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Abstract

We address the problem of interpreting visual surveil-
lance data by learning appropriate spatio-temporal sub-
spaces of active image regions caused by scene activities.
We focus on identifying regions of sustained change for
recognising key stages of a visual behaviour. Our behaviour
representation is based on the asynchrony or delay pat-
terns of occurrence among local events which need not
be spatially connected. We use an automatic Normalised
Cut structure discovery algorithm with a hybrid similar-
ity criteria for simultaneously identifying relevant spatio-
temporal subspaces and clustering similar behaviour pat-
terns in those subspaces. We compare the automatically
discovered classes with conceptual classes of behaviours in
a semi-constrained “Shopping” scenario.

1. Introduction

Event and behaviour interpretation play a crucial role in
automatic visual surveillance. The problem has been com-
monly addressed by monitoring temporal changes in states
of variables or objects in the scene using the Automata, Hid-
den Markov Models or Bayesian Belief Networks. How-
ever, the states of these variables are often hidden. Further-
more, visual ambiguities give rise to many plausible object
states. The ambiguities can be partially addressed by learn-
ing prior knowledge to provide contextual information of
the scene [1] or by propagating a probability density of be-
lief states in a user-defined graph over time [9].

However, what is missing is that instead of using tempo-
ral information to disambiguate object dynamics, temporal
information should be directly used in the process of bind-
ing events occurring in local image regions into meaningful
scene behaviours. In particular, asynchrony, defined as the
delay patterns in which activities occur across pixels or im-
age regions, can be used to infer the correlation between
the events comprising a behaviour [11]. Spiking Neurons,

a relatively recent development in machine learning [4], ex-
plicitly learn the delays which underpin our notion of asyn-
chrony in automatic behaviour recognition. However, the
training algorithms for spiking neurons are similar to vector
quantisation and have not proved to be adequate for classi-
fying complex spatio-temporal patterns of visual events in
our experiments. To address this, we further adopt an au-
tomatic structure discovery approach using spectral graph
theory and extend the automatic NCut technique to learn in-
trinsic classes in spatio-temporal subspaces of asynchrony.

In Section 2, we describe the use of sustained change as
a means of detecting active regions and the use of ‘delays’
in the activation of the regions as a spatio-temporal asyn-
chrony pattern for differentiating events. In Section 3, we
extend the NCut automatic structure discovery and cluster-
ing process [6] to the problem of finding effective classes
of spatio-temporal subspace and event categories. We also
train RBF Spiking Neurons [4] for the classification of each
spatio-temporal category. We provide experimental results
on a “Shopping” scenario where people enter, browse a se-
lection of soft-drink cans and make a purchase or leave in
Section 4. We conclude in Section 5.

2. Representing Spatio-Temporal Activity

Reliable tracking of objects requires prior knowledge in
the form of shape or appearance models [3]. Object dynam-
ics can be retrieved by finding the correlation of detected
objects across frames. However, visual ambiguities, mutual
occlusion, non-rigid deformations and in-depth rotation of-
ten complicate the process. While further temporal reason-
ing can partially help in resolving the ambiguity problem,
prior knowledge can be directly encoded at a much lower-
level to first determine interesting occurrences of sustained
change and then to learn both the image-region subspaces
of change and the temporal characteristics of these changes.
The emphasis is shifted from recognising object dynamics,
in relation to the overall trajectory, to correlating sparse lo-
cal events together to identify behaviours.
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2.1. Activity Representation

The complexity of analysing scenes at high spatial reso-
lution becomes prohibitive for processes attempting to find
pixel or region-level correspondences such as computing
optical flow. High resolution only provides finer detail
for appearance analysis while a low resolution retains the
structure of activity [8]. Noise is also more prominent at
high rather than low resolutions, which is specifically true
for background Gaussian mixture models. To detect scene
activity, we adopt a probabilistic pixel-based background
modelling technique based on temporal reasoning of pre-
dominant colour clusters over long-term time-scale [5]. Af-
ter the background subtraction process, we adopt a simple
thresholded voting scheme to both remove noise and reduce
the dimensionality of the data to a spatial resolution ade-
quate for identifying different events. We decompose the
image space into a grid of20× 15 cells and the cell-regions
are activated when the number of active pixels in a cell ex-
ceed a 40% threshold for a reasonable detection confidence.

Instantaneous activation of the cells can be caused by the
movement of foreground objects in the scene. Correlating
the activation of cells across time could yield the dynamics
and trajectory of the object. In this paper, we are interested
in detecting occurrences of sustained local change in the
scene. Sustained change may indicate an activity which is
dependent on the propositional semantics of the particular
region such as an interaction of a foreground object with a
background feature or an interaction between more than one
foreground object. We modify the Motion History Image
[2] representation to include the capability to accumulate
evidence in the presence of change in addition to the origi-
nal decay in the absence of change.This is in order to detect
sustained change. Given the functionAx,y(t) indicating the
activation of cell (x, y) at time t, the Accumulative MHI
(AMHI) and Sustained Change (SC) function are given as,

AMHIx,y(t) =


0 if t = 0,

min[α, AMHIx,y(t− 1) + 1] if Ax,y(t) = 1,

max[0,AMHIx,y(t− 1)− 1] otherwise
(1)

SCx,y(t) = {

{
1 if AMHIx,y(t) > thresh

0 otherwise
(2)

whereα is the maximum value for the AHMI representation
andthresh is a threshold above which accumulated change
is considered sustained. These two parameters are control
the time-scale over which change is considered sustained.

We define asynchrony as the delay pattern of the occur-
rence of local cell-activity events. We propose that the order
and delay of the local events can be used as a binding cri-
teria to correlate the events into a higher-order structure as
a behaviour. As suggested in the psychophysical literature

[11], asynchrony is only used to bind events over a fixed
time-window to reduce the load of correlating spatially di-
verse events. Hence, we define the delay-based asynchrony
representation of spatio-temporal events for cellx, y at time
t with a temporal window of sizew as,

synx,y(t) =
{

t−mx,y(t), if t−mx,y(t) < w
∞, otherwise

(3)

wherem(x, y, t) is the last activation time of cell (x, y)
from timet, i.e. m(x, y, t) = argmaxi(SC(x, y, i) = 1).

Figure 1. Examples from the “Shopping” sce-
nario and corresponding asynchrony of sus-
tained event patterns. Absence of events is
denoted by black squares while relative de-
lays of the occurrence of region-events are
encoded from gray (least recent) to white
(most recent).

2.2. Spatio-temporal Activity Similarity Measure

Spatio-temporal asynchrony patterns encode the corre-
lation of different region-level events and bind them into a
higher-order structure. However, asynchrony patterns are
only relevant in relation to the distribution of other pat-
terns in the scene. Frequently re-occurring patterns have a
higher probability of having some semantical meaning and
can be considered as important behaviours instead of spuri-
ous noise. Hence, we investigate the structure of the asyn-
chrony patterns in the context in which they occur.

Conventional clustering techniques such as Vector Quan-
tisation,k-means, Expectation Maximisation and Entropy
Minimisation work on feature vectors of fixed length, treat-
ing all features, here delays, as equally valid. The feature



vectors of spatio-temporal asynchrony delay patterns con-
tain (in Equation (3)) a special token∞ for the absence
of activity in spatial cells, corresponding to the absence of
correlation for these cells. Absent delays may be replaced
by white noise but a high ratio of absent to available de-
lays would result in more noise than usable information and
greatly increase the difficulty of the learning process. It is
even likely that subspace clustering techniques like hierar-
chical PCA [7] can become confused.

We therefore adopt a similarity representation that can
cope with explicitly defined absent features in certain di-
mensions of asynchrony feature vectors and still retain
the correlation between two asynchrony patterns with mis-
matched dimensions. Using a structure discovery algorithm
on a similarity representation provides the additional ben-
efit that the similarity criteria affects the structure of the
discovered classes and can be made to emphasise certain
spatial or temporal characteristics more than others. The
asynchrony delay patterns possess both (a) a spatial compo-
nentspatialSimil in the dimensions which contain delays
and (b) a temporal componenttemporalSimil in the de-
lay values contained in those dimensions. However, two
different asynchrony patternssi and sj have a setdi,j of
common features, a setei,j of mismatched dimensions with
data only in one pattern and a setfi,j of common dimen-
sions with available delays. We define the temporal compo-
nent of the similarity criteria with an exponential function
to convert the root-mean-squared difference of the temporal
delay values into similarities for pairs of patterns for which
n(fi,j) > 0 (illustrated in Fig. 2(a)),

temporalSimil(si, sj) =

{
0 if n(fi,j) = 0,

exp(−ATD(si,sj)
2

2σ2 ) otherwise
(4)

whereσ is the standard deviation of the Average Temporal
Distance ATD(si, sj) which is defined as,

ATD(si, sj) =

√∑
k∈fi,j

(sk
i − sk

j )2

n(fi,j)
(5)

We define the spatial component of the similarity crite-
ria as the ratio of the number of common dimensions with
available delays to the total number of dimensions with at
least a temporal delay present in either pattern as in Equa-
tion (6). However, owing to the large variations in the spa-
tial regions occupied by an object, the spatial component
may not be strong enough to provide a clear structure for
structure discovery. The joint spatio-temporal similarity, il-
lustrated in Fig. 2(b), of the two previous components re-
sults in a sparse similarity structure and a degenerate parti-
tioning into small unitary sets. We apply a multiplication
and thresholding functionspatialSimil′ to increase the

spatial similarity (Fig. 2(c)) and the joint spatio-temporal
similarity (Fig. 2(d)), for a coherent similarity structure,

spatialSimil(si, sj) =
n(fi,j)

n(fi,j ∪ ei,j)
(6)

spatialSimil′(si, sj) = (min(spatialSimil(si, sj)∗ef, 1))2

(7)
whereef is the enhancement factor which we set to 4.

The affinity matrixW comprising the similaritywi,j of
asynchrony patterni with another patternj is defined by
(illustrated in Fig 2(f)),

wi,j = temporalSimil(si, sj)× spatialSimil′(si, sj)
(8)
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Figure 2. From top to bottom: (a) The tem-
poral component of the pairwise similarity
of asynchrony patterns, (b) the correspond-
ing combined spatio-temporal affinity matrix
with weak structure, (c) the enhanced spa-
tial component spatialSimil′, and (d) the cor-
responding more coherent spatio-temporal
affinity matrix. Intensity encodes similarity.

3. Binding Structure of Synchronised Events

Hierarchical dataset partitioning techniques related to
Spectral Graph Theory have been reported to yield good
results on image segmentation tasks [10]. The clustering
process exploits the eigen-decomposition of the pairwise
affinity (similarity) matrix of elements to split their mem-
bership into clusters with very high between-cluster simi-
larity and very high intra-cluster dissimilarity, which is in



essence similar to LDA. The Normalised Cut algorithm of
Shi-Malik [10] has been mathematically proven to yield
such a result when the elements of the second generalised
eigenvector of the affinity matrix are integer-valued. How-
ever, for computational tractability, the constraint must be
relaxed to allow for real values. Ng and Gong [6] used a cost
function to separately re-evaluate the between-cluster and
intra-cluster similarities in terms of the free parameter of
the Shi and Malik NCut algorithm. This has been shown to
successfully perform automatic model order selection on a
dataset of warp-free trajectories. In this section, we describe
the automatic NCut structure discovery algorithm and pro-
vide a brief overview of RBF Spiking Neurons.

3.1. Automatic Normalised Cut

Formulating the discovery of the binding structure of
temporal events under spectral graph theory, the asynchrony
patterns are considered as nodes in a graph while the affin-
ity or similarity between the asynchrony patterns are con-
sidered as connecting edges. The term ‘binding’ is used
for both the correlation of multiple asynchrony patterns
together and the correlation which bind the region-level
events into an asynchrony pattern. The two concepts are
linked as finding the groups of asynchrony patterns also re-
veal which correlations of region-level events are important
in the scene context. The normalised cut [10] of a graph is
defined as the partitioning from the asynchrony-distribution
graph into two sub-graphs which minimise the sum of bro-
ken edge connections relative to the sum of the edge con-
nections from the subgraph to the whole graph.

Shi and Malik [10] have proven that thresholding the
second generalised eigenvector of the affinity matrix(D −
W)x = λDy results in a minimal NCut partitioning. The
asynchrony-distribution graph is recursively partitioned into
binary sets until the NCut value exceeds a certain threshold
n or the second generalised eigen-vector becomes unstable
with continuous values which are hard to threshold. Ng and
Gong [6] have formulated a cost function which explicitly
re-evaluates the trade-off between high intra-cluster simi-
larity (I(n)) and low between-cluster similarity(B(n)) for
the whole hierarchical partitioning instead of just one binary
partitioning step as in the case of Shi and Malik,

f(n) = −ln(I(n)) + ln(B(n)) (9)

where root-mean-square functions for the intra-clusterI(n)
and between cluster affinitiesB(n) are computed from the
partitioning resulting from parametern. Minimising f(n)
partitions the asynchrony pattern distribution into intrinsic
binding sets which share common spatio-temporal correla-
tion. The minimisation is simplified as only discreet steps
in the thresholdn yields different partitioning solutions and
all solutions under the NCut framework can be explored.

3.2. Learning Classes with RBF Spiking Neurons

Having discovered the intrinsic classes of asynchrony
patterns in the context of scene activities, the binding of
the region-level events into behaviours can be learned by a
network of RBF-like Spiking Neurons [4]. The network of
Spiking Neurons use the same basic representation of time-
delays as our asynchrony patterns to encode information.
More specifically, the information is encoded as the relative
delays in the firing time of spikes from an input layer [4].
Given a asynchrony patternsi = {s1

i , s
2
i , ..., s

p
i }, a series of

spikes, called a spike train, is generated at the input layer
according tozi = {maxt− z1

i ,maxt− z2
i , ...,maxt− zp

i }
wheremaxt is the maximum firing-time and thus the max-
imum delay allowed by the temporal-window used in Sec-
tion 2. The learning goal for the spiking network is to obtain
a further set of delays in the synapses connecting the in-
put neurons to an output neuron, which when added to the
firing-time of the input layer causes all the spikes to arrive
simultaneously to an output neuron. Thus trained synapses
learn the inverse of the asynchrony delay patterns. A simple
thresholded leaky integrate-and-fire mechanism on the po-
tentials of the synapses is enough to cause the output neu-
ron to fire. However, only the weight of the synapses can
normally be changed, not the delays. Thus the connection
from an input neuronix to an output neuronoy actually
consists of a set of synapses each with predefined delays
d1 = 1, d2 = 2, ..., dl = l and weights{w1, w2, ..., wl}.
The output potentialOp at timet of the output neuron con-
nected tou input neurons is given by,

Opy(t) =
u∑

x=1

l∑
c=1

wx,y
c · t− (zx + dx,y

c )
tp

exp(1− t− (zx + dx,y
c )

tp
)

(10)
where the constanttp = 3 for the shape of the output po-
tential function and the potentialOpy(t) is thresholded for
determining the firing time of the neuron (we used 1.0).

The RBF nature of spiking neurons is contained in the
synaptic potentials connecting the input to the output lay-
ers. The summation of the non-linear exponential functions
controlling the potentials across the delayed synapses from
an input to an output neuron results in a Gaussian response.
Thus the variance of asynchrony delays in each common
dimension is learned. The output neuron which fired the
earliest in response to an input spike pattern has the clos-
est stored pattern to the input pattern. Its weights are thus
adapted with a Hebbian learning rule to reinforce the simi-
larity of the asynchrony pattern to the pattern already stored
in the weights of the synapses while the weights of dissim-
ilar delays are reduced. The learning function is defined as
L(∆T ) = (1− b) · exp(−(∆t− c)2/β) whereb = −0.11,
β = 1.11, c = −2 and∆T = delay between the arrival of a
spike at the output neuron and its firing time [4]. For classi-



fication, the output neuron which fires the earliest has recog-
nised the input asynchrony pattern to belong to its class.

4. Experiments

In this section, we provide experimental results on a
“Shopping” sequence. The scenario occurs in a typical in-
door environment with an entrance on the left, a table with a
selection of soft-drink cans in the middle and a shopkeeper
on the right of the camera. Potential customers come in,
browse the selection of cans and at this point can leave,
pickup a can and pay for it, or pick up a can and leave.
The semi-unconstrained way in which the customers move
in the sequence have already caused trajectory analysis to
report very few usable classes [6]. We thus investigate how
spatio-temporal asynchrony analysis of the patterns of mo-
tion in occurrences of sustained change can extract impor-
tant cues about the instantaneous state of visual events and
their correlations that give rise to meaningful behaviours.
We have obtained 1039 asynchrony patterns of sustained
changed from the sequence of over 5000 frames.

We have manually organised the asynchrony patterns of
sustained change into three overall conceptual categories to
provide ground truth. The broad categories were aligned
on the spatial regions in which the events occurred, namely
(a) entrance at the door (b) can area (c) shopkeeper area.
We created further sub-categories depending on the spatio-
temporal characteristics as shown in Table 1. The criteria
of sustained change allowed the detection of occurrences of
people stopping to perform an action such as browsing fizzy
drinks or effecting a purchase with the shopkeeper.

The warp-free temporal trajectory data used by Ng and
Gong was well-structured from the pre-defined gesture cat-
egories and resulted in a nice binary hierarchical partition-
ing. However, the asynchrony patterns among temporal
behaviour addressed in this work depend on the spatio-
temporal characteristics of the activities in the scene. Al-
though the broad categories of interaction were pre-defined,
the order in which behaviour interactions were performed
and the personal idiosyncrasies were left to the performers.

We compare the correlation of the classes obtained from
the automatic NCut algorithm with the enhanced spatio-
temporal similarity to the conceptual categories in Table
2. We can see the discovered classes have been separated
mainly according to their physical location in the scene.
Further discrimination based on the temporal characteristics
is possible in the case of classes 1, 3 and 4. However, be-
cause some of these behaviours occur soon after each other,
the continuity caused the sub-categories to be merged into
the same class. The structure discovery also reserved a few
classes for noisy asynchrony patterns which are very differ-
ent from the others. We then use the automatic classes to
train a network of spiking neurons with an output neuron
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Figure 3. The average asynchrony classes
discovered in the “Shopping” scenario.

assigned to each class. We show the results of the classi-
fication of the asynchrony pattern dataset with the trained
spiking network in Table 3. The classification by the spik-
ing network is quite similar to the intrinsic classes discov-
ered by automatic normalised cut although the detectable
occurrences are less. Neuron 7 appears to be too broad
and merges many of the spatio-temporal asynchrony classes
with subtle differences. Please note that neuron 8-10 are not
shown as they have zero classification results.

5. Conclusions

In this work, we proposed a method for automatically
binding visual events into behaviours using spatio-temporal
asynchrony of sustained autonomous visual change. We
consider this technique to provide better cues for select-
ing more relevant events in a given scene context. This is
achieved without traditional manual labelling and hypothe-
ses. We further exploit the use of spatio-temporal asyn-
chrony to automatically analyse the correlation of relevant
events in order to model behaviour. In sparse to medium
busy scenes, all the regions of the scene will not show si-
multaneous activity and activity can be restricted to a small
spatio-temporal subspace. We therefore used the automatic
NCut clustering algorithm with a modified similarity crite-
ria to perform subspace clustering of spatio-temporal asyn-
chrony patterns from the “Shopping” sequence. We have
shown that ordered structures of “sustained activity” can be
discovered and learned by our model. Future work will be
on learning higher-order correlation of events into a tempo-
ral framework for behaviour interpretation.
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