
Tracking colour objects using adaptive mixture models

Stephen J. McKennaa ,*, Yogesh Rajab
�
, Shaogang Gongb

�
aDepartment

�
of Applied Computing, University of Dundee, Dundee DD1 4HN, UK

bDepartment
�

of Computer Science, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK

Received
�

6 October 1997; received in revised form 16 March 1998; accepted 26 March 1998

Abstract

The use of adaptive Gaussian mixtures to model the colour distributions of objects is described. These models are used to perform robust,
real-time tracking under varying illumination, viewing geometry and camera parameters. Observed log-likelihood measurements were used
to perform selective adaptation. � 1999 Elsevier Science B.V. All rights reserved.

Keywords: Real-time tracking; Colour model; Gaussian mixture model; Adaptive learning

1. Introduction

Colour
�

can provide an efficient visual cue for focus of
attenti� on, object tracking and recognition allowing real-time
perform� ance to be obtained using only modest hardware.
However, the apparent colour of an object depends upon
the
�

illumination conditions, the viewing geometry and the
camera� parameters, all of which can vary over time.
Approaches to colour constancy attempt to reconstruct the
incident light and adjust the observed reflectances accord-
ingly (e.g. Ref. [1]). In practice, these methods are only
applica� ble in highly constrained environments. In this
paper,� a statistical approach is adopted in which colour dis-
tributio
�

ns are modelled over time. These stochastic models
estimat	 e an object’s colour distribution on-line and adapt to
accomm� odate changes in the viewing conditions. They are
used
 to perform robust, real-time object tracking under
variation� s in illumination, viewing geometry and camera
parame� ters.

Swain
�

and Ballard [2] renewed interest in colour-based
recogn
 ition through their use of colour histograms for real-
time
�

matching. Kjeldson used Gaussian kernels to smooth
the
�

histograms [3]. These colour histogram methods can be
viewed� as simple, non-parametric forms of density esti-
mation� in colour space. They gave reasonable results only
becau
�

se the number of data points (pixels) was always high
and� because the colour space was coarsely quantised. In the
absen� ce of a sufficiently accurate model for apparent colour,
good� parametric models for density estimation cannot be

obta� ined. Instead, a semi-parametric approach has been
adopt� ed using Gaussian mixture models. Estimation is,
thus
�

, possible in a finely quantised colour space using rela-
tivel
�

y few data points without imposing an unrealistic para-
metric� form on the colour distribution. Gaussian mixture
models can also be viewed as a form of generalised radial
basi
�

s function network in which each Gaussian component
is
�

a basis function or ‘hidden’ unit. The component priors
can� be viewed as weights in an output layer.

The mixture models are adapted on-line using stochastic
updat
 e equations. It is this adaptation process which is the
main� focus of this paper. In order to boot-strap the tracker
for
�

object detection and re-initialisation after a tracking fail-
ure,
 a set of predetermined generic object colour models
which� perform reasonably in a wide range of illumination
condi� tions can be used. These are determined off-line using
an� iterative algorithm. Once an object is being tracked, the
model adapts and improves tracking performance by
becom
�

ing specific to the observed conditions.
Finite mixture models have also been discussed at length

els	 ewhere [4–10]. In particular, Priebe and Marchette [8]
descr
�

ibe an algorithm for recursive mixture density estima-
tion.
�

It was extended to model non-stationary data series
thr
�

ough the use of temporal windowing. Their algorithm
adds� new components dynamically when the mixture
mode� l fails to account well for a new data point. The
appro� ach adopted here differs in that the number of mixture
com� ponents is determined using a fixed data set. These
com� ponents’ parameters are then adapted on-line while
keepi
�

ng the number of components fixed.
Th

�
e remainder of this paper is organised as follows.
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Gaussian
�

mixtures for modelling objects’ colour distri-
butions

�
are described in Section 2. In Section 3, a method

for
�

adapting the mixture models over time is given. Section
4

�
describes selective adaptation. Experimental results and

conclusi� ons are given in Sections 5 and 6.

2. Colour mixture models

The
�

conditional density for a pixel, x� , belonging to an
object,! " , is modelled as a Gaussian mixture with m# com� -
ponent$ densities:
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Expectation-maximisation (EM) provides an effective max-
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O
-likelihood algorithm for fitting such a mixture to a
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[4,11,12]. The EM algorithm is
iterative with the mixture parameters being updated in
eachE iteration. Let T oldU
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monotonically increases the likelihood with each itera-

tion,
5

converging to a local maximum. The resulting mixture
model will depend on the number of components m# and; the
initial

O
choice of parameters for these components. Initially,

the
5

following simple procedure was used. A suitable value
for m# was1 chosen based upon visual inspection of the
object’! s colour distribution. The component means were
initialised to a random subset of the training data points.
All

x
priors were initialised to y z 1/m# and; the covariance

matrices were initialised to { I, where | was1 the Euclidean
distanc

P
e from the component’s mean to its nearest

neighbouring component’s mean. In practice, this initialisa-
tion
5

method invariably provided good performance for the
tracki
5

ng application described in this paper. Alternatively, a
const� ructive algorithm which uses cross-validation to auto-
matically select the number of components m# and; their
para$ meters has been used [13]. In this method, disjoint train-
ing
O

and validation sets are used. A single Gaussian is first fit
to
5

the training set. The number of components is then
increased by iterating the following steps: (1) the likelihood
of! the validation set given the current mixture model is
estE imated; (2) the component with the lowest responsibility
for
�

the training set is split into two separate components
with1 equal covariance matrices and principal axes equal to
the
5

original component’s principal axis; (3) the iterative EM
algo; rithm is run. These three steps are repeated until the
validat} ion likelihood is maximised or is considered to be
sufficiently~ large.

Most
�

colour cameras provide an RGB (red, green, blue)
sign~ al. In order to model objects’ colour distributions, the
RGB
�

signal is first transformed to make the intensity or
bri
�

ghtness explicit so that it can be discarded in order to
obta! in a high level of invariance to the intensity of ambient
illumi
O

nation. Here the HSI (hue, saturation, intensity) repre-
sent~ ation was used and colour distributions were modelled
in the two-dimensional hue-saturation space. Hue corre-
sponds~ to our intuitive notion of ‘colour’ whilst saturation
corr� esponds to our idea of ‘vividness’ or ‘purity’ of colour.
At
x

low saturation, measurements of hue become unreliable
and; are discarded. Likewise, pixels with very high intensity
are; discarded.

It
�

should be noted that the HSI system does not relate well
to
5

human vision. In particular, the usual definition of inten-
sity~ as (R � G

� �
B)/3

4
is at odds with our perception of

intensi
O

ty. However, this is not important for the tracking
appl; ication described here. If in other applications it was
deem
P

ed desirable to relate the colour models to human per-
cept� ion then perceptually based systems like CIE L*u� *v� *
and; CIE L*a� *b

�
* should be used instead of HSI.

Gau
�

ssian mixture models have been used to perform real-
time
5

object tracking given reasonably constrained illumina-
tion
5

conditions. The resulting tracking system is surpris-
ingly
O

robust under large rotations in depth, changes of
scale~ and partial occlusions [14,15]. However, in order to
cope� with large changes in illumination conditions in parti-
cula� r, an adaptive model is required.

3.
�

Adaptive colour mixture models

A
x

method is presented here for modelling colour
dynam
P

ically by updating a colour model based on the
changi� ng appearance of the object. Fig. 1 illustrates a colour
mixture model of a multi-coloured object adapting over
time
5

. While the components’ parameters are adapted over
time
5

, the number of components is fixed. The assumption
made here is that the number of components needed to
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accurat; ely model an object’s colour does not alter signifi-
cantly� with changing viewing conditions. However, the
parame$ ters of the model will definitely need to adapt. An
initial mixture model is obtained by running the EM algo-
rithm� discussed in the previous section. Each mixture com-
ponent$ then has an ‘initial’ parameter set (� 0

� , � 0
� , � 0

� ).
4

In
eachE subsequent frame, t� , a new set of pixels, X

Q (
R
t� )

�
, is sampled

from the object and can be used to update the mixture
model� 1. These colour pixel data are assumed to sample a
slowly~ varying non-stationary signal. Let � (

R
t� )

�
denote
P

the
sum~ of the posterior probabilities of the data in frame
t� ,� � (t� )
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used] for efficiency:
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The parameter L controls� the adaptivity of the model2
�
.

4.
�

Selective adaptation

An obvious problem with adapting a colour model during
tracki
5

ng is the lack of ground-truth. Any colour-based
tracker
5

can lose the object it is tracking due, for example,
to
5

occlusion. If such errors go undetected the colour model
will1 adapt to image regions which do not correspond to the
obje! ct. In order to alleviate this problem, observed log-
likel
�

ihood measurements were used to detect erroneous
frames. Colour data from these frames were not used to
adapt; the object’s colour model.

Th
�

e adaptive mixture model seeks to maximise the log-
likelihood of the colour data over time. The normalised log-
likelihood,  (

R
t� )

�
, of the data, X (

R
t� )

�
, observed from the object at

time
5

t� is given by:
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At each time frame, & (
R
t� )

�
is evaluated. If the tracker loses the

obje! ct there is often a sudden, large drop in its value. This
provi$ des a way to detect tracker failure. Adaptation is then
suspended~ until the object is again tracked with sufficiently
high

'
likelihood. A temporal filter was used to compute a

thr
5

eshold, T t� . Adaptation was only performed when ( (
R
t� )

� )
T t� . The median, * , and standard deviation, + , o f , were1
com� puted for the n- most� recent above-threshold frames,
whe1 re n- . L. The threshold was set to T / 0 1 k

2 3
, where

Fig. 1. A mixture model superimposed onto plots of a bottle’s colour distribution. Hue corresponds to angle and saturation to the distance from the centre.
4

Ellipses show the four Gaussian components. The leftmost plot shows the original mixture model. The remaining two plots show the model adapting to the
illumination

5
and viewing conditions.

1 Througho
6

ut this paper, superscript (t) denotes a quantity based only on
data from frame t. Subscripts denote recursive estimates.

2
7

Setting L 8 t and ignoring terms based on frame t 9 L : 1 gives a
stochastic algorithm for estimating a Gaussian mixture for a stationary
signal [4,16].
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k
2

was1 a constant. In all the experiments described here, k
2 <

1.5, n- = 2f
>

and; L ? 6
@

f
>
, where f

>
denotes

P
the frame rate in Hz.

5.
A

Experiments

The adaptive mixture modelling described in the previous
two

5
sections was integrated with an existing colour-based

trackin
5

g system [14,15] implemented on a standard
200 MHz Pentium PC platform with a Matrox Meteor fra-
megrabb� er. This system performs tracking at approximately
f

> B
15 Hz. The tracker estimates the centroid, height and

width1 of the object. New samples of data for adaptation are
gathereC d from a region of appropriate aspect ratio centred on
the

5
estimated object centroid. It is assumed that these data

form
�

a representative sample of the object’s colours. This
will1 hold for a large class of objects.

Figs. 2 and 3 illustrate the use of the mixture model for
face

�
tracking and the advantage of an adaptive model over a

non-aD daptive one. In this sequence, the illumination condi-
tions

5
coupled with the camera’s auto-iris mechanism

resulted in large changes in the apparent colour of the
face as the person approached the window. Towards the
endE of the sequence the face became very dark, making
hue

'
and saturation measurements unreliable. In Fig. 2, a

non-adaptive model was trained on the first image of the
seque~ nce and used to track throughout. It was unable to cope
with1 the varying conditions and failure eventually occurred.

In
�

Fig. 3, the model was allowed to adapt and successfully
maintained lock on the face.

Fig.
E

4 illustrates the advantage of selecting when to adapt.
Th
�

e person moved through challenging tracking conditions,
befor
�

e approaching the camera at close range (frames 50–
60).
@

Since the camera was placed in the doorway of another
room with its own lighting conditions, the person’s face
under] went a large, sudden and temporary change in appar-
entE colour. When adaptation was performed in every frame,
this
5

sudden change had a drastic effect on the model and
ultimat] ely led the tracker to fail when the person receded
into
O

the corridor. With selective adaptation, these sudden
change� s were treated as outliers and adaptation was sus-
pended$ , permitting the tracker to recover.

Fig. 5 depicts the tracking of a multi-coloured item of
clothi� ng with adaptation performed in every frame.
Altho
x

ugh tracking was robust over many frames, erroneous
adapt; ation eventually resulted in failure. Fig. 6 shows the
las
�

t four frames from the same sequence tracked correctly
usin] g selective adaptation.

6.
F

Conclusions

Object
G

s’ colour distributions were modelled using Gaus-
sia~ n mixture models in hue-saturation space. An adaptive
learning algorithm was used to update these colour models
over! time and was found to be stable and efficient. These
adapt; ive models were used to perform colour-based object

Fig. 3. The sequence depicted in Fig. 2 tracked with an adaptive colour model. Here, the model adapts to cope with the change in apparent colour. Only the last
four images are shown for conciseness. Performance in previous frames was similar.

Fig.
H

2. Eight frames from a sequence in which a face was tracked using a non-adaptive model. The apparent colour of the face changes due to: (i) varying
illumination; and (ii) the camera’s auto-iris mechanism which adjusts to the bright exterior light.
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Fig. 4. At the top are frames 5, 15, 25, 35, 45, 55, 65 and 75 from a sequence. There is strong directional and exterior illumination. The walls have a fleshy tone.
4

At around frame 55, the subject rapidly approaches the camera which is situated in a doorway, resulting in rapid changes in illumination, scale and auto-iris
parameters.I This can be seen in the three-dimensional plot of the hue-saturation distribution over time. In the top sequence, the model was allowed to adapt in
every frame, resulting in failure at around frame 60. The lower sequence illustrates the use of selective adaptation. The right-hand plot shows the normalised
log-likelihood measurements and the adaptation threshold.

Fig.
H

5. A green, yellow and black shirt tracked using the adaptive mechanism. Eventually, tracking inaccuracies cause the model to adapt erroneously and the
system fails.
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trackin
5

g in real-time under varying illumination, viewing
geometC ry and camera parameters. Outlier detection based
on! a normalised log-likelihood statistic was used to detect
trackin

5
g failures. This adaptive scheme outperformed the

non-aD daptive colour models.
Topics for further work include: (i) emphasised co-opera-

tion
5

with other visual cues during periods when colour
becomes

�
unreliable; (ii) adaptive modelling of background

scene~ colours; and (iii) adaptive model order selection, i.e.
adaptat; ion of the mixture size during tracking.
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Appendix A

Here
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we derive the update equations for the adaptive
mixture model components. For each mixture component,
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