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Abstract

While deep learning has significantly improved ReID
model accuracy under the independent and identical dis-
tribution (IID) assumption, it has also become clear that
such models degrade notably when applied to an unseen
novel domain due to unpredictable/unknown domain shift.
Contemporary domain generalization (DG) ReID models
struggle in learning domain-invariant representation solely
through training on an instance classification objective. We
consider that a deep learning model is heavily influenced
and therefore biased towards domain-specific characteris-
tics, e.g., background clutter, scale and viewpoint variations,
limiting the generalizability of the learned model, and hy-
pothesize that the pedestrians are domain invariant owning
they share the same structural characteristics. To enable
the ReID model to be less domain-specific from these pure
pedestrians, we introduce a method that guides model learn-
ing of the primary ReID instance classification objective
by a concurrent auxiliary learning objective on weakly la-
beled pedestrian saliency detection. To solve the problem
of conflicting optimization criteria in the model parameter
space between the two learning objectives, we introduce
a Primary-Auxiliary Objectives Association (PAOA) mech-
anism to calibrate the loss gradients of the auxiliary task
towards the primary learning task gradients. Benefiting
from the harmonious multitask learning design, our model
can be extended with the recent test-time diagram to form
the PAOA+, which performs on-the-fly optimization against
the auxiliary objective in order to maximize the model’s
generative capacity in the test target domain. Experiments
demonstrate the superiority of the proposed PAOA model.

1. Introduction

Person Re-IDentification (ReID) [18, 21, 40, 45] is a
fundamental task which aims to retrieve the same pedes-
trian across non-overlapping camera views by measuring
the distances among representations of all the candidates in

a pre-learned discriminative feature space. However, like
most deep-learning models, current ReID techniques are
built based on an intrinsic assumption of independent and
identical distribution (IID) between training and test data.
The IID assumption becomes mostly invalid across different
domains when training and test data are not from the same
environment. As a result, most contemporary ReID mod-
els suffer from dramatic degradation when applied to a new
domain [4, 25, 34]. Domain Generalization (DG) methods
[26, 46, 47], which aim to learn a generalizable model be-
tween a source and a target domain have been explored by
recent studies to address this problem.
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Figure 1. Comparing a standard Domain Generalization ReID
model and the proposed Primary-Auxiliary Objectives Association
(PAOA) model. A DG model is typically trained by optimizing an
instance classification objective, which can suffer from overfitting
to domain-specific characteristics, e.g., luminance, background,
scale, and viewpoint. The PAOA model considers learning jointly
a weakly labeled/supervised auxiliary saliency detection task con-
currently with the primary task of the discriminative person ReID.
This is achieved by calibrating the gradient of the auxiliary task
against that of the primary objective as its reference.

A number of DG ReID methods have been developed to
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mitigate performance degradation caused by domain shift be-
tween training (source) data and test (target) data. They can
be broadly categorized into three main groups: (1) Learning
from diversified training samples [1, 16], (2) Aligning the
distribution of source domains by data statistics [14, 49, 50],
(3) Exploiting meta-learning [4, 5, 42, 47] to mimic source-
target distribution discrepancies. The first category confers
advantages to a model through the utilization of a diversi-
fied training dataset by either image sample augmentation
or feature distribution expansion. The second category aims
to learn a source-invariant model by aligning the training
data, and expecting it to be invariant for the target domain.
The third category focuses on simulating the training/testing
discrepancy. Despite some performance improvement from
these methods, their overall performances across domains
remain poor, e.g., the latest SOTA models [4, 42] can only
achieve below 20% mAP on the MSMT17 benchmark. This
highlights the limitation of overfitting in the current DG
ReID models and their inability to learn a more generaliz-
able cross-domain model representation. We consider this is
due to the not-insignificant interference of domain-specific
contextual scene characteristics such as background, view-
point, and object distances to a camera (scale), which are
identity-irrelevant but can change significantly across differ-
ent domains. Contemporary DG ReID models are mostly
trained by an instance-wise classification objective function,
indirectly learning person foreground attention selection
(Figure 1(a)). They are sensitive to such domain-specific but
identity-irrelevant contextual information, resulting in the
misrepresentation of person foreground attention and leading
to less discriminative ReID representation. This likely causes
notable ReID performance degradation on models trained
and deployed in different domains. To mitigate the impact of
domain-specific contextual attributes, an intuitive solution is
to isolate the pedestrian object to acquire a domain-invariant
representation. Several endeavors [11, 29, 48] have been
made to guide the person identification network focusing
on the pedestrian with the human saliency prior, which can
point out the attentive region relevant to the human subject.
These methods have certain limitations, either relying on
exhaustive manual masking [29] or lacking an appropriate
training objective [11, 48] to ensure the accuracy of the gen-
erated segmentation mask. Besides this, it is crucial to note
that these methods fail to consider the potential worst-case
scenario in which the saliency attention prior may be inac-
curate, further leading to negative impacts on identification
rather than improvement.

In this work, we address this problem by introducing a
novel model learning regularization method called Primary-
Auxiliary Objectives Association (PAOA). Our aim is to
minimize domain-specific contextual interference in model
learning by focusing more on the domain-invariant person’s
unique characteristics. This is achieved by introducing the

association of learning the primary instance classification ob-
jective function with an auxiliary weakly labeled/supervised
pedestrian saliency detection objective function, the idea is
illustrated in Figure 1(b). Specifically, PAOA is realized
in two parts: (1) Additionally train a pedestrian saliency
detection head with an auxiliary supervision to assist in fo-
cusing the primary ReID discriminative learning task on
more domain-invariant feature characteristics. (2) Elimi-
nate the interference attributed to inaccurate saliency labels
by calibrating the gradients of the shared feature extractor
raised from the weakly-labeled auxiliary learning task to-
wards that of the primary task as a reference when they are
in conflict [28]. This association mechanism helps ensure
the ReID model learns to attentively focus on generic yet
discriminative pedestrian information whilst both learning
tasks are harmoniously trained.

Our contributions are: (1) We introduce the idea of op-
timizing a more domain-generic ReID learning task that
emphasizes domain-invariant pedestrian characteristics by
associating the ReID instance discriminative learning objec-
tive to an auxiliary pedestrian saliency detection objective in
a way that does not create conflicts or hinder the effective-
ness of primary objective. (2) We formulate a novel regu-
larization called Primary-Auxiliary Objectives Association
(PAOA) to implement the proposed association learning. It
jointly trains the primary and auxiliary tasks with referenced
gradient calibration to solve the conflicting optimization cri-
teria between the two learning objectives, and promote the
learning of a more domain-generic ReID model. (3) We
further explore the target domain test data characteristics by
incorporating the PAOA regularization into a deployment-
time model online optimization process. To that end, we
formulate a PAOA+ mechanism for on-the-fly target-aware
model optimization and show its performance benefit.

2. Related Work

Domain Generalizable ReID (DG ReID) assuming the
absence of target domains during training, aims to learn a
generalizable model which can extract discriminative repre-
sentations in any new environment. It’s naturally challenging
but practical and has attracted increasing attention. Contem-
porary studies typically fall into three primary classifica-
tions: (1) To benefit the model from the diverse training data
achieved by augmentation. (2) To align the target domain
with the BN statistics calculated over the source domain.
(3) To mimic the train/test discrepancy with meta-learning.
Despite the improvement obtained by these SOTA models,
significant room for improvement remains, as indicated by
the low mAP scores, e.g., less than 20% on MSMT17 and
less than 40% on CUHK03. This is attributed to the domain-
specific interference in the source domain that limits the
learning of a domain-invariant model. In this work, we aim
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to tackle this issue by guiding the model to focus on the dis-
criminative pedestrian area with the tailored auxiliary task,
and propose the PAOA regularization for that end.

Salient Object Detection [3] aims to identify objects or
regions that are visually more attentive than the surrounding
areas. It has been significantly boosted solely by the rapid
development of deep learning. Current detection models are
usually trained end-to-end and output a fine-grained saliency
map at the pixel level. In this work, we design the auxiliary
task with the pedestrian saliency detection objective. Instead
of exhaustively labeling the pedestrian area manually as the
previous work [29], we propose to use weakly labeled data
generated by a trained salient object detection model, to ben-
efit from large-scale training. The recent work GASM [11]
shares the similar spirit to ours by employing weakly labelled
saliency masks as an additional prior. However, GASM sim-
ply trains the saliency detection layers with the classification
network while omitting the potential worst-case where the
weak label is not accurate and cause potential conflict opti-
mization direction during model training. In contrast, our
method focuses on the association between instance classi-
fication and saliency detection objectives by the proposed
referenced gradient calibration mechanism, which promotes
the learning of the primary objective while mitigating the
conflicts between the primary and auxiliary tasks.

Multitask learning [39] emerges as a solution to learn a
single model which is shared across several tasks, so as to
achieve greater efficiency than training dedicated models
individually for each task. Recent work [37] pointed out
that conflicting gradients during multitask learning impede
advancement. To break this condition and achieve positive
interactions between tasks, they proposed to de-conflict such
gradients by altering their directions towards a common
orientation. Our model is also constructed in a multitask
learning manner, in which the main and the auxiliary tasks
are jointly optimized during training. However, the auxiliary
task is designed to facilitate the main task therefore it is
unsuitable to consider them in the same hierarchy. Instead,
we propose referenced gradient calibration by setting the
main task as the reference, and calibrating the auxiliary
gradient towards it, so as to ensure the auxiliary task can be
harmoniously trained alongside the main task, so that it may
provide supervision for the primary model objective.

Test-Time model optimization is an emerging paradigm to
tackle distribution shifts between training and testing envi-
ronments. The key idea is to perform post-training model
optimization given the test samples during deployment. Sev-
eral recent works [7, 13, 32, 33] proposed to optimize the
model parameters by providing proper supervision, such
as batch-norm statistics, entropy minimization, and pseudo-
labeling. Another line of work [23, 31] jointly trains addi-

tional self-supervised auxiliary tasks, which are subsequently
used to guide the model optimization during testing. This
does not involve any assumptions about the output and is
therefore more generic. It has also been applied to ReID
[9] by considering self-supervised learning tasks for updat-
ing BN statistics. In this work, we formulate PAOA+ by
incorporating the proposed PAOA regularization into the
deployment-time optimization framework to seek further
improvement. With the tailored auxiliary objective as the
optimization supervision, PAOA+ effectively exploits the
underlying target domain characteristic and exhibits boosted
performance on all the benchmarks.

3. Methodology

Problem Definition Given a labeled source domain DS =
{(xi, yi)}i∈{1,··· ,N} for training, where N is the number of
samples, the aim of ReID is to learn a mapping function
parameterized by θ that projects a person image x to a high-
dimensional feature representation fθ, with the constraint
that features of the same identity have a smaller distance rel-
ative to one another. DG ReID is more practical by assuming
the non-availability of the target domain during training, and
expects the model to be able to extract discriminative feature
representations from any target domain. Current models are
designed solely with an instance classification objective, that
can be confused by negative domain-specific information
and fall into a local optimum of the source domain.

3.1. Overview

In this work, we consider the problem of generalizing
a ReID model to any new deployment target environment
subject to unknown domain bias between the training and the
test domains, where there is no labeled training data from the
test domain. To that end, we propose a Primary-Auxiliary
Objectives Association (PAOA) regularization method to en-
able the model to be more attentive to learning universal
identity generative information that is applicable in any do-
main whilst concurrently maximizing ReID discriminative
information from the domain labeled data. Figure 2 shows
an overview of PAOA in model training with two associative
steps: (1) Guiding the ReID model to focus on discrimina-
tive pedestrian information with an additional auxiliary task
dedicated to visual saliency detection. (2) Calibrate the gra-
dients of the auxiliary task when it conflicts with the primary
instance classification objective. To boost the performance,
we build PAOA+ to utilize the available samples in deploy-
ment time by minimizing the proposed auxiliary objective,
and demonstrate the plug-and-play merit of our design.

3.2. Joint Primary-Auxiliary Objectives Learning

The primary and auxiliary objectives are jointly trained
in a multitask learning architecture, which is composed of a
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Figure 2. Overview of the proposed Primary-Auxiliary Objectives Association (PAOA) model. The purpose is to derive generic feature
representations by guiding the network to attentively focus on pedestrian information and mitigate the interference of domain-specific
knowledge, which is achieved by the PAOA regularization of a primary classification objective and an auxiliary pedestrian saliency detection
objective: (a) The auxiliary task is jointly trained to provide hard-coded spatial attention to the pedestrian region. (b) The primary task is
used as a reference to calibrate the gradients of the auxiliary objective when they are conflicting.

shared feature extractor fθ, and two dedicated heads hp and
ha respectively for the primary and auxiliary tasks.

Primary Objective: Person ReID Learning a strong in-
stance classification network is fundamentally important
for training a discriminative ReID model. Given a labeled
training set D = {(xi, y

(p)
i )}i∈{1,··· ,N}, where xi is a per-

son image and y
(p)
i is the corresponding instance category

label, the primary instance classification task is trained with
a softmax cross-entropy (CE) loss Lid and a triplet loss Ltri:

Lid = −
N∑
i=1

C∑
j=1

pji logp̂ji , (1)

where pi is one-hot vector activated at y(p)i , and p̂ji is the
probability for categorized into the jth class that calculated
from the classifier. The additional triplet loss constrains
the distance between positive (same identity) and negative
(different identities) sample pairs, which is formulated as

Ltri =

N∑
i=1

[dp − dn + α]+, (2)

where dp and dn respectively denote the Euclidean distances
for the positive and negative pairs in feature space. α is the
margin that controls the sensitivity and [s]+ is max(s, 0).
The overall loss function for the primary task is as follows:

Lprim = Lid + Ltri. (3)

Auxiliary Objective: Pedestrian Saliency Detection As
illustrated in [31], an auxiliary task closely aligned with
the primary task can substantially prompt the learning of
the primary objective. Inspired by this, we formulated the
auxiliary task as pedestrian saliency detection to perform

pixel-level pedestrian localization within the cropped pedes-
trian bounding boxes. Such an auxiliary task is complemen-
tary to the primary task by providing pixel-level hard-coded
spatial attention to guide the ReID model to focus on the
pedestrian region. Instead of exhaustively manually anno-
tating the pedestrian region, we benefit from the large-scale
trained model [41] and perform feed-forward inference to
get the weakly labelled samples. Specifically, given a trained
saliency model G, we feed the sample to obtain the weak
label as y

(a)
i = G(xi), which is a 2D map to indicate the

saliency area. The auxiliary task and it’s essentially a re-
gression task in the pixel level. To that end, the auxiliary
head ha is designed as a lightweight module composed of
cascaded 2D CNN layers to predict the saliency map. It
is optimized by minimizing a conventional L1 loss on the
predicted salient label ŷ(a)k :

Laux =

Nk∑
k=1

|y(a)k − ŷ
(a)
k |. (4)

Joint Multi-task Learning To build a joint multitask learn-
ing pipeline, we formulate the overall objective function by
combining both Lprim and Laux as

Ltrain =
1

N

N∑
1

Lprim(xi, y
(p)
i ; fθ, hp) + λLaux(xi, y

(a)
i ; fθ, ha),

(5)
where λ is the balancing hyperparameter.

Limitation: Despite the auxiliary objective essentially pro-
viding hard-coded spatial attention to guide the network be-
ing focused on the salient pedestrian object, this pipeline
is intrinsically limited. This is due to the inherent noise in
the weak label of the auxiliary task that brings a detrimental
impact on the primary task and distracts the shared feature
extractor from focusing on the pedestrian region. This has
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further resulted in a divergent gradient descent direction, re-
flected by the conflicting gradients. We intuitively visualize
the cause of interference in Figure 3. Hence, it becomes nec-
essary to perform a post-operation that resolves the conflicts
between the learning objectives.

3.3. Association: Referenced Gradient Calibration

During the model training, the learnable parameter θ
of the shared feature extractor fθ is updated based on two
loss gradients: gp =

∂Lprim

∂θ from the primary objective and
ga = ∂Laux

∂θ from the auxiliary objective. However, when gp
and ga are in conflict as reflected by a negative inner prod-
uct, i.e., (ga · gp) < 0, their joint effort cannot provide the
network with an informative direction on which to perform
the gradient descent to optimize the parameters. Therefore,
collectively they bring significant difficulty in model conver-
gence and can even lead to destructive interference [37].

Figure 3. Illustration of the interference to the ReID objective when
the weak saliency label is inaccurate. Each sample is presented
with three columns: the input pedestrian image on the left, the
activation from the primary ReID head in the middle, and the weak
label for the auxiliary saliency detection head on the right. The
gradient descent directions for the two objectives are contradictory.

To address this fundamental limitation, we propose to
break through the dilemma by calibrating the conflicting
gradient yield by the auxiliary objective with that from the
primary objective as a reference. Specifically, When ga is
conflicting with gp, we consider gp as a reference and man-
ually alter the direction of ga by mapping it to the normal
plane of gp to get the calibrated gradient gc

a as

gc
a = ga − ga · gp

∥gp∥2
ga, subject to (ga · gp) < 0, (6)

Remark: This procedure changes the direction of the con-
flicting gradient to ensure it does not conflict with the pri-
mary task. With the calibrated gradient, the model can con-
sider the partial guidance of the auxiliary objective, ensuring
the joint effort is non-conflicting with the primary objective.
It is effective in minimizing the side effects caused by the in-
accurate labeling of the auxiliary task while still performing
standard first-order gradient descent to optimize the model.

3.4. Deployment-Time Optimization

We further formulate the PAOA+ to exploit the data char-
acteristic of the target domain and perform deployment time

optimization with the available samples during testing. Con-
sidering that the proposed PAOA is composed of a shared
feature encoder fθ and two separate task heads hp and ha

that are optimized jointly during model training. When the
trained model is deployed in a new environment, given a
batch of identity-unknown samples {x′

i}i∈{1,··· ,B′}, with
the corresponding weakly labels {y′(a)i } generated by the
pre-trained saliency detection model, the shared feature ex-
tract fθ can be further optimized on the auxiliary task by
minimizing the following loss

Ltest =
1

B

B∑
1

Laux(x
′
i, y

′(a)
i ; fθ). (7)

So that fθ can be swiftly adapted by considering the data
distribution of the new environment, further to yield im-
proved performance on the main task. Note the difference
from domain adaptation based methods which assume the
test sample is available during the training phase for explicit
distribution alignment, PAOA+ only requires a batch of sam-
ples with arbitrary numbers for on-the-fly updates, allowing
it to seamlessly adapt to new data distributions.

3.5. Model Training and Deployment

Training stage: Given the formulation of the primary and
auxiliary tasks, the PAOA model is designed in multitask
learning architecture and can benefit from the conventional
learning supervision by jointly minimizing the primary and
auxiliary losses. The parameters are iteratively optimized
with the training loss (Eq. (5)). As the feature extractor pa-
rameterized by θ is shared by both the primary and auxiliary
tasks, it will be jointly updated with two gradients: gp for the
primary task and ga for the auxiliary task. To seek positive
interactions between tasks, the direction of ga will be cali-
brated only if it conflicts with gp by Eq. (6). Note that the
cross-entropy loss provides stronger supervision for person
classification, therefore we use its gradients as the reference
to calibrate that of the auxiliary task. This calibrated gradi-
ent ensures the auxiliary task is harmoniously trained with
the primary task by back-propagation and thereby brings
benefits to facilitate the deployment-time optimization. The
overall training procedure is depicted in Algorithm 1.

Deployment stage: To make a consistent comparison with
DG ReID methods, we can directly apply the trained PAOA
model for identity representation extraction. Additionally,
the improved PAOA+ model further performs deployment
time optimization during the testing stage to mitigate the do-
main shift between the training and testing domains. Given
the identity representations, subsequent identity retrieval is
performed by a general distance metric.

4. Experiment
4.1. Experimental Settings
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(b) CUHK03 (d) Market1501 (c) MSMT17 (a) CUHK-SYSU 

Figure 4. Example identity samples from different domains and its corresponding weak labels for the auxiliary task. Significant domain gaps
are caused by the variation on nationality, illumination, viewpoints, resolution, scenario, etc. As complementary, the pedestrian saliency
label can provide a guide on the most discriminative person area.

Algorithm 1 Model Training with PAOA regularization

Input: Labeled dataset D = {(xi, y
(p)
i )} for primary task,

weak label generator G for auxiliary task, shared feature ex-
tractor fθ, head modules hp/ha for primary/auxiliary tasks.
Output: Trained fθ, hp and ha.
for i = 1 to max iter do

Randomly sample a mini-batch {(xi, y
(p)
i )}i∈{1,··· ,NB}

from source dataset D.
Generate the weak label for the auxiliary task by {y(a)i =

G(xi)}i∈{1,··· ,NB}.
Compute the training loss (Eq. (5)) and calculate the gradi-

ents.
Calibrate the conflicting gradients (Eq. (6)).
Update the network by gradient descent.

end for

Implementation Details We used PFAN [41] as the wake
label generator for the auxiliary task. The shared feature
extractor is a ResNet50 [10] pre-trained on ImageNet [6] to
bootstrap the feature discrimination. The balancing hyper-
parameter in Eq. (5) was set to 0.1. The batch size was set to
64, including 4 images for 16 randomly sampled identities.
All images were resized to 128×256. The model was trained
for 200 epochs with the Adam optimizer [17]. The learning
rate was set to 3.5e − 4. The dimension of the extracted
identity representation was set to 2048. The dimension of
the saliency map is 64 × 32. The learning rate for PAOA+
was set to 1e − 6 and the test batch size was 200. The
post-optimization step is set to 1 for balancing performance
and efficiency. All the experiments were implemented on
PyTorch [27] on a single A100 GPU.

Datasets and Evaluation Protocol We conducted multi-
source domain generalized ReID on a wide range of bench-
marks. including Market1501 (M) [43], MSMT17 (MS) [34],
CUHK03 (C3) [20], CUHK-SYSU (CS) [35], CUHK02
(C2) [19], VIPeR [8], PRID [12], GRID [24], and iLIDs [44].
We evaluated the performance of PAOA on the four small-
scale datasets following the traditional setting [2, 15, 30, 38].

We also performed leave-one-out evaluations by using three
datasets for training and the remaining for the test [4, 22, 42].
Note that the CUHK-SYSU is only for training given all
the images are captured by the same camera. To learn a
discriminative model benefits from diverse identities, all the
identities regardless of the original train/test splits, were used
for training. We adopted Mean average precision (mAP) and
Rank-1 of CMC as the evaluation metrics.

4.2. Comparison with SOTA methods

We compared the proposed PAOA against several recent
SOTA methods, and the comparison results are shown in
Table 1 and Table 2. Under a fair comparison with exist-
ing DG ReID methods, the PAOA model outperforms all
the competing methods by a significant margin on both the
traditional setting and the large-scale settings across all the
evaluation metrics. It shows a clear advantage over the recent
SOTA methods. Notably, even trained with fewer datasets
compared with [2, 16, 30], the proposed method is still able
to extract discriminative features for identity matching. Be-
sides, we extended our analysis to include the results from
the test-time optimization variant, PAOA+, which notably
improves PAOA consistently across all benchmarks. These
results provide additional evidence on the effectiveness of
the associative learning strategy, where the auxiliary task can
promote the primary ReID objective during test time given
the absence of identity labels.

4.3. Ablation Studies

Component Analysis We investigated the effects of dif-
ferent components in PAOA model design to study their
individual contributions. The baseline model is a ResNet50
pre-trained on ImageNet. The comparison results are shown
in Table 3, from which we can observe that the auxiliary
objective and the gradient calibration strategies can consis-
tently improve performance. With further deployment-time
optimization, our model can be advanced by benefiting from
mining the data characteristics in the target domain. It is no-
table that the variant without gradient calibration can always
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Table 1. Comparison with the SOTA methods on traditional evaluation protocol. The best results are shown in red and the second-best
results are shown in blue.

PRID GRID VIPeR iLIDs AverageSource Method mAP R1 mAP R1 mAP R1 mAP R1 mAP R1
DIMN [30] 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5
SNR [16] 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.3 57.3M+D+C2

+C3+CS DMG-Net [2] 68.4 60.6 56.6 51.0 60.4 53.9 83.9 79.3 67.3 61.2
M3L [42] 64.3 53.1 55.0 44.4 66.2 57.5 81.5 74.0 66.8 57.2
MetaBIN [4] 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5
ACL [38] 73.5 63.0 65.7 55.2 75.1 66.4 86.5 81.8 75.2 66.6
META [36] 71.7 61.9 60.1 52.4 68.4 61.5 83.5 79.2 70.9 63.8
PAOA (Ours) 74.0 65.6 67.2 56.3 76.6 66.7 87.1 83.1 76.2 67.9

M+C2+
C3+CS

PAOA+ (Ours) 75.1 66.5 67.8 56.9 77.2 67.7 88.0 83.9 77.0 68.8

Table 2. Comparison with the SOTA methods on large-scale evaluation protocol. The best results are shown in red and the second-best
results are shown in blue.

M+MS+CS→C3 M+CS+C3→MS MS+CS+C3→M AverageMethod Reference mAP R1 mAP R1 mAP R1 mAP R1
SNR [16] CVPR2020 17.5 17.1 7.7 22.0 52.4 77.8 25.9 39.0
QAConv50 [22] ECCV2020 32.9 33.3 17.6 46.6 66.5 85.0 39.0 55.0
M3L [42] CVPR2021 35.7 36.5 17.4 38.6 62.4 82.7 38.5 52.6
MetaBIN [4] CVPR2021 43.0 43.1 18.8 41.2 67.2 84.5 43.0 56.3
ACL [38] ECCV2022 49.4 50.1 21.7 47.3 76.8 90.6 49.3 62.7
META [36] ECCV2022 47.1 46.2 24.4 52.1 76.5 90.5 49.3 62.9
PAOA Ours 49.8 50.5 25.1 51.5 77.1 90.8 50.7 64.3
PAOA+ Ours 50.3 50.9 26.0 52.8 77.9 91.4 51.4 65.0

Table 3. Effects on mAP (%) value of the proposed modules. Aux:
auxiliary objective. GC: gradient calibration. DTO: deployment-
time optimization.

Aux GC DTO C3 MS M Average
✗ ✗ ✗ 42.8 20.5 73.1 45.5
✓ ✗ ✗ 44.8 20.9 73.5 46.4
✓ ✗ ✓ 47.0 23.1 75.2 48.4
✓ ✓ ✗ 49.8 25.1 77.1 50.7
✓ ✓ ✓ 50.3 26.0 77.9 51.4

benefit more from that post-optimization compared with the
PAOA+ model, This further illustrates that the referenced cal-
ibration mechanism has already enabled the PAOA model to
be more attentive to the domain-invariant pedestrian region,
and therefore it relies less on on-the-fly optimization.

Table 4. Effects on mAP (%s) of update iterations during deploy-
ment optimization.

Dataset 0 1 2 3 4
C3 49.8 50.3 50.5 50.6 50.3
MS 25.1 26.0 26.5 26.0 25.0
M 77.1 77.9 77.5 77.0 76.2
Avg. 50.7 51.4 51.5 51.2 50.5

Gradient Calibration Designs We adopted a primary-
referenced design for the gradient calibration between the
primary and auxiliary objectives. This was based on the fact
that the primary instance classification objective provides
stronger supervision to identify pedestrians, while the auxil-
iary objective is to guide the instance classifier to attentively
focus on the pedestrian area and ignore the domain-specific
interference. It’s weakly labeled and therefore is intricately
noisy which can lead to a negative influence on the primary
objective, reflected by the conflicting gradient. We examined
the effect of the calibration design by additionally testing
three more formulations as demonstrated in Figure 5. Ta-
ble 5 shows the auxiliary-referenced design yielded the worst
performance, given the gradients of the auxiliary objective
is noisy and unreliable, using it as the reference is harmful
to the learning of the primary objective. By contrast, the
mutually referenced calibration design includes the primary
gradients as referenced on top of the auxiliary-referenced
design, which alleviates the fallout caused by the gradient
destruction, despite it’s still inferior to the baseline. In com-
parison, the primary-referenced design consistently obtained
improved performance which supports the design of the pro-
posed primary referenced gradient calibration.
Update iterations for deployment-time optimization We
analyzed the influence of update iterations for optimizing the
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(a) Independent Training

(c) Mutual-Referenced (d) Primary-Referenced

(b) Auxiliary-Referenced

Figure 5. Illustration of different gradient calibration designs. (a)
No gradient calibration as [29]. (b) Gradients of the primary ob-
jective are calibrated with the auxiliary objective as a reference.
(c) Gradients are calibrated in relation to each other as a reference,
as designed in [37]. (d) Gradients of the auxiliary objective are
calibrated with the primary objective as a reference.

Table 5. Comparison of different gradient calibration designs by
mAP (%). Refer to Figure 5 for the corresponding design.

Design C3 MS M Avg.
a 44.8 20.9 73.5 46.4
b 44.1 21.7 74.7 46.8
c 47.3 23.0 75.3 48.5
d 49.8 25.1 77.1 50.7

model with all test samples in deployment time. Ablating
with iterations from 0 to 4 (Table 4), we noted consistent per-
formance improvement by updating the model at the initial
steps. This is attributed to the auxiliary objective guiding
swift adaptation to the test domain. This improvement is
attributed to the auxiliary objective facilitating rapid adapta-
tion to the test domain. However, excessive updates result
in a model forgetting issue by overwhelming the extractor
with the auxiliary. Notably, deployment-time optimization is
more effective for target datasets (i.e., MSMT17) with larger
domain shifts, which further proves that target-aware updates
that mitigate domain shifts more effectively. Balancing effi-
ciency and effectiveness, PAOA+ adopts single-step updates
across all datasets to attain the global optimal solution.

Visualization We visualized the pedestrian images and
the model activation maps to intuitively illustrate the ef-
fectiveness of PAOA. We took the feature map of the final
convolutional layer (4th layer) as the activation map, and
compared the baseline model with the proposed PAOA. As
can be observed in Figure 6, the PAOA model can accurately
be attentive to the pedestrian area, while the baseline model
is partially focus and some discriminative areas are missed.
This is benefited from the auxiliary objective, as shown in
the second column, which provides assistive supervision on
instance classification learning. Therefore, PAOA model
can extract discriminative yet generic identity representation
for ReID. To also visualized the TSNE distribution of the

extracted feature representations in Figure 7. The target do-
main is Market1501 and the model was trained with other
three source domains. Training independently with the aux-
iliary objective can condense the feature space compared
with the baseline, however it’s still prone to domain shift,
especially for CUHK03. As a comparison, the proposed
PAOA can significantly reduce domain shifts with a much
more compact feature space.

Figure 6. Visualization of activation maps. For each pedestrian
image, the four columns from left to right are: (1) Person image,
(2) Weak label for auxiliary objective, (3) Activation map from the
proposed PAOA model, (4) Activation map from the baseline. The
proposed PAOA helps the model be more attentive on the pedestrian
region to learning domain-invariant representation.

Figure 7. TSNE visualization on extracted features. 200 samples
were randomly sampled from each domain. Learning with jointly
the primary and auxiliary objectives can condense the feature dis-
tribution. The proposed model which associates the primary and
auxiliary objectives can derive a more compact feature space.

5. Conclusions
In this work, we introduced a novel Primary-Auxiliary

Objectives Association (PAOA) regularization to learn a gen-
eralizable ReID model for extracting domain-unbiased rep-
resentations more generalizable to unseen novel domains for
person ReID. PAOA encourages the model to get rid of the
interference of domain-specific knowledge and to learn from
discriminative pedestrian information by the association of
learning an auxiliary pedestrian detection objective with a
primary instance classification objective. To mitigate the fall-
out caused by the noisy auxiliary labels, we further derive a
referenced-gradient calibration strategy to alter the gradient
of the auxiliary object when it’s conflicting with the primary
object. The PAOA framework is task-agnostic, making it
readily adaptable to other tasks through the incorporation of
a close auxiliary task and a shared learning module.
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