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Incremental Activity Modelling in Multiple Disjoint Cameras
Chen Change Loy, Member, IEEE, Tao Xiang, and Shaogang Gong

Abstract—Activity modelling and unusual event detection in a network of cameras is challenging particularly when the camera views
are not overlapped. We show that it is possible to detect unusual events in multiple disjoint cameras as context-incoherent patterns,
through incremental learning of time delayed dependencies between distributed local activities observed within and across camera
views. Specifically, we model multi-camera activities using a Time Delayed Probabilistic Graphical Model (TD-PGM) with different
nodes representing activities in different decomposed regions from different views and the directed links between nodes encoding their
time delayed dependencies. To deal with visual context changes, we formulate a novel incremental learning method for modelling time
delayed dependencies that change over time. We validate the effectiveness of the proposed approach using a synthetic dataset and
videos captured from a camera network installed at a busy underground station.

Index Terms—Unusual event detection, multi-camera activity modelling, time delay estimation, incremental structure learning.
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1 INTRODUCTION

Wide-area and complex public scenes are often monitored by
multiple cameras, the majority of which have disjoint views. In
this study, we address the problem of detecting and localising
unusual events1 occurring in crowded public scene monitored
by multiple disjoint cameras with non-overlapping field of
views (FOV). In particular, our method aims to detect global
unusual events, i.e. context-incoherent patterns that span across
multiple disjoint camera views.

To solve the problem, global modelling of activity patterns is
indispensable because unusual events can take place globally
across multiple disjoint cameras and often appear normal in
isolated camera views. An individual inspection on each view
would fail to detect such an unusual event, since a global
behaviour interpretation is not achievable based solely on
visual evidences captured locally within a single view.

Global activity modelling and unusual event detection across
multiple disjoint cameras in crowded public scene is intrinsi-
cally difficult due to several inextricable factors:

1) Unknown and arbitrary inter-camera gaps - Unknown
and often large separation of cameras in space causes
temporal discontinuity in visual observations, i.e.a global
activity can only be observed partially in different views
whilst portions of the activity sequence may be unob-
served due to the inter-camera gaps. To further com-
plicate the matter, two widely separated camera views
may include arbitrary number of entry/exit locations in
the gap, where existing objects can disappear and new
objects can appear, causing uncertainty in understanding
and correlating activities in both camera views.

2) Inter-camera visual variations - Objects moving across
camera views often experience drastic variations in their
visual appearances owing to different illumination con-
ditions, camera orientations, and changes in object pose.

3) Low-quality videos captured in crowded scene - In a
typical public scene, the sheer number of objects cause
severe and continuous inter-object occlusions. Applying
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1. Rare or abnormal events that should be reported for further
examination.

conventional object-centred strategy that requires explicit
object segmentation and tracking within/across cam-
era views can be challenging. Tracking can be further
compounded by the typically low temporal and spatial
resolutions of surveillance video , where large spatial
displacement is observed in moving objects between
consecutive frames.

4) Visual context variations - In an unconstrained envi-
ronment, visual context changes are ineluctable and may
occur gradually or abruptly. In particular, gradual context
change may involve gradual behaviour drift over time,
e.g., different volumes of crowd flow at different time
periods. On the other hand, abrupt context change impli-
cates more drastic changes such as camera angle adjust-
ment, removal/addition of camera from/to a camera net-
work. Both gradual and abrupt changes cause transitions
and modifications of inter-camera activity dependency
over time.

Owing to the aforementioned challenges, visual observations
from different camera views are inevitably noisy and partial,
making the meaning of activity ambiguous.

To mitigate the effects of the aforementioned factors 1 and
2, we believe the key is to learn a global visual context to
associate partial observations of activities observed across cam-
era views. Activities in a public space are inherently context-
aware, often exhibited through constraints imposed by scene
layout and the correlated activities of other objects both in the
same camera view and other views. The global visual context
should encompass spatial and temporal context defining where
and when a partial observation occurs, as well as correlation
context specifying the expectation inferred from the correlated
behaviours of other objects in the camera network, i.e. the
dependency and associated time delay between activities. To
this end, we propose to model global visual context by learning
global dependencies and the associated time delays between
distributed local activities. Specifically, we formulate a novel
Time Delayed Probabilistic Graphical Model (TD-PGM), whose
nodes represent activities in different decomposed regions
from different views, and the directed links between nodes
encoding the time delayed dependencies between the activi-
ties. Consequently, global unusual events can be detected and
localised as context-incoherent patterns through inspecting the
consistency between node observation and graph propagation
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in the learned model.
To circumvent the problem caused by factor 3, our model em-

ploys a holistic activity representation rather than conventional
trajectory-based representation that relies on explicit object-
centred segmentation and tracking (see Sec. 3.1). Therefore, it
can be applied to low-quality public scene surveillance videos
featuring severe inter-object occlusions for robust multi-camera
unusual event detection.

To cope with the visual context variations (factor 4), we treat
the dependency learning problem as an incremental graph
structure learning (i.e.to discover conditional dependency links
between a set of nodes) and parameter learning task (i.e. to
learn the parameter associated with the links). In particular,
we formulate a novel incremental two-stage structure learning
approach to learn the updated camera network structure in
accordance to the current visual context, without any prior
knowledge and assumptions on the camera topology.

Extensive evaluations are conducted on a synthetic dataset
and 167 hours of videos acquired from a camera network
installed at a busy underground station.

2 RELATED WORK

There has been a considerable amount of work for activity
understanding and unusual event detection in surveillance
videos, but mostly devoted to single camera scenario [1], [2],
[3], [4]. There also exist incremental learning methods [2], [5]
that accommodate visual context changes over time. These
methods are not directly applicable to scenarios involving mul-
tiple disjoint cameras since there is no mechanism to discover
and quantify arbitrary time delays among activities observed
across non-overlapping views.

Recently, a number of methods have been proposed to model
activity and detect unusual event across multiple disjoint
cameras. One of the popular approaches is to reconstruct
global path taken by an object by merging its trajectories
observed in different views, followed by a standard single-view
trajectory analysis approach [6]. With this approach, one must
address the camera topology inference problem [7], [8] and
the trajectory correspondence problem [9], both of which are
far from being solved. Wang et al. [10] propose an alternative
trajectory-based method that bypasses the topology inference
and correspondence problems. However, the method cannot
cope with busy scenes and it is limited to capturing only co-
occurrence relationships among activity patterns but not the
time delayed dependencies between local activities cross views.

Zhou and Kimber [11] attempt to circumvent unreliable
tracking by using an event-based representation together with
a Coupled Hidden Markov Model (CHMM) for activity mod-
elling. However, the model is not scalable to large camera net-
work and the CHMM chain’s connectivity has to be manually
defined to reflect neighbouring relationships of cameras. More-
over, the model is restricted to capturing first-order temporal
dependency, which is not suitable for modelling cross-camera
activity dependencies with arbitrary time delays.

A closely related work is the modelling of transition time
distribution between entry/exit events in two cameras [7],
[8]. However, these methods rely on intra-camera tracking
to detect entry/events in order to infer the transition time
statistics. As mentioned in Sec. 1, explicit object segmentation
and tracking are nontrivial in a crowded scene, especially
given video captured in low temporal and spatial resolutions.
Importantly, these methods do not address the unusual event
detection problem.

Our approach is centred around a novel incremental two-
stage structure learning algorithm for a TD-PGM. There is a
rich literature on graphical model structure learning. Previous
methods can be categorised into either constraint-based meth-
ods [12], [13], or scored-searching based methods [14], [15].
Hybrid approaches have also been proposed to combine both
methods above in order to improve computational efficiency
and prediction accuracy in structure learning [16], [17]. Existing
hybrid approaches, however, are not capable of learning graph
dependencies among multiple time-series with unknown time
delays. To overcome this problem, we propose a new hybrid
approach that combines a scored-searching based method with
an information theoretic based analysis for time delay estima-
tion.

Several approaches for incremental structure learning of
probabilistic graphical models have been proposed in the
past [18], [19]. A notable method is presented by Friedman
and Goldszmidt [18], whereby a structure is updated sequen-
tially without having to store all earlier observations. Our
incremental structure learning method is similar in spirit to
that in [18], but with several key differences that make our
approach more suitable for incremental activity modelling
in a large distributed camera network, for which tractability
and scalability are more critical. Firstly, our approach allows
more tractable structure update for a large camera network.
Secondly, the proposed method requires less memory. Specif-
ically, the prior work [18] employs a single-stage greedy hill-
climbing (GHC) structure learning [20] without any constraint
on structure search space. The method is thus intractable given
a large graph with hundred of nodes [21]. It also stores a
large amount of sufficient statistics to update the dependency
links given a large graph structure. In contrast, our two-stage
structure learning approach achieves a more tractable learning
by exploiting the time delay information to derive an ordering
constraint for reducing the search space, as well as for pruning
less probable candidate structures and the associated sufficient
statistics during the searching process, therefore resulting in
lower memory consumption.

The main contributions of this work are:
1) To the best of our knowledge, this work is the first study

on modelling time delayed activity dependencies for real-
time detection of global unusual events across distributed
multi-camera views of busy public scenes.

2) Existing studies [10], [11], [22] generally assume activity
model that remain static once learned; the problem of
incremental global activity modelling in multiple disjoint
cameras have not been addressed before. To cope with
the inevitable visual context changes over time, a novel
incremental two-stage structure learning method is pro-
posed to discover and quantify optimised time delayed
dependency structure globally.

3 GLOBAL ACTIVITY DEPENDENCY MODELLING

3.1 Global Activity Representation
An overview of the key steps of our approach is given in
Fig. 1. To facilitate global activity understanding across non-
overlapping camera views, it is necessary to decompose each
camera view into regions (Fig. 1(a)) where different activity
patterns are observed (e.g., decompose a traffic junction into
different lanes and waiting zones). We refer an activity that
takes place locally in a region (e.g., driving in a lane or parking
at waiting zone) as a regional activity. To this end, we first
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Fig. 1. A diagram illustrating our approach for incremental learning of global time delayed dependencies between activities
observed in multiple disjoint cameras.

perform foreground extraction and separate the foreground
pixels into static and moving activity patterns. Specifically,
given a set of detected foreground pixels, the moving fore-
ground pixels are identified by performing frame differencing
between successive frames. Foreground pixels that do not
belong to moving foreground pixels are then classified as
static foreground pixels. Next, the approach proposed in [23] is
adopted to cluster a scene using spectral clustering [24] based
on correlation distances of local block spatio-temporal activity
patterns. This results in n regions across all views, which are
indexed in a common reference space.

Given the decomposed scene, activity patterns observed over
time in ith region is represented as a bivariate time series:
ûi = (ûi,1, . . . , ûi,t, . . . ) and v̂i = (v̂i,1, . . . , v̂i,t, . . . ), where ûi,t
represents the percentage of static foreground pixels within the
ith region at time t, whilst v̂i,t is the percentage of pixels within
the region that are classified as moving foreground.

To enable the proposed TD-PGM to model a scene with a
fixed and finite number of states, we feed the two-dimensional
time series (ûi, v̂i) of length T as an input to a Gaussian
Mixture Model (GMM). The GMM is trained via Expectation-
Maximisation (EM) with the number of component Ki de-
termined by automatic model order selection using Bayesian
Information Criterion (BIC). The learned GMM is then used
to classify activity patterns detected in each region at each
frame into one of the Ki components. The typical value for
Ki ranges from 5 to 10 depending on the complexity of the
regional activity patterns in our experiments. Activity patterns
in the ith region over time are thus represented using the class
labels and denoted as a one-dimensional time-series:

xi(t)=(xi,1, . . . , xi,t, . . . ), (1)

where xi,t ∈ {1, 2, . . . ,Ki} and i=1, . . . , n.
It is worth pointing out that the quality of scene decom-

position or local behaviour grouping will have an effect on
the learned global activity model. Both under- and over-
segmentation of a scene will have an adverse effect. In partic-
ular, under-segmentation may not produce local scene regions
that encompass distinctive set of activities which will cause
difficulties in learning the time delayed correlations between
regions. In comparison, over-segmentation is more likely to
produce distinctive partitioning of the local activities. How-
ever, one would expect higher computational cost in sub-
sequent analyses given the over-segmented regions. Overall,
over-segmentation is less an issue provided that the increase
of model complexity would not render the model learning

intractable. The scene segmentation method adopted [23] is
flexible in using different types of representation. If higher-
frame rate video is available, motion information [25], [26], [27]
can be readily used to improve the segmentation result.

3.2 Time Delayed Probabilistic Graphical Model
We model time delayed dependencies among regional activity
patterns using a TD-PGM (Fig. 1(i)). A TD-PGM is defined as
B = 〈G,Θ〉, which consists of a directed acyclic graph (DAG),
G whose nodes represent a set of discrete random variables
X = {Xi|i = 1, 2, . . . , n}, where Xi is the ith variable repre-
senting activity patterns observed in the ith region. Specific
value taken by a variable Xi is denoted as xi. A stream of val-
ues xi of variable Xi is denoted as xi(t) = (xi,1, . . . , xi,t, . . . )
(see (1)).

The model is quantified by a set of parameters denoted by
Θ specifying the conditional probability distribution (CPD),
p(Xi|Pa(Xi)). Since all the observations in the model are finite-
state variables due to the GMM clustering, the CPD between
a child node Xi and its parents Pa(Xi) in G is represented
using multinomial probability distribution. Consequently, Θ
contains a set of parameters θxi|pa(Xi) = p(xi|pa(Xi)) for each
possible discrete value xi of Xi and pa(Xi) of Pa(Xi). Here
Pa(Xi) represents the set of parents of Xi, and pa(Xi) is an
instantiation of Pa(Xi).

Conditional independence is assumed. The dependencies
among variables are represented through a set of directed
edges E, each of which points to a node from its parents on
which the distribution is conditioned. Given any two variables
Xi and Xj , a directed edge from Xi to Xj is denoted as
Xi → Xj , where (Xi, Xj) ∈ E and (Xj , Xi) /∈ E. Note that
the p(Xi|Pa(Xi)) are not quantified using a common time
index but with relative time delays that are discovered using
Time Delayed Mutual Information (TDMI) discussed in the
next section.

Other notations we use are given as follows: the number of
states of Xi is ri, and the number of possible configurations of
Pa(Xi) is qi. A set of discrete value xi across all variables is
given as x = {xi|i = 1, 2, . . . , n}. Consequently, a collection of
m cases of x is denoted as X = {x1, . . . ,xm}. The number
of cases of (xi,pa(Xi)) in X is represented as Nxi|pa(Xi),
specifically Nijk = Nxi=k|pa(Xi)=j .

3.3 Two-Stage Structure Learning
The optimal structure of the TD-PGM, B encodes the time
delayed dependencies that we aim to discover and quantify. In
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the following subsections 3.3.1 and 3.3.2, we will first explain
our two-stage structure learning algorithm operating in a
batch mode. This shall facilitate explanation of the incremental
extension of this approach described in Sec. 3.6.

3.3.1 Constraint-based learning with Time Delayed Mutual
Information Analysis

There are two stages in our structure learning method. In the
first-stage constraint-based learning (Fig. 1(b-h)), we wish to
obtain a prior graph structure, which can be further used to
derive an ordering constraint. The constraint is propagated to
the second-stage scored-searching based learning (Fig. 1(i)) to
reduce and constrain the structure search space, by eliminating
any candidate structure inconsistent with the constraint. This
consequently leads to a significant computational speed up in
the second-stage learning process. Let us now detail the steps
involved in the first-stage learning:

• Step 1 - TDMI analysis (Fig. 1(b-d)) - Time Delayed Mu-
tual Information [28] analysis is explored here to learn ini-
tial time delayed association between each pair of regional
activity patterns. The TDMI was first introduced by Fraser
and Swinney [28] for determining delay parameter in chaotic
dynamical system, through measuring the Mutual Information
(MI) between a time series x(t) and a time shifted copy of itself
x(t+τ) as a function of time delay τ . The main rationale behind
the use of TDMI is that if two regional activity patterns are
dependent, information conveyed by a region would provide
a large amount of information on another region.

In TDMI analysis, if one treats two arbitrary regional activity
patterns as time series data and denotes them as x(t) and y(t)
respectively, the TDMI of x(t) and time shifted y(t+ τ) can be
written as follows:

I (x(t); y(t+ τ)) =

Kx∑
j=1

Ky∑
k=1

pxy (j, k) log2

pxy (j, k)

px (j) py (k)
, (2)

where px (·) and py (·) denote the marginal probability distri-
bution functions of x(t) and y(t+ τ) respectively, whilst pxy (·)
is the joint probability distribution function of x(t) and y(t+τ).
The probability distribution functions are approximated by
constructing histograms with Ki bins, each of which corre-
sponds to one GMM class discovered using approach described
in Sec. 3.1. Note that I (x(t); y(t+ τ)) ≥ 0 with the equality if,
and only if x(t) and y(t+ τ) are independent. If τ = 0, TDMI
is equivalent to MI of x(t) and y(t).

Subsequently, a TDMI function Ixy (τ) is obtained as a
sequence of TDMI values I (x(t); y(t+ τ)) at different time
delay τ :

Ixy (τ) = (I (x(t); y(t− T )) , . . . , I (x(t); y(t+ T ))), (3)

where −T ≤ τ ≤ T .
In general, given a TDMI function Iij (τ), one can estimate

the time delay τ̂ij between ith and jth regions as:

τ̂ij = argmax
τ

Iij (τ) . (4)

By repeating the same process for local activities observed in
each pair of decomposed regions, one can construct a time
delay matrix D as follows:

D = [τ̂ij ]n×n. (5)

The corresponding TDMI matrix is obtained as:

Îij = Iij (τ̂ij) (6)

I = [̂Iij ]n×n. (7)

• Step 2 - Generating an optimal dependence tree (Fig. 1(e-f)) - In
this step, the proposed approach finds an optimal dependence
tree (Chow-Liu tree [29]) T that best approximates the graph
joint probability p(X) by a product of second-order conditional
and marginal distributions. The optimal dependence tree T
can be obtained based on the TDMI matrix I found in the
TDMI analysis. In particular, weights are assigned following
I to each possible edges of a weighted graph with node set X
that encodes no assertion of conditional independence. Prim’s
algorithm [30] is then applied to find a subset of the edges that
forms a tree structure including every node, in which the total
weight is maximised.

• Step 3 - Edge orientation (Fig. 1(g-h)) - The undirected tree
T is transformed to a directed prior graph structure Gp by
assigning orientations to the edges. Typically, one can assign
edge orientations by either selecting a random node as a root
node, or by performing conditional independence test [17]
and scoring function optimisation over the graph [31]. These
methods are either inaccurate or require exhaustive search on
all possible edge orientations therefore computationally costly.

To overcome these problems, we propose to orient the edges
by tracing the time delays for each pair of nodes in the
tree structure using D learned by the TDMI analysis ((5)). In
particular, if the activity patterns observed in Xi are lagging the
patterns observed in Xj with a time delay τ , it is reasonable to
assume that the distribution of Xi is conditionally dependent
on Xj . The edge is therefore pointed from Xj to Xi. The
direction of an edge with zero time delay is randomly assigned.
Those zero delayed edges are found among neighbouring re-
gions in the same camera view. It is observed in our experiment
that changes of direction in those edges have little effect on
the final performance. With Gp defined by the edges, one can
derive the ordering of variables ≺ by performing topological
sorting [32]. In particular, the ordering ≺ specifies that a
variable Xj can only be the parent of Xi if, and only if, Xj
precedes Xi in ≺, i.e.Xj ∈ Pa(Xi) iff Xj ≺ Xi.

3.3.2 Time Delayed Scored-Searching based Learning
In the second stage of the proposed structure learning approach
(Fig. 1(i)), a popular heuristic search method known as the K2
algorithm [14] is re-formulated to generate an optimised time
delayed dependency structure based on ≺ derived from the
first-stage learning. Note that without the first-stage learning,
one may set ≺ randomly. However, a randomly set ≺ does
not guarantee to give the most probable model structure.
Alternatively, one can apply the K2 algorithm exhaustively on
all possible orderings to find a structure that maximises the
score. This solution is clearly infeasible even for a moderate
number of nodes, since the space of ordering is n! for a n-node
graph.

Let us now describe the details of the second-stage learning
(Alg. 1). The K2 algorithm iterates over each node Xi that has
an empty parent set Pa(Xi) initially. Candidate parents are
then selected in accordance with the node sequence specified
by ≺ and they are added incrementally to Pa(Xn) whose
addition increases the score of the structure G given dataset
X . We consider a widely used scoring function that is both
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score equivalent and decomposable [15], namely Bayesian In-
formation Criterion (BIC) score [33]. Specifically, the BIC score
is defined as:

SBIC(G|X ) =

n∑
i=1

SBIC (Xi|Pa(Xi)) (8)

=

n∑
i=1

m∑
t=1

log p(xi,t|pa(Xi),θxi,t|pa(Xi))− logm

n∑
i=1

bi
2
,

where bi = qi(ri − 1) is the number of parameters needed to
describe p(Xi|Pa(Xi)).

Our formulation differs from the original K2 algorithm in
that any addition of candidate parent is required not only
to increase the graph structure score, but it must also satisfy
the constraint imposed by the time delays discovered in the
first-stage learning. In addition, the score computation ((8)) is
carried out by shifting parent’s activity patterns with a relative
delay to child node’s activity patterns based on D (see Alg. 1
(L6)).

Algorithm 1: The re-formulated K2 algorithm with a time
delay factor being introduced.

Input: A graph with a node set X = {Xi|i = 1, 2, . . . , n}.
An ordering of nodes ≺. An upper bound ϕ on the
number the parents a node may have. Time delay
matrix D.

Output: Final structure G defined by
{(Xi,Pa(Xi)) | i = 1, 2, . . . , n}.

1 for i = 1 to n do
2 Pa(Xi) = ∅;
3 scoreold = SBIC(Xi|Pa(Xi));
4 OKToProceed = true;
5 while OKToProceed and |Pa(Xi)| < ϕ do
6 Let Xj ≺ Xi, Xj /∈ Pa(Xi), with activity patterns

xj(t+ τ), τ = D(Xi, Xj) ≤ 0, which maximises
SBIC(Xi|Pa(Xi) ∪ {Xj});

7 scorenew = SBIC(Xi|Pa(Xi) ∪ {Xj});
8 if scorenew > scoreold then
9 scoreold = scorenew;

10 Pa(Xi) = Pa(Xi) ∪ {Xj};
11 else
12 OKToProceed = false;
13 end
14 end
15 end

3.3.3 Computational Cost Analysis
In this section, the computational cost needed for the proposed
two-stage structure learning approach is analysed. For the first-
stage learning (see Sec. 3.3.1), the total of possible region pairs
to be considered for obtaining pairwise TDMI function ((3))
is in the order of O(n2), where n is the number of regions. In
each TDMI function computation, if one bounds the maximum
time delay to be τmax, the number of TDMI calculations ((2)) is
τmax−1. Hence, the overall complexity of TDMI analysis (Step-
1) is O(n2τmax). The run time complexity of the optimal de-
pendence tree approximation (Step-2) (Sec. 3.3.1) is O(e logn),
and the topological sorting (Step-3) takes O(n + e) time [32],
where e is the number of edges.

For the second-stage structure learning (see Alg. 1), the for
statement loops O(n) times. The while statement loops at most

O(ϕ) times once it is entered, where ϕ denotes the maximum
number of parents a node may have. Inside the while loop,
line 6 in Alg. 1 is executed for at most n− 1 times since there
are at most n− 1 candidate parents consistent with ≺ for Xi.
Hence, line 6 in Alg. 1 takes O(sn) time if one assumes each
score evaluation takes O(s) time. Other statements in the while
loop takes O(1) time. Therefore, the overall complexity of the
second-stage structure learning is O(sn) O(ϕ) O(n) = O(sn2ϕ).
In the worst case scenario where one do not apply an upper
bound to the number of parents a node may have, the time
complexity becomes O(sn3) since ϕ = n.

3.3.4 Discussion
Note that both stages of the structure learning method are
important to discover and learn the time delayed dependencies
among regional activities. Specifically, without the first-stage
structure learning, vital time delay information would not be
available for constraining the search space. On the other hand,
as one shall see later in our experiments (Sec. 4), poorer results
may be obtained if one uses the tree structure alone without
the second-stage learning. This is because the tree structure
can only approximate an optimum set of n − 1 first-order
dependence relationship among the n variables but not the
target distribution, which may include more complex depen-
dencies. Furthermore, studies have shown that the constraint-
based learning can be sensitive to failures in independence
tests [21]. Therefore, a second-stage scored-searching based
learning is needed to discover additional dependencies and
correct potential error in the first-stage learning.

A heuristic search algorithm is chosen for the proposed
second-stage structure learning instead of an exact learning
algorithm. In general, exact structure learning is intractable
for large graph, since there are 2O(n2 logn) DAGs for a n-
node graph [34]. A search using a typical exact algorithm
would take exponential time on the number of variables n,
e.g., O(n2n) for a dynamic programming-based technique [35].
Such a high complexity prohibits its use from learning any
typical camera network, which may consist of hundreds of
local activity regions depending on scene complexity.

Among various heuristic search algorithms, the K2 algo-
rithm [14] is found to be well suited for learning the de-
pendency structure of a large camera network due to its
superior computational efficiency. Specifically, thanks to the
ordering constraint, the search space of the K2 algorithm is
much smaller than that of a conventional GHC search [36].
In addition, the constraint also helps in avoiding the costly
acyclicity checks since the topological order already ensures
acyclicity of structure. Besides, the K2 algorithm is also more
efficient than alternative methods such as Markov Chain Monte
Carlo (MCMC) based structure learning [37], which requires a
sufficiently long burn-in time to obtain a converged approxi-
mation for a large graph [38].

3.4 Parameter Learning
Parameter learning (Fig. 1(l)) is performed after we find an
optimised structure of the TD-PGM. To learn the parameters
of the TD-PGM in a Bayesian learning setting, we use Dirichlet
distribution as a conjugate prior for the parameters of the
multinomial distribution. The prior of θxi|pa(Xi) is distributed
according to Dir(α1, ..., αri), a posteriori of θxi|pa(Xi) is up-
dated as Dir(α1 + Nij1, ..., αri + Nijri). Here, we apply the
BDeu prior (likelihood equivalent uniform Bayesian Dirichlet),
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α = η
riqi

over model parameters, where η is known as
equivalent sample size [15]. With this Bayesian learning setting,
one can update the posterior distribution sequentially and
efficiently using a closed-form formula when new instances
are observed. To account for a cross-region time delay factor,
regional activity patterns are temporally shifted according to
the time delay matrix D during the parameter learning stage.

3.5 Global Unusual Event Detection

A conventional way for detecting unusual events is to examine
the log-likelihood (LL), log p (xt|Θ) of the observations given a
model, e.g., [11]. Specifically, an unseen global activity pattern
is detected as being unusual if

log p (xt|Θ) =

n∑
i=1

log p(xi,t|pa(Xi),θxi|pa(Xi)) < Th, (9)

where Th is a pre-defined threshold, and xt =
{xi,t|i = 1, 2, . . . , n} are observations at time slice t for all n
regions. However, given a crowded public scene captured
using videos with low image resolution both spatially and
temporally, observations xt inevitably contain noise and the
LL-based method is likely to fail in discriminating the “true”
unusual events from noisy observations because both can
contribute to a low value in log p (xt|Θ), and thus cannot be
distinguished by examining log p (xt|Θ) alone.

We address this problem by introducing a Cumulative Ab-
normality Score (CAS) that alleviates the effect of noise by
accumulating the temporal history of the likelihood of unusual
event occurrences in each region over time. This is based on
the assumption that noise would not persist over a sustained
period of time and thus can be filtered out when visual
evidence is accumulated over time. Specifically, an abnormality
score (set to zero at t = 0) is computed for each node in the
TD-PGM on-the-fly to monitor the likelihood of abnormality
for each region. The log-likelihood of a given observation xi,t
for the ith region at time t is computed as:

log p
(
xi,t|pa(Xi),θxi,t|pa(Xi)

)
=

log
Nxi,t|pa(Xi) + η

riqi∑ri
k=1

(
Nxi,t=k|pa(Xi) + η

riqi

) . (10)

If the log-likelihood is lower than a threshold Thi, the
abnormality score for xi,t, denoted as ci,t, is increased as:
ci,t = ci,t−1 + | log p

(
xi,t|pa(Xi),θxi|pa(Xi)

)
−Thi|. Otherwise

it is decreased from the previous abnormality score: ci,t =
ci,t−1 − δ

(
| log p

(
xi,t|pa(Xi),θxi|pa(Xi)

)
− Thi|

)
where δ is a

decay factor controlling the rate of the decrease. ci,t is set to
0 whenever it becomes a negative number after a decrease.
Therefore ci,t ≥ 0, ∀ {i, t}, with a larger value indicating higher
likelihood of being unusual. Note that during the computation
of log-likelihood ((10)), the activity patterns of a parent node
are referred based on the relative delay between the parent
node and the child node.

A global unusual event is detected at each time frame when
the total of CAS across all the regions is larger than a threshold
Th, that is

Ct =

n∑
i=1

ci,t > Th. (11)

Overall, there are two thresholds to be set for global unusual
event detection. Threshold Thi is set automatically to the same
value for all the nodes as LL − σ2

LL, where the LL and σ2
LL

are the mean and variance of the log-likelihoods computed
over all the nodes for every frames, which are obtained from
a validation dataset. The other threshold Th is set according
to the detection rate/false alarm rate requirement for specific
application scenarios.

Once a global unusual event is detected, the contributing
local activities of individual regions can be localised by ex-
amining ci,t. Particularly, ci,t for all regions are ranked in a
descending order. Local activities that contribute to the unusual
event is then identified as those observed from the first few
regions in the rank that are accounted for a given fraction
P = [0, 1] of Ct.

3.6 Incremental Two-Stage Structure Learning

As discussed in Sec. 1, incremental learning is needed to cope
with visual context changes over time. In contrast to a batch-
mode learning method that performs single-round learning
using a full training set, an incremental learning method
outputs a model at each time point based on a stream of
observations. Formally, given a new observation xt at each
time step t, an incremental graphical model learning method
produces a model Bt with a refined structure Gt and the
associated parameters Θt. In practice, the incremental learning
process may only be invoked after collecting some number of
h instances.

For incremental structure learning, one can employ a Naı̈ve
method, in which all the observations seen so far, x1, . . . ,xt
are used to estimate Gt. Obviously, the method should yield
an optimal structure since all the observed information is
used for the estimation. The method, however, is memory
prohibitive because it needs to either store all the previously
seen instances or keep a count of the number of times each
distinct instantiation to all variables X is observed.

Alternatively, one can approximate a maximum a-posteriori
probability (MAP) model [18], [39], i.e. a model that is con-
sidered most probable given the data seen so far. All the
past observations can be summarised using the model, which
is then exploited as a prior in the next learning iteration
for posterior approximation. The MAP approach is memory
efficient because it only needs to store new instances that one
has observed since the last MAP update. This method, how-
ever, may lead to poor incremental learning since subsequent
structures can be easily biased to the initial model [18].

Unlike Naı̈ve and MAP, our incremental structure learning
method takes constant time regardless the number of instances
observed so far, and it is memory tractable without sacrificing
the accuracy of the structure learned. Importantly, our method
employs a constant time window based incremental learning
to ensure that the time evolution of behaviour is captured and
constantly updated in the graphical model.

The steps involved in the proposed incremental structure
learning method are summarised in Alg. 2. In the proposed
approach, an obsolete structure is replaced by searching from
a set of most probable candidate structures at the current time,
which are stored in a frontier F [18]. The associated sufficient
statistics ξ of F are kept to allow tractable update of model
parameters via Bayesian learning. Note that the structure learn-
ing process is invoked after receiving h instances, xt−h+1 : t, to
ensure sufficient information for learning the TDMI functions.
In addition, there must be at least half of the h instances
scoring below a predefined filtering threshold ThCAS during
unusual event detection (Alg. 2 (L3-4)). The filtering step is
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introduced to prevent excessive number of outliers from being
incorporated inadvertently into the model updating process.
Similar to Thi (Sec. 3.5), the threshold ThCAS is obtained from
a validation set. Specifically, after we obtain Thi, we compute
Ct for every frames and set ThCAS as

∑l
t=1 Ct

2l
, where l is the

total frames of the validation dataset.

Algorithm 2: Incremental two-stage structure learning.

Input: Data stream (x1, . . . ,xt, . . . ). An upper bound, ϕ,
on the number the parents a node may have.
Number of past instances to keep, h. An initial
model structure, G0. A set of sufficient statistics,
ξ0 = ξ(G0). Update coefficient β.

Output: Gt and ξt.
1 for t from 1, 2, . . . do
2 Gt = Gt−1, ξt = ξt−1;
3 Receive xt. Compute Ct [(11)] ;

4 if t mod h = 0 and
| {Ci|t− h+ 1 ≤ i ≤ t, Ci < ThCAS} | ≥ h

2
then

// Stage One
5 Compute I (τ) using xt−h+1:t [(2) and (3)] ;
6 if t = 1 then
7 Set Iacc (τ) = I (τ) ;
8 else
9 Update Iacc (τ) with updating rate β [(12)] ;

10 end
11 Iacc (τ) = Iacc (τ) ;
12 Compute D and I using Iacc (τ) [(4) to (7)] ;
13 Find the ordering of variables ≺ [Sec. 3.3.1] ;

// Stage Two
14 Create F based on ≺ and Gt−1 ;
15 Obtain ξt by updating ξt−1 using xt−h+1:t ;
16 Search for highest scored Gt from F [Alg. 1];
17 end
18 end

Let us now detail the steps involved in the proposed incre-
mental structure learning:

• Step 1 - Finding a topological order ≺ - Similar to the batch-
mode learning described in Sec. 3.3, there are two stages in our
incremental structure learning procedure. The learning process
commences with the estimation of ordering of variables ≺ in
the first-stage learning (Alg. 2 (L5-13)).

In particular, up-to-date cumulative TDMI functions Iacc (τ)
for each pair of regional activity patterns are first estimated
by accumulating past TDMI functions. Specifically, Iaccij (τ)
between the ith region and jth region is estimated as follows:

Iaccij (τ) = βIaccij (τ) + (1− β)Iij (τ) , (12)

where β denotes an update coefficient that controls the up-
dating rate of the function, Iaccij (τ) represents the cumulative
TDMI function found in previous learning iteration, and Iij (τ)
denotes a TDMI function computed using xt−h+1 : t. Given
Iaccij (τ), one can obtain the updated I, D, and ≺ using the
procedures described in Sec. 3.3.1.

• Step 2 - Building a frontier F - After obtaining Gp and ≺,
we proceed to the second-stage learning. We first construct a
frontier F based on ≺ and a structure estimated in previous
iteration, Gt−1 (Alg. 2 (L14), see Fig. 2 for an illustration).

Fig. 2. The frontier, F is constructed based on Gt−1 and ≺,
forming a set of families composed of Xi and its parent sets
Pa(Xi). The new structure Gt is an example of an implicit
ensemble of solutions that can be composed of every possible
combination of the families.

Formally, F is defined by a set of families composed of Xi and
its parent set Pa(Xi):

F = {(Xi,Paj(Xi)) | 1 ≤ i ≤ n, 1 ≤ j ≤ Ω} , (13)

where Ω denotes the total number of different parent sets
Paj(Xi) associated with Xi.

We construct F by including existing families in Gt−1 as
well as using different combinations of candidate parents of
Xi consistent with ≺. With this strategy, one could build a
new structure Gt that could be simpler or more complex than
Gt−1 through combining different families in F (Fig. 2).

To prevent proliferation of parent set combinations and to
constrain the search space to a set of most promising struc-
tures for incremental learning, we prune less probable candidate
structures from joining the final scoring process. In particular,
different combinations of parent set for Xi are formed by
selecting only a set of most probable parents, mppi consistent
with ≺, with |mppi| ≤ ϕ < n. Here, ϕ denotes the maximum
number of parents a node may have and mppi contains
parents that return the highest TDMI among other candidate
parents. The maximum number of parent combinations a node
may have is given as Ω = 1 +

∑ϕ
k=1

(
ϕ
k

)
.

• Step 3 - Updating sufficient statistics ξ - Since F at time t
may be different from that at t − 1, one needs to update the
associated sufficient statistics of each family in F to quantify
the most recent multinomial CPDs (Alg. 2 (L15)). A set of such
sufficient statistics at time t is denoted as ξt. Given F , ξt is
obtained from previous set of sufficient statistics ξt−1 and the
h recent instances xt−h+1:t as follows:

ξt = ξt−1

⋃{
NXi|Pa(Xi) | (Xi,Pa(Xi)) ∈ F

}
, (14)

where NXi|Pa(Xi) =
{
Nxi|pa(Xi)

}
, with Nxi|pa(Xi) be the num-

ber of cases (xi,pa(Xi)) observed in the h recent instances,
xt−h+1 : t. The updated sufficient statistics ξt will then be
used in the next step for structure scoring. Note that after the
incremental two-stage structure learning, ξt will also be used
for parameter update via Bayesian learning as described in
Sec. 3.4.

• Step 4 - Scoring a structure - In this step, we wish to search for
an optimal structure Gt within F to replace Gt−1 (Alg. 2 (L16)).
This is achieved by comparing the scores returned from a set
of candidate structures that can be evaluated using the records
in ξt, that is:

Gt = argmax
{G′ | ξ(G′)⊂ξt}

S∗BIC(G′|ξt), (15)
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where S∗BIC(·) denotes a modified version of the original score
SBIC(·) defined in (8).

As pointed out by Friedman and Goldszmidt [18], the score
needs to be modified because one may start collecting new
sufficient statistics or may remove redundant ones at different
times, due to addition/removal of families from F during
the incremental structure learning. The number of instances
NXi|Pa(Xi) recorded in a family’s sufficient statistics would
affect the final score value, e.g., a lower score may be as-
signed to a family that observes more instances. To avoid
unfair comparison of different candidate structures, it is thus
necessary to average the score yielded by each family with the
total instances recorded in its sufficient statistics. In particular,
this work follows the method proposed by Friedman and
Goldszmidt [18] to modify SBIC:

S∗BIC(Xi|Pa(Xi)) =
SBIC(Xi|Pa(Xi))∑
(xi|pa(Xi))

Nxi|pa(Xi)

. (16)

Since the proposed method includes the previous graph
structure Gt−1 in F and its sufficient statistics in every learning
iteration, the incremental learning procedure shall improve
monotonically as it must return a structure Gt that scores at
least as well as Gt−1, i.e.S∗BIC(Gt|ξ) ≥ S∗BIC(Gt−1|ξ).

4 EXPERIMENTAL RESULTS

4.1 Synthetic Data

Fig. 3. (a) Ground truth structure, (b) structure learned using
the proposed two-stage structure learning, and (c) structure
learned using the conventional K2 algorithm without time delay
estimation.

Fig. 4. Edit distance against (a) white noise and (b) order
permutation.

We first demonstrate some of the advantages and impor-
tant properties of the proposed method through analysing a
synthetic dataset - a nine-node network with known structure,
inter-node delays, and CPDs (Fig. 3(a)). For each of the node,
we generated time-series with a 10 state-levels and a length of
10000 from the synthetic network2.

In the first experiment, we compared the structure learned
using the proposed two-stage structure learning with that
learned using the conventional K2 algorithm without time
delay estimation. As can be seen from Fig. 3(b), the proposed
method recovered all the edges including the correct inter-node
delays. In comparison, the conventional K2 algorithm can only
discover the zero delayed edge but failed to infer other time
delayed edges.

2. To generate a sample, we drew the parent node values randomly
and generated the child node values following the network parameters.

In the second experiment, the learned structure was evalu-
ated when an increasing amount of random white noise was
added to the training data. The accuracy of structure learning
was measured by ‘edit distance’, defined by the length of
the minimal sequence of operators needed to transform the
ground truth structure into the resulting one (operators are
edge-insertion, edge-deletion, and edge-reversal). The result
depicted in Fig. 4(a) suggests that the method is robust to a
low-level of noise but could produce false edges when the data
is saturated by noise.

In the third experiment, we examined the final structure
produced by the K2 algorithm by feeding it with exhaustive set
of node order with different permutations. The experimental
result (Fig. 4(b)) suggests that a less accurate initial estimate
could lead to a poor final structure. However, the K2 algorithm
is capable of mitigating the negative effect if there is only a
minor permutation on the node order. This can be seen from
the low sample minimum and lower quartile of the box plots
even when the order permutation was increased to 10.

4.2 Batch Mode Structure Learning
In Sec. 4.2 and Sec. 4.3, we employed a challenging multi-
camera dataset3 that contains fixed views from nine disjoint
and uncalibrated cameras installed at a busy underground
station (Fig. 5). Three cameras were placed in the ticket hall and
two cameras were positioned to monitor the escalator areas.
Both train platforms were covered by two cameras each. The
video from each camera lasts around 19 hours from 5:42am
to 00:18am the next day, giving a total of 167 hours of video
footage at a frame rate of 0.7 fps. Each frame has a size of
320× 230.

Passengers typically enter from the main entrance, walk
through the ticket hall or queue up for tickets (Cam 1), enter
the concourse through the ticket barriers (Cam 2, 3), take the
escalators (Cam 4, 5), and enter one of the platforms. The
opposite route is taken if they are leaving the station. The
dataset is challenging due to (1) complex crowd dynamics; (2)
complexity and diversity of the scene; (3) low video temporal
and spatial resolution; (4) enormous number of objects appears
in the scene; and (5) the existence of multiple entry and exit
points, which are not visible in the camera views.

The dataset was divided into 10 subsets, each of which
contains 5000 frames per camera (≈ 2-hour in length, the last
subset contains 1500 frames). Two subsets were used as valida-
tion data. For the remaining eight subsets, 500 frames/camera
from each subset were used for training and the rest for testing,
i.e. 10% for training.

4.2.1 Global Activity Dependency Modelling
Using the training data, the nine camera views were auto-
matically decomposed into 96 semantically meaningful regions
(Fig. 5). Given the scene decomposition, the global activities,
composed of 96 regional activities, were modelled using a TD-
PGM. The model structure, which encodes the time delayed
dependencies among regional activities, was initialised using
pairwise TDMI and then optimised using the proposed two-
stage structure learning method. The structure yielded is de-
picted in Fig. 6.

As expected, most of the discovered dependencies were be-
tween regions from the same camera views that have short time

3. Processed data is available at http://www.eecs.qmul.ac.uk/
∼ccloy/files/datasets/liv processed.zip
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Fig. 5. The underground station layout, the camera views, and the scene decomposition results for our dataset. Entry and exit
points are shown in red bars.

Fig. 6. An activity global dependency graph learned using the proposed two-stage structure learning method with BIC scoring
function. Edges are labelled with the associated time delays discovered using the Time Delayed Mutual Information analysis.
Regions and nodes with discovered inter-camera dependencies are highlighted.

delays (Fig. 6). However, a number of interesting dependencies
between inter-camera regions were also discovered accurately.
For instance, three escalator entry and exit zones in Cam 4
(Regions 40, 43, and 46) were found to be connected with
individual escalator tracks in Cam 5 (Regions 55, 59, and
51) despite some of the connecting regions were not visible
in the camera views. Importantly, correct directions of edge
dependency were also discovered, e.g., an edge pointing from
upward escalator track (Region 51) towards the corresponding
exit zone (Region 46). The inter-regional time delays estimated
were also very close to the time gap manually observed,
e.g., 8, 5, and 10 frames for region pairs 40-55, 43-59, 46-51
respectively.

We compared our method (TDMI+K2) with three alternative
dependency learning methods:

1) MI+K2 - The proposed two-stage structure learning
method but initialised using MI rather than TDMI, to
demonstrate the importance of encoding time delay.

2) TDMI - First-stage structure learning only, to highlight the
importance of having two stages in structure learning.

3) xCCA+K2 - The proposed structure learning method but
initialised using pairwise Cross Canonical Correlation
Analysis (xCCA) proposed in [23] rather than TDMI, to
show the advantage of modelling non-linearity among
activity dependencies using TDMI for global unusual
event detection.

Note that the same global activity representation described
in Sec. 3.1 was applied on both TDMI and xCCA based
approaches.

The dependency structures discovered by the proposed
method and the three alternative approaches are depicted in
Fig. 7, with some critical missed/incorrect dependency links
highlighted with red squares. As one shall see in the unusual

event detection experiment (see Sec. 4.2.2), these links play an
important role in unusual event detection. From Fig. 7(b), it is
observed that without taking time delay into account, MI+K2
yielded a number of missed dependency links such as 40→ 55
and 51→ 46; as well as incorrect one such as 63→ 74, which
were against the causal flow of activity patterns. Figure 7(c)
shows that without global dependency optimisation, structure
yielded by TDMI alone was inferior to that obtained using
TDMI+K2. In particular, some important dependency links
such as 6 → 2 were still not discovered. It is observed that
some links such as 2→ 5 was missing when we initialised the
proposed structure learning method using xCCA (Fig. 7(d)).
This is due to the use of pairwise linear correlations without
taking into account non-linearity among activity dependencies
across regions.

4.2.2 Unusual Event Detection

For quantitative evaluation of our unusual event detection
method, ground truth was obtained by exhaustive frame-wise
examination on the entire test set. Consequently, nine unusual
cases were found, each of them lasting between 34 to 462
frames with an average of 176 frames (254 secs). In total, there
were 1585 atypical frames accounting for 4.88% of the total
frames in the test set. As shown in Table 1, these unusual cases
fall into three categories, all of which involve multiple regional
activities.

A TD-PGM learned using our TDMI+K2 method was em-
ployed for unusual event detection using the proposed CAS.
The decay factor δ of CAS was found to produce consistent
results when it is set beyond value 5. Consequently, it was
set to 10 throughout the experiments. For all experiments, a
weak uniform prior η = 10 was used. The performance of
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(a) TDMI+K2 (b) MI+K2

(c) TDMI (d) xCCA+K2

Fig. 7. Activity global dependency structures learned using
different methods. The y-axis represents the parent nodes,
whilst the x-axis represents the child nodes. A black mark at
(y,x) means y → x. Some missed or false edges are highlighted
using squares in red.

TABLE 1
Ground truth.

Cases Unusual Event Description Cam Total frames
(% from total)

1-6 The queue in front of the ticket
counters was built to a sufficient
depth in regions 2 and 6 that it
blocked the normal route from Region
2 to 5 taken by passenger who did
not have to buy ticket (Fig. 10)

1 1021 (3.14)

7-8 Faulty train observed in Cam 6 and 7
led to overcrowding on the platform.
To prevent further congestion on the
platform, passengers were disallowed
to enter the platform via the escalator
(Region 55 in Cam 5). This in turn
caused congestion in front of the
escalator entry zone in Cam 4 (Fig. 11)

3,
4,
5,
6,
7

446 (1.37)

9 Train moved in reversed direction 6,7 118 (0.36)

the proposed approach (TDMI+K2+CAS) was assessed using
a receiver operating characteristic (ROC) curve by varying
the other free parameter threshold Th. An unusual event is
considered detected if and only if its CAS > Th and at least
half of the detected regions are consistent with the manually
labelled regions in the ground truth.

CAS vs. LL - We first examine how effective the proposed CAS
is for unusual event detection. Specifically our approach was
compared with a method that use the same TD-PGM but with
the conventional LL score, denoted as TDMI+K2+LL. As can
be seen from Fig. 8, using the LL-based abnormality score, the
true unusual events were overwhelmed by the noise collected
from the large number of regions and thus difficult to detect.
Since there was excessive number of regions falsely identified
as atypical, TDMI+K2+LL essentially gave zero true positive
rate across all Th, its performance is thus not available to
be shown in Fig. 9. In contrast, the proposed CAS effectively
alleviated the effect of noise, thus offering much more superior

unusual event detection performance.

Fig. 8. Unusual event scores computed using (a) log-likelihood
(LL), and (b) cumulative abnormality score (CAS). Ground truths
of unusual events are represented as bars in green colour.

TDMI+K2+CAS vs. other learning methods - We further
investigate how unusual event detection performance can be
affected when the time delayed dependency structure are not
learned accurately. More specifically, TD-PGMs were learned
using MI+K2, TDMI alone without second-stage learning, and
xCCA+K2 respectively as described in Sec. 4.2.1. Cumulative
abnormality score was then used for unusual event detection.
These three methods are denoted as MI+K2+CAS, TDMI+CAS,
and xCCA+K2+CAS respectively. It is observed from Fig. 9
that without accurate dependencies learned using the proposed
TDMI+K2, all three methods yielded poorer performance. In
particular, the missing time delayed dependencies shown in
Fig. 7 caused missed detection or weak response to unusual
events.

Fig. 9. Receiver operating characteristic (ROC) curves obtained
using time delayed probabilistic graphical model with different
learning methods.

Besides the K2 algorithm, we also re-formulated another
popular scored-searching method known as greedy hill-
climbing (GHC) search [20] for learning time delayed depen-
dencies on the same dataset. Slightly poorer performance was
obtained, with area under ROC (AUROC) of 0.7558 compared
to 0.8458 obtained using TDMI+K2. The poorer detection
performance of GHC method was mainly due to its weaker
responses on atypical long queue events. In addition, we also
followed the method proposed in [11] to construct a CHMM
with each chain corresponded to a region. However, the model
is computationally intractable on the machine employed in this
study (single-Core 2.8GHz with 2G RAM) due to the high space
complexity during the inference stage.

An example of detected unusual event using the proposed
TDMI+K2+CAS approach is given in Fig. 10. The contributing
atypical regions are highlighted in red following the method
described in Sec. 3.5 with P = 0.8. The atypical long queue
was robustly detected using the proposed solution. In compar-
ison, other methods such as TDMI+CAS and xCCA+K2+CAS
yielded a weaker response. Note that MI+K2+CAS was able
to detect this unusual event since the event occurred within
a single view, of which the time delays between regional
activities can be ignored. One shall see in the next example,
MI+K2+CAS failed in detecting a global unusual event that
took place across multiple camera views.
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Fig. 10. Example frames from detection output using the pro-
posed approach on analysing unusual events caused by atypical
long queues. The plot depicts the associated cumulative abnor-
mality scores produced by different methods over the period. In
ground truth, unusual events occurred at frames (5741-5853)
and (5915-6376).

Another example of unusual event detection using the pro-
posed approach is shown in Fig. 11. This event was Case 7
listed in Table 1. As can be seen, TDMI+K2+CAS detected
the unusual event across Cam 3, 4, 5, 6 and 7 successfully.
Specifically, TD-PGM first detected atypical crowd dynamics
in Cam 6 and Cam 7, i.e. all train passengers were asked to
get off the train. From frame 15340 to frame 15680, passengers
were disallowed to use the downward escalator and therefore
started to accumulate at the escalator entry zone in Cam 4.
The congestion led to high CAS in several regions in Cam 4
and Cam 3 (Region 32). A large volume of crowd in Region
55 of Cam 5 was expected due to the high crowd density in
Region 40 of Cam 4. However, the fact that Region 55 was
empty violated the model’s expected time delayed dependency,
therefore causing a high CAS in Region 55 (Fig. 11). Despite the
event in Region 55 appeared perfectly normal when examined
in isolation, it was successfully detected as being unusual
since the proposed approach associated Region 55 with Region
40, which has an immediate and direct causal effect to it
(Fig. 6). In contrast, MI+K2+CAS failed to discover the time
delayed dependencies between Region 40 and Region 55; it
therefore missed the unusual event in Region 55. In this exam-
ple (Fig. 11), xCCA+K2+CAS yielded similar response to that
obtained using the proposed approach. However, it is observed
from the ROC curve (Fig. 9) that the overall performance of
xCCA+K2+CAS was still inferior to that of TDMI+K2+CAS.

4.3 Incremental Structure Learning

4.3.1 Gradual Context Change

This experiment was similar to the global unusual event de-
tection experiment reported in Sec. 4.2.2. In this experiment,
however, a model was no longer trained using data subsets
obtained from different time periods, but initialised using only
training data extracted in the morning (5:42am-9:42am) and
updated using subsequent observations using an incremental
structure learning method. The goal of this experiment is to
compare the proposed incremental structure learning approach
(Incremental, described in Alg. 2) with three alternative strate-
gies in dealing with gradual context changes, e.g., crowd flow
transitions at different time periods. The three methods were:

1) ParamAlone - this method only update parameters alone
without adapting the structure of a model.

2) Naı̈ve - this method stores all past observations for
incremental structure learning (described in Sec. 3.6).

Fig. 11. Global unusual event due to faulty train, which first
occurred in Cam 6 and 7, and later propagated to Cam 5, 4, and
3. The plot depicts the cumulative abnormality scores in Region
55 produced by different methods over the period. In ground
truth, this unusual event occurred at frames (15340-15680).

3) MAP - this method [18], [39] uses the best model so far
as a prior for subsequent structure learning (described in
Sec. 3.6).

We evaluated the aforementioned methods on the under-
ground dataset described at the beginning of Sec. 4. Specifically,
two subsets in the morning period were used to initialise a
model. A subsequent subset was reserved as validation data
to compute the thresholds Thi and ThCAS. Other subsets
were employed for testing and incremental learning. For all
methods, the following settings were used: a slow updating
rate with update coefficient, β = 0.9 and an upper limit of the
number of parents a node may have, ϕ = 3. All incremental
structure learning approaches generated an updated model by
invoking the TDMI+K2 structure learning along with individ-
ual incremental learning scheme, together with the parameter
learning every time h = 500 instances were observed. After
each learning iteration, the updated model was employed for
unusual event detection on subsequent observations. Naı̈ve
and Incremental were carried out with the BIC score and the
modified BIC score ((16)), respectively. The BIC score, however,
is not suitable for the MAP method if one wishes to take into
account the prior information represented in a MAP model.
Therefore, a modified BDeu score [18] was employed for MAP.

Fig. 12. (a) Receiver operating characteristic (ROC) curves
obtained using different incremental structure learning methods.
(b) Memory requirement of different incremental structure learn-
ing methods.
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Similar to the experiment reported in Sec. 3.5, the perfor-
mance of an approach was assessed using ROC curve, which
was generated by varying the threshold Th. The ROC curves
yielded by a baseline method Initial (i.e. an initial model was
used without any structure/parameter update), ParamAlone,
Naı̈ve, Incremental, and MAP are shown in Fig. 12(a). The
memory requirement4 associated with different incremental
structure learning methods is also given in Fig. 12(b). Poor
detection performance (AUROC = 0.1413) of Initial is expected
since the initial model only accessed observations in the morn-
ing period, which was quiet most of the time. It therefore failed
to cope with busier context in the subsequent subsets. Among
three incremental structure learning approaches, we found that
Naı̈ve yielded the best unusual event detection performance,
with AUROC of 0.7303. However, its memory requirement in-
creased linearly along with the number of observations seen, as
depicted in Fig. 12(b). Despite MAP needed the least memory,
it was trapped in a wrong structure and subsequently locked
to it, yielding the poorest result (AUROC = 0.0323) among all
methods. Overall, Incremental gave comparable detection per-
formance compared to Naı̈ve, with an AUROC of 0.6851. Im-
portantly, memory required by Incremental remained constant
throughout the test by keeping a handful of sufficient statistics
(Fig. 12(b)). In comparison to Naı̈ve and Incremental, inferior
performance was observed on ParamAlone, with an AUROC
of 0.6278. This suggests that updating parameters alone may
still be inadequate when dealing with gradual visual context
changes. Nonetheless, it was still better than maintaining fixed
model’s parameters without incremental update.

Fig. 13. Abnormality in an online setting can depend on relative
frequency of the events at different time periods. The figure
shows a long queue event is detected as unusual at first, but
becomes normal later as evidence accumulates. Ground truths
of the long queue events are represented as bars in green
colour.

Note that the long queue event in Cam 1 (Fig. 10) was rare
over the whole training set, but a careful inspection shows
that it took place rather frequently in certain periods of time
of the day (e.g., morning rush hours), so much so that it
should be considered as normal during those periods. It is
found that the incremental learning method can correctly adapt
to the variations and detect it when it is rare and ignore it
when it occurs frequently (Fig. 13). The lower AUROC of the
Incremental strategy compared to the Naı̈ve strategy should
not be interpreted as poorer performance in this context. It was
mainly caused by how the ground truth was set. Specifically,
it is difficult to accommodate the changes of definition of
abnormality/normality in the ground truth as those changes
are rather subjective to quantify. Consequently, we assume
a fixed definition of abnormality/normality in the ground
truth, e.g., long queue was consistently labelled as abnormal.
Therefore, when the incremental learning method ignores the

4. This study estimates of memory usage of Naı̈ve and MAP based
on the number of instances to keep. For Incremental, the memory was
measured based on the space needed to store the sufficient statistics.

long queue event during rush hours of the day, it leads to
miss-detections according to the ‘assumed constant’ ground
truth. One therefore expects that the Incremental strategy will
yield a better performance when the changing definition of
abnormality/normality is reflected in the ground truth.

To give further insights, the differences between the initial
model and the up-to-date model induced using Incremental
were investigated. With the proposed incremental structure
learning, it was observed that some errors in the initial model
were corrected, e.g., initial dependency link 45→ 55 was cor-
rected to 40→ 55, in which Region 40 has a more direct causal
impact to Region 55 (Fig. 5). In another example, incorrect time
delay estimated between two neighbouring Regions 6 and 7
was also corrected from 34 to 2 frames.

Fig. 14. Inter-regional dependency changes captured using the
proposed incremental two-stage learning.

The proposed incremental learning approach also learned
meaningful changes of inter-regional dependency strength over
time. In an example shown in Fig. 14, since passengers mostly
commuted to the city centre in the morning/afternoon periods,
Region 82 (westbound platform toward city centre) thus exhib-
ited a stronger dependency with Region 55 (downward esca-
lator to platforms), as compared to Region 75 (eastbound plat-
form toward residential areas). However, this scenario changed
in the late afternoon/evening when people began to travel
back home. Hence, eastbound platform became busier than the
westbound platform, started around frame 20000, i.e. 6-7pm.
The westbound platform remained busy as many commuters
took a train from this platform to transit to other stations, thus
it still maintained a strong connection with Region 55. It is
observed from Fig. 14 that the proposed incremental learning
method was able to capture this dependency transition.

4.3.2 Abrupt Context Change

Fig. 15. The log-loss performance yielded by different incremen-
tal structure learning methods and a model without incremental
learning, in a scenario where (a) Cam 5 was removed starting
from frame 7500 and (b) Cam 5 was added starting from frame
7500.

In this experiment, we wish to evaluate how well an incre-
mentally trained model can adapt to visual context undergoing
abrupt changes. Two scenarios were tested: removal and addi-
tion of cameras in a camera network. In the first scenario, all
observations from Cam 5 were discarded starting from frame
7500 to simulate a faulty camera or removal of camera. The
second scenario began with eight cameras, and Cam 5 was
attached to the network starting from frame 7500.
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The goodness of adaptation was evaluated using a standard
measure of density estimation performance, known as log-
loss [40], which is defined as lloss = 1

m

∑m
t=1 log p(xt|Θ), where

m is the total number of test cases. In this experiment, lloss
was further divided using the total number of decomposed
regions in a camera network, so that a fair comparison can be
performed between two structures with different number of
cameras and decomposed regions. The computation of log-loss
requires an independent set of test samples. Consequently, we
applied a different training/testing data partitioning strategy
as employed in Sec. 4.3.1. In particular, recall that the un-
derground dataset was divided into ten subsets; 2500 frames
from each subset (excluding the three subsets employed for
initialisation and validation) were used for incremental struc-
ture learning and the remaining samples in a subset were
reserved for log-loss computation. Similar to Sec. 4.3.1, all
approaches invoked structure learning and parameter learning
every h = 500 instances were observed.

The results on both scenarios are depicted in Figures 15(a)
and 15(b). Note that both a low log-loss and a large gap to the
best one indicate worse performance. In both scenarios, the
performance of Naı̈ve represented the optimal results since
it learned a new structure in every iteration using all the
past observations. As one can observe from Figures 15(a) and
(b), MAP showed a much lower log-loss compared to Naı̈ve.
This is because it was locked to a poor structure initially and
failed to infer a proper structure to adapt to the visual context
based on limited information obtained from the prior model.
In contrast, Incremental exhibited closer performance to Naı̈ve
by just maintaining a small amount of sufficient statistics. Note
that there was a drop of log-loss performance over all methods
from frame 5000 to 7500 owing to a global unusual event due
to faulty train (see Fig. 11 for example frames of this unusual
event). Without support from all previously seen observations,
Incremental exhibited a larger drop as compared to Naı̈ve
during the occurrence of the unusual incident, causing a log-
loss gap between Incremental and Naı̈ve methods. Cam 5
was added/removed right after the end of unusual incident at
frame 7500. The log-loss gap remained between Incremental
and Naı̈ve after frame 7500 since Incremental needed to
accumulate new sufficient statistics for the learning of new
dependency links when Cam 5 was added/removed from the
network. Nevertheless, it quickly approached the distribution
modelled by Naı̈ve thereafter. It is observed from Figures 15(a)
and (b) that without incremental structure learning (Initial),
a model was not able to adapt to the current visual context,
resulting in relatively lower log-loss performances (also further
away from the optimal performance yielded by Naı̈ve) as
compared to Incremental after a camera was added/removed
from the camera network.

5 CONCLUSIONS

We have presented a novel approach to learn time delayed ac-
tivity dependencies for global unusual event detection in mul-
tiple disjoint cameras. Time delayed dependencies are learned
globally using a new incremental two-stage structure learn-
ing method. Extensive experiments on a synthetic data and
public scene data have demonstrated that the new approach
outperforms methods that disregard the time delay factor or
without learning dependency structure globally. Contrary to
most existing methods that assume static model, the proposed
approach update the activity model’s parameters and structure

incrementally and adaptively to accommodate both gradual
and abrupt context changes. There are a number of areas to
improve on:
Multi-mode time delay - Our current method assumes single-
mode time delay between regions. There are a number of
ways to extend the current method to cope with multi-mode
time delay. One way is to combine the method in [8] with
the proposed framework. However, the method proposed in
[8] cannot be used directly. This is because although it could
take regional activity values as input, feeding the regional
activity patterns directly into the method [8] can produce the
transformation entropy of activity patterns but not the multi-
mode time delays. In order to obtain the multi-mode time
delays, the input to [8] must be the transition times between
departure and arrival observations. To overcome this problem,
one could obtain different time delay peaks by performing
sliding window-based TDMI analysis on the regional activity
patterns. The different time delays can then be fed into [8]
for multi-modal time distribution modelling. Alternatively, one
could examine the TDMI functions for multiple time delay
peaks. In the current framework, only the maximum value
is considered for each TDMI function. Discovering multiple
peaks would naturally lead to the learning of multi-modal time
delays.
False edge orientations and dependencies - The current method
of determining the orientation of edges may lead to false
orientations when noise or constant crowdedness are observed
in two region pairs. Under these circumstances, spurious peaks
may be detected in the TDMI function, which will lead to
false edge orientations and dependencies (e.g., 72 → 20 and
82 → 41 in Fig. 6) that do not necessarily correspond to the
true time delayed dependencies. A possible way to filter out
these false dependencies is by analysing the shape of the TDMI
function. The rational of carrying out the shape analysis is
that a pair of connected regions would typically produce a
function with a bell-shaped curve, whilst a function for two
independent regions often exhibits a more random shape with
multiple peaks.
Detecting both global and local unusual events - Our method is de-
signed mainly for detecting global unusual events, i.e. context-
incoherent patterns across multiple disjoint cameras, rather
than local events such as individual suspicious behaviour. For
the latter, one can consider many existing approaches that are
developed specifically for detecting local events [1], [2], [3],
[4]. One could achieve both global and local-level detection by
combining the proposed method with the existing approaches
using different fusion techniques such as score-level fusion or
mixture of experts.
Time delayed dependency learning - The Granger causality [41] can
be considered to strengthen the current approach by providing
a more stringent criterion in reasoning dependency between
regional activity patterns.
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