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Abstract

Accurate video moment retrieval (VMR) requires uni-
versal visual-textual correlations that can handle unknown
vocabulary and unseen scenes. However, the learned
correlations are likely either biased when derived from
a limited amount of moment-text data which is hard to
scale up because of the prohibitive annotation cost (fully-
supervised), or unreliable when only the video-text pairwise
relationships are available without fine-grained tempo-
ral annotations (weakly-supervised). Recently, the vision-
language models (VLM) demonstrate a new transfer learn-
ing paradigm to benefit different vision tasks through the
universal visual-textual correlations derived from large-
scale vision-language pairwise web data, which has also
shown benefits to VMR by fine-tuning in the target domains.

In this work, we propose a zero-shot method for adapt-
ing generalisable visual-textual priors from arbitrary VLM
to facilitate moment-text alignment, without the need for
accessing the VMR data. To this end, we devise a con-
ditional feature refinement module to generate boundary-
aware visual features conditioned on text queries to en-
able better moment boundary understanding. Additionally,
we design a bottom-up proposal generation strategy that
mitigates the impact of domain discrepancies and breaks
down complex-query retrieval tasks into individual action
retrievals, thereby maximizing the benefits of VLM. Ex-
tensive experiments conducted on three VMR benchmark
datasets demonstrate the notable performance advantages
of our zero-shot algorithm, especially in the novel-word and
novel-location out-of-distribution setups.

1. Introduction

Given a natural video and sentence description, video
moment retrieval (VMR) aims to localise a video moment
based on the semantics of the sentence. This task is chal-
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Figure 1. Unlike previous methods (a) that require additional
training to fine-tune pre-trained vision-language models, our
method (b) leverages pre-trained visual-textual alignment to di-
rectly predict moment-text alignment, preserving the generality of
pre-trained models.

lenging as it requires fine-grained moment-text pairs as the
learning targets [36, 41], which need to annotate not only
a sentence but also the temporal position in the video cor-
responding to the sentence. Since assigning sentences in
videos requires high accuracy, it is time-consuming and dif-
ficult to scale to web-sized datasets. To address the problem
of lacking fine-grained moment-text pairs for VMR tasks,
previous methods [12, 43] propose a weakly-supervised set-
ting, which aims to learn the moment-text pairs with weak
supervision such as the video-text pairs. To further reduce
the reliance on annotations, recent methods propose an un-
supervised VMR to localise the moment with the query cho-
sen from a database [21] or self-generated queries [25, 32].

Recently, vision-language models (VLM) [6, 15, 26]
have shown strong generality in VMR tasks. Specifically,
PZVMR[32] and VDI [22] have explored CLIP [26] by fine-
tuning the pre-learned image-text correlation for moment-
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text alignment learning, as shown in Fig. 1 (a). The fine-
tuned moment-text alignment from limited video datasets
(71K in ActivityNet-Captions [17]) is unlikely to be as
generalisable as VLM pre-trained on large-scale data (e.g.
400M for CLIP [26] ). Different from existing methods, we
argue it can bring better generality by directly utilising pre-
trained models without any additional training on domain-
specific datasets. Also, image-level models are less reli-
able to provide a temporal understanding of the video. Even
though there is still a difficulty in scaling up the fine-grained
moment-text annotations, we emphasize the importance of
incorporating large-scale video-text models [19, 34].

In this work, we propose a simple yet strong zero-shot
VMR that fully satisfies the zero-shot requirement without
the need for VMR data access. Our approach relies on the
utilisation of the large-scale pre-trained video-text VLM for
predicting moment-text alignments, as depicted in Fig.1 (b).
The main challenge lies in the discrepancies between video-
text and moment-text domains, as moment-level features
necessitate the ability to discriminate between different mo-
ments within a video. This means capturing specific tem-
poral information of the moments and understanding their
various alignments to a sentence query. However, the video-
text model, originally designed to retrieve textual informa-
tion for the entire video, struggles to provide accurate tem-
poral boundaries for the target moment.

To address the challenge, we adopt snippets as the fun-
damental units in videos and adapt the video-text model
to predict the correlation between snippets and text. We
recognize that each snippet is more likely to capture short-
term actions, so we split the raw-query into multiple sim-
ple queries, each containing an individual action that can be
better interpreted by a video snippet. To identify moment
boundaries for each simple-query, we propose a conditional
feature refinement module to generate boundary-aware fea-
tures. Unlike previous methods [14, 25, 32] which deter-
mine boundaries based on abrupt visual changes between
snippets, we argue that relying solely on spatial changes
is unreliable for reflecting moment changes. Instead, we
propose that the definition of suitable moment boundaries
should be conditioned on the query, as different queries may
emphasize different visual information. To reflect moment
boundaries based on the query, we refine visual features
with their context in a probability indicating how likely they
are from the same moment. By suppressing visual differ-
ences within the same moment and enhancing differences
between different moments, we generate boundary-aware
features that are highly beneficial for VMR, even in cases
where precise boundary labels are unavailable.

To generate proposals for the raw-query, we propose a
bottom-up proposal generation module. We first cluster the
refined snippet features into k proposals for each simple-
query. Next, we perform a Cartesian product operation

on the proposals obtained from all simple-queries, enumer-
ating all possible combinations. These combinations are
then merged to form final proposals for the raw-query. The
scores of these proposals are determined by calculating the
average snippet-text correlation using a pre-trained VLM.

Our contributions are three-folded: (1) Our zero-shot
method eliminates the need for accessing the VMR data by
directly applying arbitrary pre-trained VLM for moment-
text alignment prediction, enabling a generalisable VMR
without further training. (2) To address the discrepancies
between the video-text and moment-text domains, we pro-
pose a query-conditional feature refinement module to gen-
erate boundary-aware features and a bottom-up proposal
generation module to locate the final moment. (3) Our
method notably outperforms existing unsupervised methods
which heavily rely on human-collected videos. Importantly,
it also outperforms fully-supervised methods when tested
on novel-location OOD splits. Furthermore, our experi-
ments reveal that the boundary-aware features have the po-
tential to benefit weakly-supervised VMR where the bound-
ary label is not provided.

2. Related Work
2.1. Video Moment Retrieval

Video moment retrieval (VMR) is a challenging task as
it requires fine-grained correlation awareness between the
video moment and the text.

For fully-supervised VMR, existing methods [20, 36, 40,
41] first generated visual features and textual features from
pre-trained models [29, 31], then they designed a model to
align the two modalities. They inevitably required a large
number of annotations, which were impractical and unscal-
able to web-scale datasets. To alleviate the problem of
fine-grained labelling, weakly-supervised methods [11, 12]
proposed to learn the moment-text alignment with only a
given description, relaxing VMR from marking the specific
time. To further reduce the reliance on human annotations,
Nam et al. [25], Wang et al. [32] and Liu et al. [21] pro-
posed an unsupervised setting where they generated pseudo
queries [25, 32] for the collected videos or chose from a
query database [21]. To be noted, we regard partially zero-
shot methods [25, 32] as unsupervised as they still rely on
VMR-specific videos, resulting in a suboptimal solution for
out-of-distribution (OOD) testing. We argue it is important
to reduce the reliance on the collection of VMR data with a
strict zero-shot setting for better real-world applications.

2.2. VMR with Vision-Language Pre-Training

Large-scale pre-trained vision-language models (VLM)
have been explored for better video understanding. To be
specific, Wang et al. [33] proposed to take the class to-
ken as an input to the sentence and build video-text align-
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Figure 2. Our framework. We first divide the raw-query Q into multiple simple-queries {qt}, each with one verb. Then we cluster the
features refined by the query-conditional feature refinement module into proposals as {pt} for each simple-query. In bottom-up proposal
generation, we generate the final proposals PQ for the raw-query by merging all the possible combinations from its simple-query proposals.

ment from image-text alignment for action recognition. Luo
et al. [23] proposed to utilise the pre-learned VLM for video
retrieval tasks. For VMR, VDI [22] proposed to inject
moment information into the pre-trained text encoder and
Wang et al. [32] proposed to utilise the pre-trained image-
text alignment as part of the pseudo query. However, ex-
isting methods are suboptimal to leverage the generalisable
visual-textual alignment learned from large-scale datasets,
as they fine-tuned it for moment-text alignment on limited
datasets, which is less likely to be as generalisable as the
original visual-textual alignments. Moreover, video-level
VLM can bring a better temporal understanding compared
to image-level models, yet they are not fully explored in
previous methods.

In this work, we propose a zero-shot VMR with the
aim of reducing the reliance on VMR-specific dataset col-
lection and directly exploring large-scale video-text pre-
trained models for a generalisable VMR.

3. Methods

In this section, we first describe the problem and setup
of our task and introduce a brief view of vision-language
models (VLM), then we present the details of our approach
as well as the rationale behind the design.

Problem Definition. Given an untrimmed video V that
contains Lv non-overlapping snippets V = {si}L

v

i=1 and
a sentence query q, video moment retrieval (VMR) is per-
formed to locate a video moment (bv, ev) according to the
semantics of query q. The problem can be formulated as:

(bv, ev) = VMR(fv(V ), fq(q)), (1)

where fv denotes the visual encoder and its output is X =
{xi}L

v

i=1 ∈ RD×Lv

, xi denotes the visual representation
for the ith snippet si; fq denotes the textual encoder that
transfers the sentence query q into an embedding.

Setup. We detail the difference between our zero-shot
setup with existing methods. Unlike fully-supervised ap-
proaches [36, 41] that rely on fine-grained moment-text
pairs, weakly-supervised methods [12, 43] that depend on
video-text pairs, unsupervised methods [21], or partially
zero-shot methods [25, 32] that rely on human-collected
videos, our approach tackles the VMR task without access-
ing any VMR data, such as videos, queries, or temporal
annotations. Our method strictly operates in a zero-shot
setting by directly leveraging pre-trained vision-language
models, eliminating the requirement for a VMR dataset.

3.1. Preliminary Study of Vision-Language Models

Vision-Language Models (VLM). To learn generalisable
and transferable visual and textual models, VLM train a
visual encoder (ResNet [10] or ViT [5]) to map high-
dimensional images/videos into a low-dimensional embed-
ding space, and a text encoder (BERT [4]) to generate text
representations from natural language. Then their correla-
tions are learned with a contrastive loss. With a large train-
ing vision-text pair dataset (400M in CLIP [26] and 12M
in InternVideo [34]), they can learn diverse visual-textual
correlations that are transferable to downstream tasks.

Remarks. To study if the pre-learned visual-textual align-
ment is reliable for VMR, we design experiments with
image-based CLIP [26] and video-based InterVideo [34]
on VMR datasets: Charades-STA [7] and ActivityNet-
Captions [17]. Firstly, we design a text-retrieval ex-
periment, where the text is the query to retrieve its
matched snippet. Given their foreground snippets from
the groundtruth, if the VLM can allocate higher scores
for the foreground other than the background, we count
it as a successful retrieval. The percentage of successful
sentence-retrievals out of all the samples is noted as Rt in
Table 1. Also, we carry out a snippet-retrieval (Rs) exper-
iment where the single snippet is the query to retrieve its
matched sentences. In this experiment, we assess whether
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Vision Text
Charades-STA ActivityNet-Captions
Rt Rs Rt Rs

Random Random 50.69 49.67 48.84 49.81
I3D CLIP 51.19 50.77 47.39 49.20

CLIP CLIP 70.43 63.23 69.82 65.59
InternVideo InternVideo 76.09 67.86 71.43 67.60

Table 1. Preliminary study on the understanding of snippet-text
correlation from CLIP [26] and InternVideo [34]. The number
indicates the retrieval score. Rt denotes the text-retrieval and Rs

the snippet-retrieval task.

the VLM can assign higher scores to the matched snippet-
text pairs.

As shown in Table 1, without pre-learned alignment be-
tween I3D [3] visual encoder and CLIP [26] textual en-
coder, resulting in random results on both tasks. However,
the pre-learned alignments from both CLIP [26] and Intern-
Video [34] show superior performance, indicating that they
are able to understand snippet-query correlations and allo-
cate higher scores for the matched snippet-text pairs.

3.2. Zero-Shot VMR

To address the lack of annotations and for a generalis-
able VMR, we propose a zero-shot method, where we take
advantage of the large-scale pre-trained VLM and directly
predict moment-text correlations with no additional training
on VMR data such as the videos, queries or temporal anno-
tations. As shown in Fig. 2, we break the task of locating
raw-query into multiple simple-query localisations, and we
design a feature refinement module to generate boundary-
aware features conditioned on each simple-query.

3.2.1 Query-Conditional Feature Refinement

Based on the hypothesis that the visual feature undergoes
abrupt changes at moment boundaries, previous methods
have utilised CNN visual features along with hand-crafted
strategies such as k-means [25] or a given threshold [14, 32]
to define moment changes. However, relying solely on vi-
sual changes as indicators for moment changes is not re-
liable, as changes in the environment or object appear-
ance may not necessarily correspond to moment transitions.
Considering different queries may focus on different vi-
sual information to define a moment, we propose a query-
conditional feature refinement module aimed at suppressing
the visual differences within a moment and enhancing those
between different moments. To be specific, we calculate the
probability of a video snippet being in the same moment as
its context snippets and refine the visual feature according
to the contextual feature.

We consider the video as a series of moments, and snip-
pets belonging to the same moment tend to exhibit simi-
lar correlation scores to the query describing the moment,

while those from different moments show diverging scores.
In this regard, we start by calculating their snippet-query
correlation scores by f c:

f c(s, q) = VLM(s, q), (2)

where VLM denotes the pre-trained vision-language model
whose input is the snippet s and the query q.

To calculate the probability of a snippet and its context
being in the same moment, we first identify the snippet that
is most likely to belong to a different moment by locating
the snippet with the largest snippet-query correlation differ-
ence with s:

Dq = {(f c(s, q)− f c(sm, q))2}L
v

m=1,

Mq = arg(max(Dq)),
(3)

where Dq ∈ R1×Lv

is the snippet-query correlation differ-
ence between s and every snippet sm in the video, condi-
tioned on the query q; Mq refers to the index for the snippet
sMq which has the largest correlation difference with s and
is considered to belong to a different moment with s. As the
largest correlation difference captures the maximum dispar-
ity between moments, we use it as a metric to compute the
probability of two snippets belonging to the same moment:

wq
m = 1− (f c(s, q)− f c(sm, q))2

(f c(s, q)− f c(sMq , q))2
, (4)

where wq
m is the probability of sm being in the same mo-

ment with s conditioned on q.
To integrate snippets that belong to the same moment,

which exhibit similar correlation scores to the sentence q,
we refine the visual feature of s by:

x̃q = x+ λ×X ×W q ×mask, (5)

where W q = {wq
m}L

v

m=1 and λ is a hyper-parameter; The
mask is binary values to filter context snippets. In our im-
plementation, we only consider snippets within a distance
of Ln from s and their mask values are set to 1, while snip-
pets outside this range would have a mask value of 0.

3.2.2 Bottom-Up Proposal Generation

Since the video-text model has difficulties in generating
fine-grained boundaries within the video, we adapt it for
snippet-text correlation prediction. As snippets are the fun-
damental units of a video and are more likely to display
short-term actions, we relax the raw-query retrieval task
to multiple simple-query retrievals. The motivation behind
this approach is to divide complex actions into individual
actions to better leverage the video-text model. To be spe-
cific, we utilise a language parsing tool to parse the raw-
query Q into several simple-queries qt by extracting the
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verbs and their corresponding words:

Parser(Q)1 = {qt}L
Q

t=1, (6)

where LQ is the number of simple-queries extracted from
the query Q. Then the visual feature X is refined to
X̃qt = {x̃qt

i }L
v

i=1, conditioned on each simple-query qt with
Eq. (5). Then we cluster the features into k proposals:

P t = {ptn}
k

n=1, (7)

where P t refers to the proposal list generated for the tth

simple-query qt.
For proposal scoring, unlike previous methods [22, 32]

fine-tuning vision-language models to learn moment-text
alignment, we simply utilise the pre-trained video-text
alignment to predict the moment-text alignment with an av-
eraging approach:

C̃(pt) =

∑ep
t

i=bpt f
c(si, qt)

ept − bpt , (8)

where C̃(pt) denotes the correlation score between proposal
pt and simple-query qt; bp

t

/ep
t

denotes the beginning and
ending snippet index of pt; The snippet-query correlation
f c is calculated as Eq. (2).

To generate the final proposals for the raw-query Q, we
propose a bottom-up strategy to merge all the results ob-
tained from simple-queries. To be specific, we first generate
proposals {P t} for every simple-queries {qt} using Eq. (7).
Then we use a Cartesian product to enumerate all the pos-
sible combinations of these proposals. Finally, we take the
union of these proposals from the Cartesian product to gen-
erate final proposals and their corresponding scores are av-
eraged from simple-query proposal scores:

PQ = ∪({P 1 × · · · × PLQ

})

= {{p1 ∪ · · · ∪ pL
Q

}|p1 ∈ P 1 ∧ · · · ∧ pL
Q

∈ PLQ

,

IoU(p1, · · · , pL
Q

) > 0},

CQ = {{
∑

(C̃(p1), · · · , C̃(pL
Q

))

LQ
}|

p1 ∈ P 1 ∧ · · · ∧ pL
Q

∈ PLQ

, IoU(p1, · · · , pL
Q

) > 0},
(9)

where “×” denotes the Cartesian product; PQ denotes the
proposal list for the raw-query Q and CQ are their corre-
sponding scores. Fig. 2 demonstrates an example of k =2
and LQ = 2. The overall process is summarised in Alg. 1.

1Allennlp:https://allenai.org/allennlp

Algorithm 1 Zero-Shot VMR
Input: Untrimmed videos V , A query sentence Q, A visual
fv encoder, A pre-trained model VLM.
Output: Video moment candidates (PQ) with their
scores (CQ).
Compute the features of videos X by fv;
Generate simple-queries {qt}L

Q

t=1 (Eq. (6)) ;
A← {}

1: for t← 1 to LQ do
2: Calculate the context probability conditioned on qt

as W qt = {wqt
m}, with the VLM (Eq. (4));

3: Generate the boundary-aware features from X to
X̃qt (Eq. (5));

4: Generate proposals P t = {pt} by clustering the
boundary-aware feature (Eq. (7));

5: Calculate the correlation score between the pro-
posal and query C̃(pt) (Eq. (8));

6: A.append(P t)
7: end for

Unify the Cartesian product of A to generate PQ and aver-
age their corresponding scores as CQ(Eq. (9));

4. Experiments
With the aim of fully exploring the generalisable video-

text alignment from large-scale pre-trained models, we pro-
pose to directly utilise their visual and textual encoder for
video moment retrieval (VMR) without any further train-
ing. To validate the generality and effectiveness of our
method, we compare with existing methods on both out-
of-distribution (OOD) and independent and identically dis-
tributed (IID) data splits. In this section, we first explain the
implementation details and then report our results in com-
parison with recent methods with a specific focus on unsu-
pervised methods where no annotation is required. Finally,
we carry out ablation studies to evaluate each module.

4.1. Experimental Settings

4.1.1 Dataset

Charades-STA [7] is built upon the Charades dataset [30]
for action recognition and localisation. Gao et al. [7] adapt
the Charades dataset to VMR by collecting the query anno-
tations. The Charades-STA dataset contains 6,670 videos
and involves 16,124 queries. The average duration of the
videos is 30.59 seconds and the moment has an average
duration of 8.09 seconds. There are 37 long-moments
(Lmom/Lvid≥ 0.5) out of 16,124 in this dataset.
ActivityNet-Captions [17] is collected for video caption-
ing task from ActivityNet [2] where the videos are associ-
ated with 200 activity classes. The ActivityNet-Captions
dataset consists of 19,811 videos with 71,957 queries. The
average duration of the videos is around 117.75 seconds and
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Method Year Setup
Charades-STA ActivityNet-Captions∗

OOD-1 OOD-2 OOD-1 OOD-2
0.5 0.7 mIoU 0.5 0.7 mIoU 0.5 0.7 mIoU 0.5 0.7 mIoU

LGI [24] 2020

Fully
-Supervised

42.1 18.6 41.2 35.8 13.5 37.1 16.3 6.2 22.2 11.0 3.9 17.3
CMI[37] 2020 30.4 16.4 30.3 28.1 13.6 29.0 12.3 5.2 19.1 10.0 4.2 16.8
2D-TAN [41] 2020 27.1 13.1 25.7 21.1 8.8 22.5 16.4 6.6 23.2 11.5 3.9 19.4
DCM[39] 2021 44.4 19.7 42.3 38.5 15.4 39.0 18.2 7.9 24.4 12.9 4.8 20.7
MMN† [36] 2022 31.6 13.4 33.4 27.0 9.3 30.3 20.3 7.1 26.2 14.1 5.2 20.6
VDI† [22] 2023 25.9 11.9 26.7 20.8 8.7 22.0 20.9 7.1 27.6 14.3 5.2 23.7
CNM† [42] 2022 Weakly

-Supervised
9.9 1.7 21.6 6.1 0.5 16.6 6.1 0.4 21.0 2.5 0.1 16.8

CPL† [43] 2022 29.9 8.5 32.2 24.9 6.3 30.5 4.7 0.4 21.1 2.1 0.2 17.7
PSVL†[25] 2021 Un

-Supervised
3.0 0.7 8.2 2.2 0.4 6.8 - - - - - -

PZVMR [32] 2022 - 8.6 25.1 - 6.5 28.5 - 4.4 28.3 - 2.6 19.1
Ours 2023 Zero-Shot 40.3 18.2 38.2 38.9 17.0 37.8 18.4 6.8 21.1 18.6 7.4 20.6

Table 2. Novel-location OOD testing. ActivityNet-Captions∗ denotes the datasets removed from the long-moment for fair compar-
isons [39]. “†” denotes our implementation with their released models. “-” denotes the model is not available, and the performance is
not reported. Methods using pre-trained VLM alignments are underlined.

Method Setup Charades-STA ActivityNet-Captions
0.5 0.7 0.5 0.7

LGI Fully
-Supervised

26.48 12.47 23.10 9.03
VISA 42.35 20.88 30.14 15.90
VDI 46.47 28.63 32.35 16.02
CNM† Weakly-

Supervised
32.52 14.82 23.11 10.21

CPL† 45.90 22.88 21.71 9.08
Ours Zero-Shot 45.04 21.44 24.57 10.54

Table 3. Comparison with methods on the novel-word split [18].
“†” denotes the same with Table 2.

the moment has an average duration of 37.14 seconds. For
this dataset, there are 15,736 long-moments out of 71,957.
TaCoS [27] consists of 127 videos from MPIICooking [28].
It is comprised of 18,818 video-text pairs of cooking activ-
ities in the kitchen annotated by Regneri et al. [27].

4.1.2 Implementation Details

Evaluation Metrics. We take “R@n, IoU = µ” and “mIoU”
as the evaluation metrics, which denotes the percentage of
queries having at least one result whose intersection over
union (IoU) with ground truth is larger than µ in top-n re-
trieved moments. “mIoU” is the average IoU over all test-
ing samples. We report the results as n ∈ {1} with µ
∈ {0.1, 0.3, 0.5, 0.7}. Following DCM [39], we collect
ActivityNet-Captions∗ where long-moments (Lmom/Lvid

≥ 0.5) are removed from ActivityNet-Captions.
Hyper-Parameters. For feature extraction on video snip-
pet, we apply I3D [3] on Charades-STA and C3D [31] on
ActivityNet-Captions. For snippet-text correlation, we ap-
ply the pre-trained video-level InternVideo model [34].

Method Setup Charades-STA ActivityNet-Captions
0.5 0.7 0.5 0.7

DCM Fully
-Supervised

45.47 22.70 22.32 11.22
Shuffling 46.67 27.08 24.57 13.12
CNM† Weakly-

Supervised
30.61 15.23 12.89 4.06

CPL† 41.09 21.91 8.47 1.67
Ours Zero-Shot 40.27 16.27 19.40 7.85

Table 4. Comparison with methods on the novel-distribution
split [9]. “†” denotes the same with Table 2.

For feature refinement, the context distance (Ln) is set to
be 2, the λ is 0.5. We select k-means for clustering and the
k to be 6. We sample the length (Lv) of each video as 32.

4.2. Comparison with the SOTAs

As a strict zero-shot VMR method requires no access to
VMR data, we focus on comparison with existing unsuper-
vised methods [21, 25, 32] in both OOD and IID testing.

4.2.1 Novel-Location OOD Testing

We first carry out experiments on a novel-location OOD
scenario, where the location of the moment is different
in the training set. Following DCM [39], we add a ran-
domly generated video with p seconds in the beginning
of the testing video to modify the location of moment an-
notations. OOD-1 and OOD-2 refers to p ∈ {10, 15}
for Charades-STA and p ∈ {30, 60} for ActivityNet-
Captions∗. As shown in Table 2, we compare with exist-
ing methods across different setups. For Charades-STA, we
achieve 40.3%/18.2% for OOD-1, outperforming unsuper-
vised methods with a significant margin. For ActivityNet-
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Method Year Setup Charades-STA ActivityNet-Captions
0.3 0.5 0.7 mIoU 0.3 0.5 0.7 mIoU

2D-TAN[41] 2020 Fully
-Supervised

57.31 45.75 27.88 41.05 60.32 43.41 25.04 42.45
MMN[36] 2022 65.43 53.25 31.42 46.46 64.48 48.24 29.35 46.61
VCA [35] 2021

Weakly
-Supervised

58.58 38.13 19.57 38.49 50.45 31.00 - 33.15
CNM [42] 2022 60.04 35.15 14.95 38.11 55.68 33.33 13.29 37.55
CPL [43] 2022 65.99 49.05 22.61 43.23 55.73 31.37 13.68 36.65
Huang et al. [13] 2023 69.16 52.18 23.94 45.20 58.07 36.91 - 41.02
PSVL [25] 2021

Un
-Supervised

46.47 31.29 14.17 31.24 44.74 30.08 14.74 29.62
Gao and Xu [8] 2021 46.69 20.14 8.27 - 46.15 26.38 11.64 -
DSCNet [21] 2022 44.15 28.73 14.67 - 47.29 28.16 - -
PZVMR [32] 2022 46.83 33.21 18.51 32.62 45.73 31.26 17.84 30.35
Kim et al. [16] 2023 52.95 37.24 19.33 36.05 47.61 32.59 15.42 31.85
Ours 2023 Zero-Shot 56.77 42.93 20.13 37.92 48.28 27.90 11.57 32.37

Table 5. IID testing results on Charades-STA and ActivityNet-Captions. “-” denotes the same with Table 2. Methods using pre-trained
VLM alignments are underlined.

Captions, we follow DCM [39] to remove long-moments,
noted as ActivityNet-Captions∗, for fair comparisons. As
one can see from Table 2, our method obtains 18.4%/6.8%
on OOD-1, which reaches the SOTA performance among
existing unsupervised methods.

It is worth noting that we demonstrate superior per-
formance on OOD-2 over fully-supervised methods. We
argue that models trained with a moment-location biased
dataset (21.87% long-moments in ActivityNet-Captions)
are inferior to be applied to novel-location OOD scenarios,
highlighting their limitations in real-world applications.

4.2.2 Novel-Word OOD Testing

To further demonstrate our generality, we carry out test-
ing on the novel-word split released by VISA [18], where
the testing split contains novel-words not seen in the
training. As shown in Table 3, with novel-word test-
ing, we achieve the performance of 24.57%/10.54% for
ActivityNet-Captions, outperforming the existing weakly-
supervised models [42, 43].

4.2.3 Novel-Distribution OOD Testing

In Table 4, we further carry out testing on the novel-
distribution split released by Shuffling [9], where they shuf-
fle the moment and change the distribution of moments in
the testing split. One can see from Table 4, we achieve the
performance of 19.40%/7.85% for ActivityNet-Captions,
outperforming existing weakly-supervised models [42, 43].

4.2.4 IID Testing

To evaluate the effectiveness of our method, we also con-
duct experiments on IID testing, where the training and
testing split share independent and identical distribution.

Method Setup 0.1 0.3 0.5
MCN [1]

Fully-
Supervised

14.42 - 5.58
CTRL [7] 24.32 18.32 13.30
QSPN [38] 25.31 20.15 15.32
2D-TAN [41] 47.59 37.29 25.32
MMN [36] 51.39 39.24 26.17
Ours Zero-Shot 27.49 11.20 5.57

Table 6. Comparison on the original split of TaCoS.

Method VLM Charades-STA ActivityNet-Captions∗

0.5 0.7 0.5 0.7
PZVMR CLIP - 6.5 - 2.6
Ours CLIP 25.9 9.9 15.7 5.3
Ours InterVideo 38.9 17.0 18.6 7.4

Table 7. Comparison between methods using pre-trained visual-
textual alignments from different VLM.

As shown in Table 5, we outperform unsupervised meth-
ods [16, 25, 32] on Charades-STA, whilst we don’t require
any training or access to VMR dataset. For ActivityNet-
Captions, we argue existing methods benefit from the
moment-location bias on this dataset. Moreover, we carry
out experiments on TaCoS in Table 6.

4.3. Ablation Study

We report ablations on Charades-STA and ActivityNet-
Captions with novel-location OOD-2 testing.

4.3.1 Vision-Language Model Ablation

In this subsection, we compare the option of VLM between
CLIP [26] and InterVideo [34]. As shown in Table 7, our
proposed method demonstrates better generality from the
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Method Charades-STA ActivityNet-Captions
0.3 0.5 0.7 0.3 0.5 0.7

w/o QC-FR 58.33 37.28 14.11 39.63 24.29 9.70
w/o BU-PG 60.01 39.01 16.68 38.95 23.83 9.86
Ours 60.22 38.92 16.96 40.92 25.70 10.56

Table 8. Ablation study of query-conditional feature refinement
(QC-FR) and bottom-up proposal generation (BU-PG).

Method 0.3 0.5 0.7 mIoU
w/o QC-FR 65.99 49.05 22.61 43.23
w QC-FR 66.91 50.85 24.00 44.00

Table 9. Comparison of weakly-supervised CPL [43] performance
with and without our QC-FR module on Charades-STA.

Method LQ = 1 LQ ≥ 2
0.3 0.5 0.7 0.3 0.5 0.7

w/o BU-PG 32.80 18.59 7.79 43.02 27.18 11.02
w/ BU-PG 32.63 18.58 7.82 45.85 29.36 12.16

Table 10. Performance on ActivityNet-Captions for raw-queries
with different numbers of simple-queries LQ.

pre-trained CLIP than previous PZVMR [32]. Furthermore,
with a better understanding of the temporal information
from InterVideo, our method achieves further improvement.

4.3.2 Component Ablation

In this subsection, we evaluate the effectiveness of our com-
ponents. As shown in Table 8, without our proposed query-
conditional feature refinement (QC-FR) module, there is a
performance drop on both datasets. Also, to validate the ad-
vantages of the generated boundary-aware feature in scenar-
ios where boundary labels are absent, we apply the query-
conditioned feature refinement module (QC-FR) in weakly-
supervised CPL [43] on IID testing. One can see from Ta-
ble 9, by refining the feature with QC-FR, we observe per-
formance gains of 1.80% and 1.39% on IoU = 0.5/0.7.

For bottom-up proposal generation (BU-PG), our
method shows enhanced performance when evaluated with
ActivityNet-Captions in Table 8. To further demonstrate the
benefits of BU-PG for complex-queries, we present the per-
formance based on the number of simple-queries for each
raw-query (LQ). It can be observed in Table 10 that BU-PG
achieves superior performance when dealing with complex-
queries that consist of more simple-queries (LQ ≥ 2).

4.3.3 Hyper-Parameter Ablation

For hyper-parameters, we report the ablation on Charades-
STA. We ablate the option of clustering method and select

Method 0.3 0.5 0.7 mIoU
Random 45.03 20.37 6.75 27.35
Sliding Window 49.54 38.41 14.62 33.23
Abrupt Change 20.97 9.95 2.80 14.11
K-Means (Ours) 60.22 38.92 16.96 37.80

Table 11. Ablation study of clustering method on Charades-STA.

k 0.3 0.5 0.7 mIoU
5 59.35 35.51 13.17 36.47
6 60.22 38.92 16.96 37.80
7 58.39 39.01 16.83 37.65

Table 12. Ablation study of k-means on Charades-STA.

λ Ln 0.3 0.5 0.7 mIoU
0.1

2
58.73 38.39 15.75 37.49

0.5 60.22 38.92 16.96 37.80
1 59.52 39.06 16.48 37.19

0.5 1 59.81 38.09 16.75 37.65
3 59.68 38.55 16.86 37.48

Table 13. Ablation study of λ and Ln on Charades-STA.

k-means as shown in Table 11. Then we take 6 as the value
of “k” for k-means as shown in Table 12. The ablations of
“λ” and “Ln” for feature refinement are shown in Table 13.

5. Conclusion and Future Work

In this work, we approach the video moment re-
trieval (VMR) task by adapting the generalisable video-
text pre-trained models without requiring additional train-
ing on the target domain. To address the discrepancy be-
tween video-text and moment-text domains, we propose
a query-conditional proposal generation module to gen-
erate boundary-aware features and a bottom-up proposal
generation module for complex-query localisation. Supe-
rior performances on OOD testing demonstrate our method
can extract generalisable moment-text alignments from pre-
trained video-text alignments. For future work, one impor-
tant direction is to address the challenge of understanding
the temporal relationship between individual actions which
is not captured by video-text pre-training models.
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