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Abstract

Capturing and analyzing the correlations among facial parts are important
for interpreting facial behaviors precisely. In this paper, we exploit Canoni-
cal Correlation Analysis (CCA) to model the correlations of facial parts for
facial expression analysis. We propose a Matrix-based Canonical Correlation
Analysis (MCCA) for better correlation analysis on 2D image or matrix data
in general. Extensive experiments have shown that compared to the tradi-
tional CCA, MCCA models more accurately correlations among image data
with more compact representation using much fewer canonical factors.

1 Introduction
Automatic facial expression analysis has attracted much attention in recent years [13].
As facial muscles are contracted in unison to display expressions, different facial parts
have strong correlations. Capturing and analyzing the correlations among facial parts
are important for interpreting facial expressions precisely. Most of the existing work on
facial expression analysis [4, 14, 2, 11] did not explicitly model the correlations between
facial parts. In this paper, we employ Canonical Correlation Analysis (CCA) (Section
2), a statistical technique that is well suited for relating two sets of signals, to model
correlations of facial parts for facial expression analysis.

CCA was developed [8] for measuring linear relationships between two vector vari-
ables. It finds pairs of base vectors (i.e., canonical factors) for two variables such that
the correlations between the projections of the variables onto these canonical factors
are mutually maximized. Recently CCA has been applied to computer vision problems
[1, 12, 7, 10, 5]. Borga [1] adopted CCA to find corresponding points in stereo images.
Melzer et al.[12] applied CCA to model the relation between an object’s poses with raw
brightness images for pose estimation. Like Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), CCA also reduces the dimensionality of the origi-
nal variables, since only a few factor pairs are normally needed to represent the relevant
information. However, they serve different purposes: whilst PCA aims to minimize the re-
construction error and LDA derives a discriminant function that maximizes between-class
scatter and minimize within-class scatter, CCA seeks directions for two sets of variables
to maximize their correlations, so it is better suited for regression tasks. It has been shown
that CCA outperforms PCA for regression tasks [12]. Recently Donner et al.[5] presented
a fast Active Appearance Model search algorithm, which uses reduce-rank regression es-
timates obtained by CCA, instead of standard linear least-square regression estimates.



In the existing work, when applying CCA to image data, the original two-dimensional
images have to be reshaped into one-dimensional vectors, as the traditional CCA is based
on the vector-space model. However, this matrix-to-vector operation leads to two main
problems. Firstly, the intrinsic 2D structure of image matrices is removed, so the spatial
information stored therein is discarded. CCA based on these vectors can not fully capture
correlations among the original 2D image data. Secondly, each image sample is modeled
as a high-dimensional vector so that a large number of training samples are needed to yield
a reliable estimation of the underlying data distribution. However, in reality, very limited
number of training data are usually available. Actually these problems are shared by other
subspace methods such as PCA and LDA. Recently some methods have been proposed to
extend these vector-based methods for 2D matrices or high-order tensors [16, 17, 3, 15].
However, all these existing matrix-based methods were developed for learning in one set
of variables, and not suited for measuring relationships between two set of variables.

To address these problems, we introduce a novel Matrix-based Canonical Correlation
Analysis (MCCA) for better correlation analysis of 2D image or matrix data in general
(Section 3). MCCA takes a 2D matrix based data representation rather than the 1D vector
based representation in classical CCA. So the collection of data is represented as a set of
matrices, instead of a single large matrix. MCCA seeks canonical factors in two dimen-
sions to maximize the correlations between two sets of matrices. Unlike classical CCA,
there is no closed-form solution for the optimization problem in MCCA. Instead, we pro-
pose an iterative solution with a convergence proof. We evaluate the proposed MCCA
in capturing correlations of facial parts for facial expression analysis (Section 4). Ex-
perimental results demonstrate that MCCA can better measure correlations in 2D image
data, providing superior performance in regression and recognition tasks, whilst requiring
much fewer canonical factors. We notice that more recently Zou et al.[18] introduced a
2DCCA by simply replacing the image vector with image matrix in computing the vari-
ance matrices. Their approach is different to ours both in concept and algorithmic design;
moreover, they addressed the correlations between image sets and their label matrices,
instead of two sets of images.

2 Canonical Correlation Analysis
Given two zero-mean random variables x ∈ Rm and y ∈ Rn, CCA finds pairs of directions
wx and wy that maximize the correlation between the projections x = wT

x x and y = wT
y y

(x and y are called canonical variates). More formally, CCA maximizes the function:

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyT wy]√

E[wT
x xxT wx]E[wT

y yyT wy]
=

wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

(1)

where Cxx ∈ Rm×m and Cyy ∈ Rn×n are the within-set covariance matrices of x and y,
respectively, while Cxy ∈ Rm×n denotes their between-sets covariance matrix. A num-
ber of at most k = min(m,n) canonical factor pairs 〈wi

x,wi
y〉, i = 1, . . . ,k can be ob-

tained by successively solving argmaxwi
x,wi

y
{ρ} subject to ρ(w j

x,wi
x) = ρ(w j

y,wi
y) = 0

for j = 1, . . . , i−1, i.e., the next pair of 〈wx,wy〉 are orthogonal to the previous ones.
The maximization problem can be solved by setting the derivatives of Eqn. (1), with



respect to wx and wy, equal to zero, resulting in the eigenvalue equations as:
{

C−1
xx CxyC−1

yy Cyxwx = ρ2wx

C−1
yy CyxC−1

xx Cxywy = ρ2wy
(2)

Matrix inversions need to be performed in Eqn. (2), leading to numerical instability if
Cxx and Cyy are rank deficient. Alternatively, wx and wy can be obtained by computing
principal angles, as CCA is the statistical interpretation of principal angles between two
linear subspace [6] (see [10] for details).

3 Matrix-based Canonical Correlation Analysis
We present an approach to perform canonical correlation analysis on 2-dimensional im-
ages or matrices in general. Given two matrix variables A ∈ Rm×n and B ∈ R j×k (we as-
sume the variables are both zero-mean), MCCA finds pairs of directions va ∈Rm, wa ∈Rn,
vb ∈ R j and wb ∈ Rk that maximize the correlation between the projections a = vT

a Awa
and b = vT

b Bwb. Mathematically, we can formulate this as the following maximization
problem: find optimal va, wa, vb and wb that maximize

ρ =
E[ab]√

E[a2]E[b2]
=

E[vT
a AwawT

b BT vb]√
E[vT

a AwawT
a AT va]E[vT

b BwbwT
b BT vb]

(3)

Here va (vb) and wa (wb) are canonical factors in two dimensions, acting as a two-sided
linear transformation on the data in matrix form. To our knowledge, there is no closed-
form solution for the maximization problem in Eqn. (3). A key observation, which leads
to an iterative algorithm for the computation of va, wa, vb and wb, is stated in the following
Lemma:

Lemma 1 Let va, wa, vb and wb be the optimal solution to the maximization problem in
Eqn. (3), then
(1) Given wa and wb, va and vb can be obtained as canonical factors of two variables
a′ ∈ Rm and b′ ∈ R j, where a′ = Awa and b′ = Bwb.
(2) Given va and vb, wa and wb can be obtained as canonical factors of two variables
a′′ ∈ Rn and b′′ ∈ Rk, where a′′ = AT va and b′′ = BT vb.

Proof (1) va, wa, vb and wb maximize Eqn. (3), which can be rewritten as

ρ =
E[vT

a a′b′T vb]√
E[vT

a a′a′T va]E[vT
b b′b′T vb]

(4)

where a′ = Awa and b′ = Bwb. Hence, given wa and wb, the maximum of Eqn. (4)
is achieved by solving canonical correlation analysis on the variables a′ and b′ (by the
definition of CCA in Eqn. (1)). So va and vb can be obtained as canonical factors of a′
and b′.

(2) Similarly, Eqn. (3) can also be rewritten as

ρ =
E[wT

a a′′b′′T wb]√
E[wT

a a′′a′′T wa]E[wT
b b′′b′′T wb]

(5)



where a′′ = AT va and b′′ = BT vb. Hence, given va and vb, the maximum of Eqn. (5) is
achieved by solving canonical correlation analysis on the variables a′′ and b′′. So wa and
wb can be obtained as canonical factors of a′′ and b′′. This completes the proof of the
lemma.

By the above Lemma, we present an iterative procedure for computing va, wa, vb and wb
as follows: given the initial choice of wa and wb, we can compute va and vb by computing
canonical factors of a′ and b′; with the computed va and vb (corresponding to the largest
canonical correlation), we can then compute wa and wb by computing canonical factors
of a′′ and b′′, and wa and wb (corresponding to the largest canonical correlation) will be
used in next iteration. The procedure can be repeated until convergence. In this way, a
number of at most q = min(m, j) left-side canonical factor pairs 〈v1

a,v1
b〉, . . . ,〈vq

a,vq
b〉 and

a number of at most p = min(n,k) right-side canonical factor pairs 〈w1
a,w1

b〉, . . . ,〈wp
a ,wp

b〉
can be obtained. The pseudo-code of the above iterative procedure is given in Algorithm
1, where CCA(a,b) computes the canonical factors and canonical correlations of the
variables a and b.

Algorithm 1: MCCA

Obtain initial choice w(0)
a and w(0)

b for wa and wb, and set ρ(0)←−1 and i← 0 ;1

repeat2

i← i+1;3

(vs
a,vs

b,ρ
s)← CCA(A∗w(i−1)

a ,B∗w(i−1)
b );4

/* s = 1, . . . ,q */

v(i)
a ← v1

a, v(i)
b ← v1

b, ρ(i)← ρ1 ;5

(wt
a,wt

b,ρ
t)← CCA(AT ∗v(i)

a ,BT ∗v(i)
b );6

/* t = 1, . . . , p */

w(i)
a ← w1

a, w(i)
b ← w1

b, ρ(i)← ρ1 ;7

until ρ(i)−ρ(i−1) < ε;8

Va← [v1
a, . . . ,v

q
a], Vb← [v1

b, . . . ,v
q
b] ;9

Wa← [w1
a, . . . ,w

p
a ], Wb← [w1

b, . . . ,w
p
b ] ;10

3.1 Proof of Convergence
The convergence of MCCA follows, since correlation coefficient ρ is bounded between
-1 and 1 from its definition, as stated in the following theorem:

Theorem 2 The MCCA algorithm monotonically non-decreases the value of correlation
coefficient ρ , hence it converges in the limit.

Proof Given w(i−1)
a , w(i−1)

b and ρ(i−1) obtained in Line 7, CCA(A∗w(i−1)
a ,B∗w(i−1)

b ) in
Line 4 finds optimal va and vb that maximize

ρ =
E[ab]√

E[a2]E[b2]
=

E[vT
a Aw(i−1)

a w(i−1)
b

T
BT vb]√

E[vT
a Aw(i−1)

a w(i−1)
a

T
AT va]E[vT

b Bw(i−1)
b w(i−1)

b

T
BT vb]

(6)



Apparently, the value of ρ(i−1) is derived as
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b
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b
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b ]
(7)

which is less or equal to the maximized canonical correlation that CCA(A ∗w(i−1)
a ,B ∗

w(i−1)
b ) finds. so the derived ρ(i) in Line 5 is no less than ρ(i−1). With regard to the first

iteration, given any initial choice w(0)
a and w(0)

b , the canonical correlation ρ(1) derived by

CCA(A∗w(0)
a ,B∗w(0)

b ) is no less than -1 (ρ(0)). Therefore, the update of ρ in Line 5 do
not decrease its value, since the computed ρ is locally optimal.

Similarly, given v(i)
a , v(i)

b and ρ(i) obtained in Line 5, CCA(AT ∗v(i)
a ,BT ∗v(i)

b ) in Line
6 finds optimal wa and wb that maximize
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=
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Apparently, the value of ρ(i) in Line 5 is derived as

ρ(i) =
E[ab]√

E[a2]E[b2]
=

E[v(i)
a

T
Aw(i−1)

a w(i−1)
b

T
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which is less or equal to the maximized canonical correlation that CCA(AT ∗ v(i)
a ,BT ∗

v(i)
b ) finds. So the update of ρ in Line 7 do not decrease its value too. Therefore, the

MCCA optimization process monotonically non-decreases the ρ value, and converges in
the limit. This completes the proof of the theorem.

The convergence of the MCCA algorithm was also confirmed experimentally. We show
some examples of iterative learning in Fig. 1 and Fig. 2, where each example is for the
learning on a different training set. We can observe that the value of ρ becomes stable
after at most 20-30 iterations. We also found that any variation on the initial choice of
w(0)

a and w(0)
b has almost no effect on convergence (as observed in Fig. 2). The fast and

stable convergence keeps the training cost low.

3.2 Effect of the Initial Choice w(0)
a and w(0)

b .
Theoretically, our solution to MCCA is only locally optimal. This solution depends on
the initial choice w(0)

a and w(0)
b . However, in practice this does not have any ill-effect.

We conducted extensive experiments using different choices for w(0)
a and w(0)

b , and found
that, for image datasets, MCCA always converges to a similar (if not identical) solution
regardless of the initial choice w(0)

a and w(0)
b .
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Figure 1: Convergence property of MCCA.
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Figure 2: Sensitivity of MCCA to the initial choice w0
a and w0

b: the ten solid curves
correspond to the ten runs with random initializations, and the dash curve corresponds to
w0

a = w0
b = (1,0, . . . ,0)T (the dash curve in the left side is identical with solid curves, so

is not visible).

We show two typical results in Fig. 2, where the horizontal axis is the number of iter-
ations and the vertical axis is the value of ρ . Each sub-figure is the results on a different
training set. We run MCCA with 10 randomly generated w(0)

a ’s and w(0)
b ’s, and another

initialization w(0)
a = w(0)

b = (1,0, . . . ,0)T . For the left side of Fig. 2, we can observe that
MCCA converges within two iterations for all eleven initial choices with the specified
threshold (ε = 10−5), and also converges to the same solution. In the right side of Fig. 2,
MCCA converges slower. For all different initial choices, MCCA converges within 20-
30 iterations with the threshold ε = 10−5, and converges to very similar solutions. The
difference between the values of final ρ is very small (< 1.6×10−4). These experiments
demonstrate that, for image datasets, MCCA always converges to a similar (if not iden-
tical) solution regardless of the initial choice w(0)

a and w(0)
b . We used the initial choice

w(0)
a = w(0)

b = (1,0, . . . ,0)T in our experiments.

4 Experiments
As a case study, we investigate correlations between the mouth part (Mouth) and the
right eye part (Eye) (as shown in Fig. 3). These two parts have strong and a range of
correlations corresponding to facial expressions. We conducted experiments on the Cohn-
Kanade database [9] and face expression image sequences we captured. We manually
normalized the faces based on three feature points, centers of the two eyes and the mouth,
using affine transformation. In the normalized facial images (110×150 pixels), the mouth
part is 53×68 pixels, and the eye part is 45×51 pixels.



Figure 3: A case study on correlations between the mouth and the right eye facial parts.

4.1 Facial Parts Synthesis
We wish to reconstruct (synthesize) Mouth from Eye or vice versa using MCCA based
regression. Specifically, to reconstruct image B from image A, we first employ MCCA
to establish their relationship, finding optimal projection directions in the sense of cor-
relation, and then map A to the leading canonical variates by discarding directions with
low canonical correlation. Finally we perform regression of B by taking these leading
canonical variates of A. The procedure of synthesis is as follows.

1. Compute the leading factor pairs Va,Wa,Vb,Wb from N pairs of samples A =
{A1,A2, . . . ,AN} and B = {B1,B2, . . . ,BN}.

2. Map Ai (i = 1, . . . ,N) to the reduced correlation space Ãi = VT
a AiWa.

3. Reshape 2D matrices Ãi and Bi to 1D vectors ãi and bi, and form data matrices
Ã = [ã1, . . . , ãN ] and B = [b1, . . . ,bN ]; then compute the regression matrix R =
(ÃT )−1BT .

4. Given a new input Anew, the corresponding Bnew is reconstructed by:

Ãnew = VT
a AnewWa, Ãnew→ ãnew (10)

bnew = RT ãnew, bnew→ Bnew (11)

Here Ãnew → ãnew represents reshaping 2D matrix Ãnew to 1D vector ãnew, and bnew →
Bnew is reshaping 1D vector bnew to 2D matrix Bnew. This reconstruction procedure is not
limited to facial parts but can also be generally applied to other types of image synthesis.

We selected more than 10 subjects from the Cohn-Kanade database, each of which has
around 70∼140 images of different facial expressions, in addition to the image sequences
we captured. For the image set of each subject, we randomly sampled one tenth of the im-
ages as the testing set, and the remaining images as the training set. We applied MCCA,
CCA, and the standard linear least-squares regression (SR) approach to synthesize Mouth
from Eye and vice versa on the testing set. We used 10 randomly selected training/testing
combinations for reporting reconstruction errors. We observe that MCCA performs better
than CCA and SR in reconstructing one facial part from another. Moreover, MCCA re-
quires much fewer canonical factors to obtain better reconstruction results. We report the
reconstruction results for six random selected subjects in Table 1, where the optimal aver-
age pixel errors (with standard deviation) and the corresponding dimensions of canonical
factors used are reported. To clearly compare the three methods, we plot bar graphs of
average pixel errors and the dimensions of the canonical factors used in MCCA/CCA
in Fig. 4. Some reconstruction examples are shown in Fig. 5 (A supplementary video
demonstration is available at http://www.dcs.qmul.ac.uk/∼cfshan/research/cca.html).



Subject Algorithm Eye→Mouth Mouth→ Eye
Pixel Errors Dims Pixel Errors Dims

(1) 2DCCA 11.2±2.0 11*6 8.8±1.2 2*23
CCA 16.7±4.4 139 13.1±4.0 139
SR 17.3±3.5 - 14.7±4.8 -

(2) 2DCCA 8.5±2.5 9*6 8.4±1.8 5*10
CCA 13.0±6.0 119 10.7±3.6 119
SR 12.4±5.3 - 10.7±3.2 -

(3) 2DCCA 13.4±5.5 15*3 10.0±3.3 28*1
CCA 16.2±8.8 96 11.6±5.9 96
SR 16.1±8.8 - 12.0±6.5 -

(4) 2DCCA 16.3±5.0 39*1 19.5±6.0 17*3
CCA 24.5±9.8 96 25.4±18.3 96
SR 23.7±7.6 - 26.1±18.8 -

(5) 2DCCA 9.9±1.8 14*2 10.5±2.5 22*2
CCA 12.9±4.4 85 11.0±3.1 85
SR 14.2±4.3 - 11.0±2.9 -

(6) 2DCCA 13.8±2.4 28*1 12.6±2.9 18*2
CCA 17.2±8.5 77 15.7±6.2 77
SR 15.1±4.9 - 13.9±6.1 -

Table 1: The reconstruction results for six subjects: the optimal average pixel errors
(with standard deviation) of the three algorithms, and the corresponding dimensions of
canonical factors used in MCCA and CCA.
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Figure 4: (left) Reconstruction errors of the three algorithms; (right) Dimensions of
canonical factors used in MCCA and CCA. (Two groups bars for each subject: the left is
’Eye→Mouth’ and the right is ’Mouth→ Eye’.)
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Figure 5: Some examples of facial parts synthesis using MCCA, CCA, and SR.



It is compelling that MCCA outperforms CCA and SR consistently in facial parts
synthesis. Crucially, as observed in Fig. 4, the dimension of canonical factors needed
in MCCA is always less than 50% of that of CCA. So MCCA can describe correlations
among facial parts with better accuracy using much less canonical factors. The superior
performance of MCCA credits to its ability to preserve the intrinsic 2D spatial structure
and capture the correlation store therein, and its robustness with limited number of train-
ing data. The strength of MCCA is also reflected by the average standard deviation. As
shown in Table 1, MCCA always produces the smallest deviation, which suggests that
MCCA is much more robust. Compared to SR, where the full-rank regression matrix
has to be estimated from a limited number of noisy training images, the MCCA based
reduced-rank regression provides more reliable parameter estimates by taking advantage
of correlations between the image sets, leading to better accuracy and robustness.

4.2 Facial Expression Recognition
We also conducted facial expression recognition experiments based on correlations be-
tween Mouth and Eye. The basic idea is that these two parts have distinctive correla-
tions for different expressions, so the correlations modeled by MCCA should provide
discriminant information for expression classification. Given image sets of different fa-
cial expressions I1, . . . , Ic (c is the number of classes), we derive the leading factor pairs
(Vi

a,Wi
a,Vi

b,W
i
b), i = 1 . . .c of parts Mouth (denoted by B) and Eye (denoted by A) for

each class using MCCA. We then compute the regression parameters for reconstructing B
from A in the reduced correlation space in the training set. Given a test image Inew of an
unknown class, we map its Eye Anew and Mouth Bnew to the reduced correlation space of
class i as Ãi = (Vi

a)T AnewWi
a and B̃i = (Vi

b)
T BnewWi

b, and then calculate the error err(i)
of reconstructing B̃i from Ãi with the regression parameters of this correlation space. Af-
ter computing the reconstruction error of each class err(i), i = 1 . . .c, we classify the test
image as the class having the smallest reconstruction error

î = argmin
i

err(i) (12)

For our experiments, we selected 732 image of basic emotions (Anger, Disgust, Joy,
and Surprise) from the Cohn-Kanade database. The sequences come from 96 subjects,
with 1 to 4 emotions per subject. We first considered a 2-class (Joy and Surprise) recog-
nition problem, then included Anger for a 3-class problem, and finally considered four
expressions for classification (incrementally making the recognition task harder). To eval-
uate generalization performance, a 10-fold Cross-Validation testing scheme was adopted.
The recognition results using MCCA and CCA are reported in Table 2. We can observe
that expressions can be better classified using MCCA, demonstrating again that MCCA
outperform CCA in capturing correlations in facial parts. It is also evident that by model-
ing correlations between only two facial parts, the recognition accuracy degrades quickly
for multi-class recognition. By considering correlations of multiple facial parts, we should
be able to improve these recognition results.

2-Class 3-Class 4-Class
MCCA 96.1±3.6 80.8±6.4 67.9±4.8
CCA 63.2±10.5 55.6±7.8 48.7±6.7

Table 2: Facial expression recognition based on correlations of Mouth and Eye modeled
by MCCA and CCA.



5 Conclusions
Experimental results have shown that the proposed MCCA can better model correlations
among image data with much fewer canonical factors. The underlying reason is that
MCCA is able to preserve and utilize the intrinsic 2D spatial structure in image data.
MCCA is still a linear technique, however, so it cannot effectively deal with higher-order
statistics among image data. Our future work will focus on formulating nonlinear MCCA.
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