X for the features, a Naive Bayesian classifier is defined as

k
¢ =argmaxp(c) [l p(xi[c) 9)

The proposed CMIB algorithm is summaried in Fig 2. CMIB leameak classifiers
that are both individually informative and weakly depende@rucially, CMIB avoids
selecting unfavorable weak classifiers in each iterationileMloatBoost [10] delects
ineffective weak classifiers after each iteration.

AdaBoost usually requires very expensive training timee rhproved performance
of FloatBoost also pays the price for 5 times longer trairtinge than AdaBoost [10].
In constrast, CMIB promises very fast training. The fasiniray is very significant for
any incremental or adaptive learning when the size of th&lr@vailable training data is
small but accumulating over time. (The fast training of CMIBI be illustrated in the
follwing experiments. )

5 Experiments

Psychophysical studies indicate that basic emotions harwesponding universal facial
expressions across all cultures. This is reflected by mestifacial expression recogni-
tion systems [3, 13, 2] that attempt to recognize a set obpypic emotional expressions
including disgust, fear, joy, surprise, sadness and angehis section we evaluate per-
formance on both 6-class prototypic expression recognéitd 7-class expression recog-
nition by including the neutral expression.

Dataset—The Cohn-Kanade Facial Expression Database [9] was usedTigis database
consists of 100 university students aged from 18 to 30 ye#sshich 65% were female,
15% were African-American, and 3% were Asian or Latino. 8uatg were instructed to
perform a series of 23 facial displays, six of which were ptyjpic emotions mentioned
above. Image sequences from neutral to target display vigitezdd into 640<490 pixel
arrays.



Given atraining seS= {(X1,y1),.-., (Xm,Ym) } wherey; € {—1,1}
and the size of the final strong classifier

1. Train weak classifier$l;(x),...,Hn(X) based on training
samples, wherBhl! is the total number of weak classifiers

2. Fort=1,...,T,
o If t =1, chooseH(x) = Hj(x), such that

j =argmax (Y;Hn(x)) (20)

o If t > 1, chooseH(x) = Hj(x), such that

j =argmax rlnitnI(Y;Hn(x)|H| )} (1)
n <
3. Output the final strong classifier as

;
f(x) = argmaxp(y) r! P(Hi(x)]y) (12)
y i=

Figure 2: Conditional Mutual Information based Boosting.

For our experiments, we selected 320 image sequences fedatabase. The only
selection criterion was that a sequence could be labeledesfdhe six basic emotions.
The sequences come from 96 subjects, with 1 to 6 emotionsubgect. For each se-
guence, the neutral face and three peak frames were usedvallmte generalization
performance, a 10-fold Cross-Validation testing scheme agwopted.

Following Tian [13], we normalized the faces to a fixed distaof 55 pixels between
the centers of the two eyes. It is observed that the width afca fs roughly twice this
distance, and the height is roughly triple. Hence, faciades of 116150 pixels were
cropped from original frames based on the two eyes locathdm further alignment of
facial features such as alignment of mouth [17] was perfdrm®ur algorithms. Due to
LBP’s gray-scale invariance, there was no attempt mademove illumination changes
[13] in our algorithm.

Expression Recognition using LBP —Experiments were performed to evaluate the ef-
fectiveness of LBP features for facial expression recagmit Here a face image was
equally divided into small sub-regions from which LBP feasiwere extracted and con-
catenated into a single, spatially enhanced feature histofl]. The extracted histogram
represents the local texture and global shape of face im&lgeslivided 11 150 pixels
facial images into 1& 21 pixels regions giving 42 (67) sub-regions in total (as shown
in Fig. 3). We adopted the 59-berP§{22 operator for each sub-region. The length of the
extracted histogram is 2478 (592).

We adopted template matching as the classifier for its saityli In training, the
histograms of face images in a given class are averaged tvajera histogram template



Figure 3: Left: A face image divided into67 sub-region. Right: The weights set for

weighted dissimilarity measure. Black squares indicatigyhe0.0, dark gray 1.0, light
gray 2.0 and white 4.0.

for this class. In recognition, a nearest-neighbour di@sss adopted: the histogram of
the input image is matched with the closest template.

For dissimilarity measure, we selected Chi square statigfi) described in Section
3. Itis observed that facial features contributing to fheigpressions mainly lie in re-
gions such as eye and mouth regions. These regions contaiuseful information for
expression classification. Therefore, a weight can be s&doh region based on its im-
portance, as shown in Fig 3. This particular weight set wasgded empirically based
on observation. Our weighteg(?) statistic is then given as

—Mij)?

+ M, (13)

XWSM ZWJ

whereSandM are two LBP histogramsy; is the weight for regior).

The template matching achieved the generalization pedoo® of 84.5% and 79.1%
for the 6-class task and the 7-class task respectively.dBasthe tracked geometric facial
features (eyebrows, eyelids, and mouth), Cohen et al [3}dcBayesian network clas-
sifiers to classify 7-class emotional expressions on thenckdnade database. The best
performance of 73.2% was obtained by them using Tree-AutgdeNaive Bayes (TAN)
classifiers. Comparison in Table 1 illustrates that our gtgmplate matching using LBP
outperforms geometric features based TAN classifier. Tpe®gxents demonstrated that
the low-cost LBP features are discriminative for facial egsion recogniton.

Methods (Feature + Classifier) Recogniton Results
LBP + Template Matching 79.1%
Geometric Feature + TAN [3] 73.2%

Table 1: Comparisons between the geometric features bade¢d3T and our LBP-based
template matching.

Expression Recognition using Boosted LBP By shifting and scaling a sub-window,
16,640 LBP features in total were extracted from each facgen We adopted CMIB

and AdaBoost to learn a small subset (in tens) of effectiv® lf@atures, and then rec-
ognize facial expressions using the boosted strong classilCMIB and AdaBoost used
the same weak classifier described in Section 3. For AdaBaestised the generailized
multi-class multi-label AdaBoost.MH algorithm proposed12].

Training Computational Complexitye plot the average training time of CMIB and Ad-
aBoost as a function of the number of weak classifiers in Figlde experiments were



run on a standard 2.0Ghz PC with Matlab implementation. iit loa seen that CMIB

performs significantly fast than AdaBoost, especially wiiennumber of learned weak
classifiers increases. For example, CMIB selects top 10@ slaasifiers with an average
time of 1.5t, while AdaBoost needs 38.3t for the same taske (faration in AdaBoost

running time was due to network load and system load, sinceomnducted experiments
with Matlab installed in a central server. Even with suchiatéon, we can still observe
that the training time of AdaBoost is linear in number of rdan)

——CMIB|
40 — — AdaBoost

0 10 20 30 40 50 60 70 80 90 100
Number of Weak Classifiers

Figure 4: Training time of CMIB and AdaBoost, as a functiontieé number of weak
classifiers. Up to 100 weak classifiers are considered.

Classification AccuracyWWe conducted expression recognition using the strongifikrss
boosted by CMIB and AdaBoost. The generalization perfogean 6-class and 7-class
recognition are shown in Fig 5, as a function of the number edkvclassifiers. Here a
strong classifier is composed of up to 200 weak classifiers.

——cmiB ——cCMmIB
— — AdaBoost — — AdaBoost

Average Recognition Rates
Average Recognition Rates

20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of Weak Classifiers Number of Weak Classifiers

Figure 5: Generalization performance of 10-fold Crosddélon, as a function of the
number of weak classifiers. Le®-class Right: 7-class

The following conclusions can be drawn from the results shimwFig 5: (1) The gen-
eralization performance is clearly improved for both thel&ss and 7-class recognition
tasks by boosting LBP-based classifiers over that of LBPawithhoosting (i.e., with uni-
formly divided sub-regions). (2) CMIB achieves as good dtdraecognition results than



Methods Recogniton Results
Boosting LBP with CMIB 86.7%
Boosting LBP with AdaBoost 84.6%
Boosting Gabor wavelets with AdaBoost [2] 85.0%

Table 2: Comparisons between the Gabor-wavelets-basetibhg{?] and our LBP-based
boosting.

AdaBoost, though AdaBoost performs better when using hess40-60 weak classifiers.
CMIB performs consistently better when more weak classifége learned. Bartlett et al
[2] performed similar experiment on the Cohn-Kanade databsing AdaBoost to learn
Gabor-wavelet features. Comparisons summaried in Tabllestrate that boosting LBP
with CMIB performs better, while boosting LBP with AdaBogsrforms comparably to
boosting Gabor-wavelet features. (3) CMIB improves itomdtion performance when
the number of weak classifiers increases, while AdaBoost deayease its recognition
rates with more weak classifiers learned. Since CMIB avaidffective weak classifiers
in learning, more weak classifiers will produce better rettion performance. In con-
trast, the performance of the classifier boosted by AdaBuoagtdegenerate when adding
the unfavorable weak classifiers.

Outputs of Classifers
Outputs of Classifers

Outputs o Classifers

Outputs o Classifers

VA

A o I
|

(W

w0 50
‘Samples (Joy)

Figure 6: Outputs of classifiers for samples Joy, Surpried, eutral. The first row:
CMIB ; the second rowAdaBoost

Between-Class Discriminative Robustnd3se to the limitation of space, we only show
here the outputs of boosted classifiers of different expyassor samples “Joy”, “Sur-
prise”, and “Neutral” in Fig 6. It can be seen that the diffdraveak classifiers being
learned by CMIB and AdaBoost have some impact on not onlyghegnition accuracy,
but also the robustness of recognition. Weak classifiemsiéehby CMIB provide bet-
ter discriminative ability in between-class seperaticemtthat of AdaBoost, resulting in
more robust recognition.



6 Conclusions

This paper presented a novel method for facial expressimyrétion by boosting Local
Binary Patterns (LBP) based classifiers. Low-cost LBP festwere introduced to effec-
tively describle appearance features of expression ima§je@svel learning procedure,
Conditional Mutual Information based Boost (CMIB), was jposed for efficient learning.
Extensive experiments illustrated that LBP features dextfe for expression analysis,
and CMIB is superior to AdaBoost in training complexity ahassification performance.
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