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Abstract. State-of-the-art person re-identification methods seek robust
person matching through combining various feature types. Often, these
features are implicitly assigned with a single vector of global weights,
which are assumed to be universally good for all individuals, indepen-
dent to their different appearances. In this study, we show that certain
features play more important role than others under different circum-
stances. Consequently, we propose a novel unsupervised approach for
learning a bottom-up feature importance, so features extracted from dif-
ferent individuals are weighted adaptively driven by their unique and
inherent appearance attributes. Extensive experiments on two public
datasets demonstrate that attribute-sensitive feature importance facil-
itates more accurate person matching when it is fused together with
global weights obtained using existing methods.

1 Introduction

Appearance-based person re-identification is a non-trivial problem owing to vi-
sual ambiguities and uncertainties caused by illumination changes, viewpoint
and pose variations, and inter-object occlusions [1]. Under such stringent con-
straints, most existing methods [2, 3] combine different appearance features, such
as colour and texture, to improve reliability and robustness in person matching.
Typically, the feature histograms are concatenated and weighted in accordance
to their importance, i.e. their discriminative power in distinguishing a target of
interest from other individuals.

State-of-the-art approaches [4–7] implicitly assume a feature weighting or se-
lection mechanism that is global, by assuming a single weight vector (or a linear
weight function) that is globally optimal across all circumstances, e.g. colour is
the most important and universally good feature across all individuals. In this
study, we term this weight as global feature importance. They can be learned
either through boosting [7], rank learning [4], or distance metric learning [5].
Scalability is the main bottleneck of such approaches as the learning process
requires exhaustive supervision on pairwise individual correspondence.

We believe that certain appearance features can be more important than
others in describing an individual and distinguishing him/her from other people.
For instance, colour is more informative to describe and distinguish an individual
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Fig. 1. We show the probe image and the target image, together with the rank of
correct matching by using different feature types separately

wearing textureless bright red shirt, but texture information can be equally or
more critical for a person wearing plaid shirt (Fig. 1).

Thus, it is desired not to bias all the weights to the features that are uni-
versally good for all individuals but also selectively distribute some weights to
informative feature given different appearance attributes, which refer to appear-
ance characteristics of individuals, e.g. dark shirt, blue jeans. This intuition is
well motivated by the study in human visual attention [8], of which results
suggest that visual attention is not only governed by top-down global feature
importance, but also affected by bottom-up salient features of individual objects
as a result of attentional competition between features.

To this end, we first investigate what features are more important under what
circumstances. In particular, we show that selecting features specifically for dif-
ferent individuals can yield more robust re-identification performance than fea-
ture histogram concatenation with uniform weighting [9, 10]. Motivated by this
observation, we propose an effective approach based on the random forest [11] to
adaptively determine the feature importance of an individual driven by his/her
inherent appearance attributes. Extensive experiments conducted on two chal-
lenging person re-identification datasets demonstrate that person matching can
benefit from complementing existing ‘global weighting’ approaches with the pro-
posed attribute-sensitive feature importance.

Related Work - Most existing approaches [4–7] can be considered as ‘global
weighting’ approaches. For example, the RankSVM method in [4] aims to find a
linear function to weight the absolute difference of samples via optimisation given
pairwise relevance constraints. The Probabilistic Relative Distance Comparison
(PRDC) [5] maximises the probability of a pair of true match having a smaller
distance than that of a wrong matched pair. The output is an orthogonal matrix
that essentially encodes the global importance of each feature.

The method proposed in [12] shares a similar spirit to our work, i.e. it aims to
discover what is important given specific appearance. In contrast to [12] that re-
quires labelled gallery images to discover gallery-specific feature importance, our
method is fully unsupervised. Importantly, our method is more flexible since the
feature importance is attribute-driven, thus it is not limited to specific gallery.
A more recent work in [13] starts to explore prototype relevance for improv-
ing processing time in re-identification problem. In contrast, we systematically
investigate salient feature importance mining for improving matching accuracy.
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Contributions - (1) we draw insights into what features are more important
under what circumstances. To our best knowledge, this is the first study that
systematically investigates the role of different feature types given different ap-
pearance attributes; and (2) we formulate a novel unsupervised approach for
on-the-fly mining of attribute-sensitive feature importance. Combining it with
global feature importance leads to more accurate person re-identification while
requiring no more supervision cost than existing learning-based approaches.

2 Attribute-Sensitive Feature Importance

The summary of our approach is depicted in Fig. 2. The three main steps are:
(1) discovering prototypes by a clustering forest; (2) attribute-sensitive feature
importance mining; (3) determining the feature importance of a probe image
on-the-fly.
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Fig. 2. Overview of attribute-sensitive feature importance mining. Training steps are
indicated by red solid arrows and testing steps are denoted by blue slash arrows.

Prototypes Discovery - The first step of our method is to cluster a given set of
unlabelled images into several prototypes, each of which compose of images that
possess similar appearance attributes, e.g.wearing colorful shirt, with backpack,
dark jacket (Fig. 2(e)).

Formally, given an input of n unlabelled images {Ii}, where i = 1, . . . , n, fea-
ture extraction f(·) is first performed on every image to extract a D-dimensional

feature vector, that is f(I) = x = (x1, . . . , xD)
T ∈ R

D (Fig. 2(b)). We wish to
discover a set of prototypes c ∈ C = {1, . . . ,K}, i.e. low-dimensional manifold
clusters that group images {I} with similar appearance attributes. We treat the
prototype discovery problem as a graph partitioning problem, which requires us
to first estimate the pairwise similarity between images.

To estimate the similarity between images, we construct a clustering forest[14],
an ensemble of Tcluster clustering trees (Fig. 2(c)). Each clustering tree t defines
a partition of the input samples x at its leaves, l(x) : RD → L ⊂ N, where l
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represent a leaf index and L is the set of all leaves in a given tree. For each tree,
we compute an n× n affinity matrix At, with each element At

ij defined as

At
ij = exp−distt(xi,xj), (1)

where

distt (xi,xj) =

{
0 if l(xi) = l(xj)

∞ otherwise
. (2)

Following the Eqn. (2), we assign closest affinity=1 (distance=0) to samples
xi and xj if they fall into the same leaf node, and affinity=0 (distance=∞)
otherwise. To obtain a smooth forest affinity matrix, we compute the final affin-
ity matrix as A = 1

Tcluster

∑Tcluster

t=1 At. This method offers a few advantages as

compared to conventional similarity measuring approaches: (1) avoiding manual
definition of distance function since the pairwise affinities are defined by the tree
structure itself, and (2) implicit selection of optimal features and correspond-
ing forest parameters via optimisation of the well-defined clustering information
gain function [11].

Given the affinity matrix, the normalised cuts algorithm [15] is employed to
partition the weighted graph into K prototypes. Thus, each unlabelled probe
image {Ii} is assigned to a prototype ci(Fig. 2(e)). In this study, K is pre-
defined but one can estimate the cluster number automatically using alternative
methods such as [16].

Attribute-Sensitive Feature Importance - As discussed in Sec. 1, unlike
the global weight vector that is assumed to be universally good for all im-
ages, attribute-sensitive feature importance is specific to prototype characterised
by different appearance characteristics. That is each prototype c has its own
attribute-sensitive weighting wc = (wc

1, . . . , w
c
D)

T
, of which high value should

be assigned to unique features of that prototype. For example, texture features
gain higher weights than others if the images in the prototype have rich textures
but less bright colours.

Based on the above intuition, we compute the importance of a feature accord-
ing to its ability in discriminating different prototypes. Specifically, we train a
classification random forest [11] using {x} as inputs and treating the associated
prototype labels {c} as classification outputs (Fig. 2(f)). For each tree t, we
reserve 1

3 of the original training data as out-of-bag (oob) validation samples.

First, we compute the classification error εc, td for every dth feature in prototype
c. Then we randomly permute the value of the dth feature in the oob samples
and compute the ε̃ c, t

d on the perturbed oob samples of prototype c. The impor-
tance of the dth feature of prototype c is then computed as the error gain [11]

wc
d =

1

Tclass

Tclass∑
t=1

(ε̃ c, t
d − εc, td ), (3)

where Tclass is the total number of trees in the classification forest. Higher value
in wc

d indicates higher importance of the dth feature in prototype c. Intuitively,
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the dth feature is important if perturbing its value in the samples causes a drastic
increase in classification error, which suggests its critical role in discriminating
between different prototypes.

Ranking - Given feature vector of an unseen probe image xp, our method will
determine its feature importance on-the-fly driven by its appearance. First, we
classify xp using the learned classification forest to obtain its prototype label
c (Fig. 2(h)). Then we compute the distance xp against a feature vector of a
gallery/target image xg using the following function

dist(xp,xg) = ‖(wc)T|xp − xg|‖1. (4)

The matching ranks of xp against a gallery of images can be obtained by sorting
the distances computed from Eqn. (4). A smaller distance results in a higher
rank.

Fusion with Global Feature Weight Vector - We investigate the fusion
between the global feature weight matrixV obtained from existing methods [4, 5]
and our attribute-sensitive feature importance vector w to gain more accurate
person re-identification performance. We adopt a weighted sum scheme as follows

distfusion(x
p,xg) = α‖(wc)

T|xp − xg|‖1 + (1− α)‖VT|xp − xg|‖1, (5)

where α is a parameter that controls the weight between global attribute-sensitive
importances.

3 Experiments

In Sec. 3.1, we first investigate the re-identification performance of using differ-
ent features given individuals with different inherent appearance attributes. In
Sec. 3.2, the qualitative results of prototype discovery are presented. We then
compare feature importances produced by our unsupervised bottom-up solu-
tion and two top-down global weighting methods, namely RankSVM [4] and
PRDC [5], in Sec. 3.3. Finally, we report the results on combining these two
types of feature importance.

Datasets - Two publicly available person re-identification datasets, namely
VIPeR [7] and i-LIDS Multiple-Camera Tracking Scenario (MCTS) [17] were
used for evaluation. The VIPeR dataset contains 632 persons, each of which has
two images captured in outdoor views. The dataset is challenging due to dras-
tic appearance difference between most of the matched image pairs caused by
viewpoint variations and large illumination changes at outdoor environment (see
Fig. 3). The i-LIDS MCTS dataset was captured in a busy airport arrival hall
using multiple cameras. It contains 119 people with a total of 476 images, with an
average of four images per person. Apart from the illumination changes and pose
variations, many images in this dataset are also subject to severe inter-object
occlusions (Fig. 3(f)).

Features - We employed a mixture of colour and texture histograms similar to
those employed in [4, 5]. Specifically, we divided an image of a person equally
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Fig. 3. In each subfigure, we show the probe image and the target image, together with
the rank of correct matching by using different feature types separately.

into six horizontal stripes, to roughly capture the head, upper and lower torsos,
and leg regions. In each stripe, we considered 8 colour channels (RGB, HSV and
YCbCr)1 and 21 texture filters (8 Gabor filters and 13 Schmid filters) applied to
luminance channel [4]. Each channel was represented by a 16-dimensional vec-
tor. Concatenating all the feature channels resulted in 2784-dimensional feature
vector for each image.

Evaluation - We used the �1-norm as the matching distance metric. The match-
ing performance was measured using the averaged cumulative match character-
istic (CMC) curve [7] over 10 trials. The CMC curve represents the correct
matching rate at the top r ranks. We selected all the images of p person to build
the test set. The remaining data was used for training. In the test set of each
trial, we randomly chose one image from each person to set up the test gallery
set and the remaining images were used as probe images.

3.1 Performance of Using Different Features

We believe that certain features can be more important than others in describing
an individual and distinguishing him/her from other people. To validate our
hypothesis, we analysed the matching performance of using different features
individually.

We first provide a few examples in Fig. 3 (also presented in Fig. 1) to com-
pare the ranks returned by using different feature types. It is observed that no
single feature type was able to constantly outperform the others. In the VIPeR
dataset, for individuals wearing textureless but colourful and bright clothing
(e.g. Fig. 3(a)), the colour features yielded a higher rank. For person wearing
clothing with rich texture or with a logo, e.g. Figures 3 (b) and (c), texture fea-
tures especially the Gabor features tend to dominate. The results suggest that
certain features can be more informative than others given different appearance
attributes.

The overall matching performance is presented in Fig. 4. In general, HSV and
YCbCr features exhibited very close performances, which were much superior

1 Since HSV and YCbCr share similar luminance/brightness channel, dropping one of
them results in a total of 8 channels.
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Fig. 4. The CMC performance comparison of using different features on the VIPeR
and i-LIDs datasets. ‘Concatenated Features’ refers to the concatenation of all feature
histograms with uniform weighting. In the ‘Best Ranked Features’ strategy, ranking
for each individual was selected based on the best feature that returned the highest
rank during matching.

over all other features. This observation of colours being the most informative
features agreed with the past studies [7]. Simply concatenating all the feature
histograms with uniform weighting did not necessary yield better performance,
as can be observed in Fig. 4. The results suggest a more careful feature weight-
ing according to their level of informativeness is necessary. The ‘Best Ranked
Features’ strategy yielded the best performance, i.e.13.97% and 11.31% improve-
ment of AUC (area under curve) on the VIPeR and i-LIDS datasets, respectively,
in comparison to ‘Concatenated Features’. In the ‘Best Ranked Features’ strat-
egy, the final rank was obtained by selecting the best feature that returned the
highest rank for each individual, e.g. selecting HSV feature for Fig 3(a) whilst
choosing Gabor feature for Fig 3(c). This is a heuristic way. Nevertheless, the
results suggest that the overall matching performance can potentially be boosted
by weighting features selectively according to the inherent appearance attributes.

3.2 Prototype Discovery

To weigh features in accordance to the inherent appearance attributes, our
method first discovers prototypes, i.e. low-dimensional manifold clusters that
model similar appearance attributes (see Sec. 2). The number of cluster K is set
to 10 and 5 for the VIPeR and i-LIDS datasets, respectively, roughly based on
the amount of training samples. We set Tcluster = Tclass = 200. The minimum
forest node size was set to 1.

Some examples of prototype discovered on the VIPeR dataset are depicted in
Fig. 5. Each colour-coded row represents a prototype. A short list of possible at-
tributes discovered in each prototype is given next to it. Note that these inherent
attributes were neither pre-defined nor pre-labelled, but automatically discov-
ered by the unsupervised clustering forest. As shown by the example members
in each prototype, images with similar attributes were likely to be categorised
into the same cluster. For instance, a majority of attributes in the second pro-
totype can be characterised with bright and high contrast colour appearance. In
the forth prototype, the key attributes are ‘carrying backpack’ and ‘side pose’.
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Fig. 5. Example of prototypes discovered on the VIPeR dataset. Each prototype rep-
resents a low-dimensional manifold cluster that models similar appearance attributes.
Each image row in the figure shows a few examples of images in a particular prototype,
with their interpreted unsupervised attributes listed on the right.

The results demonstrate that our method is capable of generating reasonably
good clusters of inherent attributes, which can be employed in subsequent step
for attribute-sensitive feature importance mining.

3.3 Attribute-Sensitive vs. Global Feature Importance

Comparing Global and Attribute-Sensitive Importance: The aim of this
experiment is to compare the feature importances produced by existing ap-
proaches [4, 5] and the proposed attribute-sensitive feature importance mining
method. Two state-of-the-art methods, i.e. the RankSVM [4] and the PRDC [5]
(see Sec. 1), were evaluated using the authors’code. The global feature impor-
tances/weights were learned using the labelled images, and averaged over 10-fold
cross validation. We set the penalty parameter C in RankSVM to 100 for both
datasets and used the default parameter values for PRDC.

The left pane of Fig. 6 shows the feature importance discovered by both
RankSVM and PRDC. For PRDC, we only show the first learned orthogonal
projection, i.e. feature importance. Each region in the partitioned silhouette im-
ages were masked with the labelling colour of the dominant feature. In the feature
importance plot, we show in each region the importance of each type of features.
The importance of a certain feature type is derived by summing the weight of all
the histogram bins belong to this type. The same steps were repeated to depict
the attribute-sensitive feature importance on the right pane.

In general, the global feature importance emphasised more on the colour
features for all the regions, whereas the texture features were assigned higher
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Fig. 6. Comparison of the global feature importance/weights produced by the
RankSVM[4], PRDC[5], and the attribute-sensitive feature importance discovered us-
ing the proposed method

weights in the leg region than the torso region. This weight assignment or impor-
tance was applied universally to all images. In contrast, the attribute-sensitive
feature importance are more person-specific. For example, for image regions with
colourful appearance, e.g.Fig. 6(a)-1, the colour features in torso region were as-
signed with higher weights than the texture features. For image regions with
rich texture, such as the stripes on the jumper (Figure. 6(a)-3), flower skirt
(Figure. 6(b)-2), and bag (Figure. 6(b)-4), the importance of texture features
increased. For instance, in Fig. 6(b)-2, the weight of gabor feature in the fifth
region was 36.7% higher than that observed in the third region.

Table 1. Comparison of top rank matching rate (%) on the VIPeR and i-LIDS datasets.
r is the rank and p is the size of gallery set.

Methods VIPeR ( p = 316 ) i-LIDS (p = 50)
r = 1 r = 5 r = 10 r= 20 r = 1 r = 5 r = 10 r = 20

Uniform weight[9, 10] 9.43 20.03 27.06 34.68 30.40 55.20 67.20 80.80
Our method 9.56 22.44 30.85 42.82 27.60 53.60 66.60 81.00
RankSVM[4] 14.87 37.12 50.19 65.66 29.80 57.60 73.40 84.80

Our method+RankSVM 15.73 37.66 51.17 66.27 33.00 58.40 73.80 86.00
PRDC[5] 16.01 37.09 51.27 65.95 32.00 58.00 71.00 83.00

Our method+PRDC 16.14 37.72 50.98 65.95 34.40 59.20 71.40 84.60
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Integrating Global and Attribute-Sensitive Importance: As shown in
Table. 1, in comparison to the baseline uniform feature importance, our method
yielded improved matching rate on the VIPeR dataset. No improvement was
observed on the i-LIDS dataset. A possible reason is the small training size in
the i-LIDS dataset, which leads to suboptimal prototype discovery. This can be
resolved by collecting more unsupervised images during prototype discovery. We
integrated both global and attribute-sensitive feature importance following the
method described in Sec. 2 by setting α = 0.1. An improvement as much as
3.2% on rank 1 matching rate can be obtained when we combined our method
with RankSVM [4] and PRDC [5] on these two datasets. It is not surprised to
observe that the supervised learning-based approaches [4, 5] outperformed our
unsupervised approach. Nevertheless, the global approaches benefited from slight
bias of feature weights driven by specific appearance attributes of individuals.
The results suggest that these two kinds of feature importance are not exclusive,
but can complement each other to gain improved matching rate.

4 Conclusion

In this study, we have shown that certain appearance features can be more
important than others in describing an individual and distinguishing him/her
from other people. The results suggested that instead of biasing all the weights to
features that are universally good for all individuals, selectively distributing some
weights to informative feature specific to certain appearance attributes can lead
to better re-identification result. Future work include the investigation of better
integration strategy of both global and attribute-sensitive feature importance,
and incremental update of prototypes.
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