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Abstract. This paper presents a novel framework for detecting ab-
normal pedestrian and vehicle behaviour by modelling cross-correlation
among different co-occurring objects both locally and globally in a given
scene. We address this problem by first segmenting a scene into semantic
regions according to how object events occur globally in the scene, and
second modelling concurrent correlations among regional object events
both locally (within the same region) and globally (across different re-
gions). Instead of tracking objects, the model represents behaviour based
on classification of atomic video events, designed to be more suitable for
analysing crowded scenes. The proposed system works in an unsupervised
manner throughout using automatic model order selection to estimate
its parameters given video data of a scene for a brief training period. We
demonstrate the effectiveness of this system with experiments on public
road traffic data.

1 Introduction

Automatic abnormal behaviour detection has been a challenging task for visual
surveillance. Traditionally, anomaly is defined according to how individuals be-
have in isolation over space and time. For example, objects can be tracked across
a scene and if a trajectory cannot be matched by a set of known trajectory model
templates, it is considered to be abnormal [1, 2]. However, due to scene complex-
ity, many types of abnormal behaviour are not well defined by only analysing
how individuals behave alone. In other words, many types of anomaly definition
are only meaningful when behavioural interactions/correlations among differ-
ent objects are taken into consideration. In this paper, we present a framework
for detecting abnormal behaviour by examining correlations of behaviours from
multiple objects. Specifically, we are interested in subtle multiple object abnor-
mality detection that is only possible when behaviours of multiple objects are
interpreted in correlation as the behaviour of each object is normal when viewed
in isolation. To that end, we formulate a novel approach to representing visual
behaviours and modelling behaviour correlations among multiple objects.

In this paper, a type of behaviour is represented as a class of visual events
bearing similar features in position, shape and motion information [3]. However,
instead of using per frame image events, atomic video events as groups of image
events with shared attributes over a temporal window are extracted and utilised



as the basic units of representation in our approach. This reduces the sensitivity
of events to image noise in crowded scenes. The proposed system relies on both
globally and locally classifying atomic video events. Behaviours are inherently
context-aware, exhibited through constraints imposed by scene layout and the
temporal nature of activities in a given scene. In order to constrain the number of
meaningful behavioural correlations from potentially a very large number of all
possible correlations of all the objects appearing everywhere in the scene, we first
decompose semantically the scene into different spatial regions according to the
spatial distribution of atomic video events. In each region, events are re-clustered
into different groups with ranking on both types of events and their dominating
features to represent how objects behave locally within each region. As shown in
Section 5, by avoiding any attempt to track individual objects over a prolonged
period in space, our representation provides an object-independent representa-
tion that aims to capture categories of behaviour regardless contributing objects
that are associated with scene location. We demonstrate in our experiments
that such an approach is more suitable and effective for discovering unknown
and detecting subtle abnormal behaviours attributed by unusual presence of
and correlation among multiple objects.

Behavioural correlation has been studied before, although it is relatively new
compared to the more established traditional trajectory matching based tech-
niques. Xiang and Gong [3] clustered local events into groups and activities
are modelled as sequential relationships among event groups using Dynamic
Bayesian Networks. Their extended work was shown to have the capability of
detecting suspicious behaviour in front of a secured entrance [4]. However, the
types of activities modelled were restricted to a small set of events in a small
local region without considering any true sense of global context. Brand and
Kettnaker [5] attempted modelling scene activities from optical flows using a
Multi-Observation-Mixture+Counter Hidden Markov Model (MOMC-HMM). A
traffic circle at a crossroad is modelled as sequential states and each state is a
mixture of multiple activities (observations). However, their anomaly detection
is based only on how an individual behaves in isolation. How activities inter-
act in a wider context is not considered. Wang et al [6] proposed hierarchical
Bayesian models to learn visual interactions from low-level optical flow features.
However, their framework is difficult to be extended to model behaviour cor-
relation across different type of features, in which adding more features would
significantly increase complexity of their models.

In our work, we model behaviour correlation by measuring the frequency of
co-occurrence of any pairs of commonly occurred behaviours both locally and re-
motely over spatial locations. An accumulated concurrence matrix is constructed
for a given training video set and matched with an instance of this matrix cal-
culated for any testing video clip in order to detect irregular object correlations
in the video clip both within the same region and across different regions in the
scene. The proposed approach enables behaviour correlation to be modelled be-
yond a local spatial neighbourhood. Furthermore, representing visual behaviours
using different dominant features at different spatial locations makes it possible



to discover subtle unusual object behaviour correlations that either human prior
knowledge is unaware of or it is difficult to be defined by human analysis. An
overall data flow of the system is shown in Fig. 1.

Fig. 1. Semantic scene segmentation and behaviour correlation for anomaly detection

2 Event Detection and Clustering

2.1 Image Events

We define an image event as a group of foreground neighbouring pixels detected
using background subtraction. Different background models can be adopted.
When only moving objects are of interest, we can use a dynamic Gaussian-
Mixture background model [7]. As we also want to extract those long-staying
objects, an alternative background model [8] is preferred.

Detected foreground pixels are grouped into blobs using connected compo-
nents, with each blob corresponding to an image event given by a rectangular
bounding box. An image event vf is represented by a set of 10 features given
the membership of a group as follows:

vf = [x, y, w, h, rs, rp, u, v, ru, rv], (1)

where (x, y) and (w, h) are the centroid position and the width and height of the
bounding box respectively, rs = w/h is the ratio between width and height, rp is
the percentage of foreground pixels in a bounding box, (u, v) is the mean optic
flow vector for the bounding box, ru = u/w and rv = v/h are the scaling features



between motion information and blob shape. Clearly, some of these features are
more dominant for certain image events depending on their loci in a scene, as
they are triggered by the presence and movement of objects in those areas of the
scene. However, at this stage of the computation, we do not have any information
about the scene therefore all 10 features are used at this initial step to represent
all the detected image events across the entire scene.

Given detected image events, we wish to seek a behavioural grouping of these
image events with each group associated with a similar type of behaviour. This
shares the spirit with the work of Xiang and Gong [3]. However, direct grouping
of these image events is unreliable because they are too noisy due to their spread
over a wide-area outdoor scene under variable conditions. It has been shown
by Gong and Xiang [9] that precision of feature measurements for events af-
fects strongly the performance of event grouping. When processing video data of
crowded outdoor scenes of wide-areas, variable lighting condition and occlusion
can inevitably introduce significant noise to the feature measurement. Instead
of directly grouping image events, we introduce an intermediate representation
of atomic video event which is less susceptible to scene noise.

2.2 Atomic Video Events

Derived from image events, an atomic video event is defined as a spatio-temporal
group of image events with similar features. To generate atomic video events, a
video is cut into short non-overlapping clips and image events within a single
clip are clustered into groups using K-means. Each group then corresponds to an
atomic video event. In our system, we segment a video into clips of equal frame
length Nf , where Nf is between 100 to 300 depending on the nature of a scene.
For K-means clustering in each clip, the number of clusters is set to the average
number of image event across all the frames in this clip. An atomic video event is
represented by both the mean feature values of all the membership image events
in its cluster, and their corresponding variances, resulting in a 20 components
feature vector for each atomic video event, consisting of:

v = [v̄f , v̄s], (2)

where v̄f = mean(vf ) and v̄s = var(vf ), vf given by Eqn. (1).

2.3 Event Grouping

We seek a behavioural grouping of all the atomic video events detected in the
scene in a 20 dimensional feature space. Here we assume an atomic video event
being a random variable following a Mixture of Gaussian (MoG) distribution.
We need to determine both the number of Gaussian components in the mix-
ture (model order selection) and their parameters. To automatically determine
the model order, we adopt the Schwarz’s Bayesian Information Criterion (BIC)
model selection method [10]. Given the number of Gaussians K being deter-
mined, the Gaussian parameters and priors are computed using Expectation-
Maximisation [11]. Each atomic video event is associated with the kth Gaussian



representing a behaviour class in the scene, 1 ≤ k ≤ K, which gives the maxi-
mum posterior probability.

3 Scene Segmentation

This behavioural grouping of atomic video events gives a concise and semanti-
cally more meaningful representation of a scene (top middle plot in Fig. 1). We
consider that each group represents a behaviour type in the scene. However, such
a behaviour representation is based on a global clustering of all the atomic video
events detected in the entire scene without any spatial or temporal restriction.
It thus does not provide a good model for capturing behaviour correlations more
selectively, both in terms of spatial locality and temporal dependency. In order
to impose more contextual constraints, we segment a scene semantically into
regions according to event distribution with behaviour labelling, as follows.

We treat the problem similar to an image segmentation problem except that
we represent each image position by a multivariate feature vector instead of RGB
values. To that end, we introduce a mapping procedure transferring features from
event domain to image domain. We assign each image pixel location of the scene
a feature vector p with K components, where K is the number of groups of
atomic video events estimated for a given scene, i.e. the number of behaviour
types automatically determined by the BIC algorithm (Section 2.3). The value
of the kth component pk is given as the count of the kth behaviour type occurred
at this image position throughout the video. In order to obtain reliable values
of p, we use the following procedure. First of all, the behavioural type label for
an atomic video event is applied to all image events belonging to this atomic
video event. Secondly, given an image event, its label is applied to all pixels
within its rectangular bounding box. In other words, each image position is
assigned with a histogram of different types of behaviours occurred at that pixel
location for a given video. Moreover, because we perform scene segmentation by
activities, those locations without or with few activities are to be removed from
the segmentation procedure. For doing this, we apply a lower bound threshold
THp to the number of events happened at each pixel location, i.e. the sum of
component values of p. Finally the value of this K dimensional feature vector p
at each pixel location is scaled to [0, 1] for scene segmentation.

With this normalised behavioural histogram representation in the image do-
main, we employ a spectral clustering technique modified from the method pro-
posed by Zelnik-Manor and Perona [12]. Given a scene in which N locations with
activities, an N ×N affinity matrix A is constructed and the similarity between
the features at the ith position and the jth position is computed according to
Eqn. (3),

A(i, j) =
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where pi and pj are feature vectors at the ith and the jth locations, d represents
Euclidean distance, σi and σj correspond to the scaling factors for the feature



vectors at the ith and the jth positions, xi and xj are the coordinates and σx

is the spatial scaling factor. r is the radius indicating a circle only within which,
similarity is computed.

Proper computation of the scaling factors is a key for reliable spectral cluster-
ing. The original Zelnik-Perona’s method computes σi using the distance between
the current feature and the feature for a specific neighbour. This setting is very
arbitrary and we will show that it suffers from under-fitting in our experiment. In
order to capture more accurate statistics of local feature similarities, we compute
σi as the standard deviation of feature distances between the current location
and all locations within a given radius r. The scaling factor σx is computed as
the mean of the distances between all positions and the circle center within the
radius r. The affinity matrix is then normalised according to:

Ā = L−
1
2 AL−

1
2 (4)

where L is a diagonal matrix with L(s, s) =
∑N

t=1(A(s, t)). Ā is then used as
the input to the Zelnik-Perona’s algorithm which automatically determines the
number of segments and performs segmentation. This procedure groups those
pixel locations with activities into M regions for a given scene.

4 Behaviour Concurrence Modelling

4.1 Regional Event Classification

Recall that due to the lack of any prior information at the initial behavioural
grouping stage for scene segmentation, all 10 features together with their corre-
sponding variances were used to represent atomic video events. These settings are
not necessarily optimal for accurately describing behaviours once the scene has
been segmented semantically into regions. To address the problem, we re-classify
behaviours in each region. Essentially, we follow the same procedure described
in Section 2 but perform an additional computation to refine the grouping of
atomic video events in each individual region as follows.

Given a segmented scene, we determine the most representative features in
each region by computing entropy values for the features in vf in each region and
select the top five features with high entropy values. The selected features are
then used for grouping image events in each video clip into atomic video events.
When representing atomic video events, their corresponding 5 variances are also
considered. This results in different and smaller set of features being selected for
representing events in different regions. After atomic video event clustering, we
obtain Km regional event classes in each region m, where 1 ≤ m ≤ M .

4.2 Behaviour Correlation Modelling

Suppose we have now obtained in total Ko clusters of atomic video events in
all regions, i.e. Ko =

∑M
m=1 Km, we wish to examine the frequency of con-

currence among all pairs of behaviours happened in the scene throughout a



video. Given a training video F which is segmented into Nc non-overlapping
clips F = [f1, · · · , fNc ], each atomic video event in a single clip fn, 1 ≤ n ≤ Nc,
has been clustered to a specific regional event class bi, where 1 ≤ i ≤ Ko. To
indicate the concurrence of a pair of regional event classes bi and bj occurred
in clip n, we construct a Ko ×Ko dimension binary matrix Cn so that

Cn(i, j) =
{

1, if bi = TRUE and bj = TRUE
0, otherwise (5)

An accumulated concurrence matrix C over all the clips in the video is then
computed as:

C =
Nc∑

n=1

Cn (6)

It is clear that the diagonal components of C indicate the number of occur-
rence of event class bi throughout the video and each other component C(i, j)
corresponds to the total number of concurrence of event classes bi and bj . To
normalise the accumulated concurrence matrix C, components in each row of C
is divided by the diagonal component in this row. This results in a non-symmetric
normalised matrix Ce. The final symmetric concurrence matrix is computed as:

Cf =
1
2
(Ce + CT

e ), (7)

where T is transpose. After re-scaling the values in Cf to [0, 1], Cf is then used
as the model to recognise irregular behaviour labelled atomic video event con-
currence. It is worth pointing out that in practice, a measurement of concurrent
frequency between a pair of atomic video event classes bi and bj is meaningful
only when bi and bj individually occur sufficiently frequently. In order to remove
those rarely occurred regional event classes from the concurrence matrix during
training, we set a lower bound threshold THb to the diagonal components of
accumulated concurrence matrix C. If C(i, i) < THb, the ith row and the ith
column are removed from C. The rectified matrix C is then used for generating
the concurrence matrix Cf .

4.3 Anomaly Detection

A test video is segmented into clips in the same way as the training video set.
Image events are grouped into atomic video events using K-means. Each atomic
video event is then assigned to a regional event class. In order to detect anomaly
due to unexpected multi-object behaviour concurrence, we identify abnormal
video clips as those with unexpected pairs of concurrences of regional event
classes when compared with the concurrence matrix constructed from the train-
ing video set. More precisely, for a test video Q with Nq clips: Q = [q1, · · · ,qNq

],
we generate a binary concurrence matrix Ct for each clip qt by Eqn. (5). We
then generate a matrix CTt according to Eqn. (8).

CTt(i, j) =
{

1−Cf (i, j), if Ct(i, j) = 1 and Cf (i, j) ≤ THc

0, otherwise (8)



where THc is a threshold. Given matrix CTt for clip qt, a score St is computed
as the mean of all the non-zero values in CTt. Based on the values of St, t =
1, · · · , Nq, those clips with unexpected behavioural concurrence can be identified
if the corresponding St values are higher than a threshold THs. In the identified
irregular video clips, pairs of unexpected concurrent regional event classes can
be further detected as the pairs whose values in Cf are lower than THc.

5 Experiments

We evaluated the performance of the proposed system using video data captured
from two different public road junctions (Scene-1 and Scene-2). Example frames
are shown in Fig. 2. Scene-1 is dominated by three types of traffic patterns:
the vertical traffic, the leftward horizontal traffic and the rightward traffic, from
multiple entry and exit points. In addition, vehicles are allowed to stop between
the vertical traffic lanes waiting for turning right or left. In Scene-2, vehicles
usually move in from the entrances near the left boundary and near the right
bottom corner. They move towards the exits located on the top, at left bottom
corner and near the right boundary. Both videos were recorded at 25Hz and have
a frame size of 360×288 pixels.

(a) Scene-1 (b) Scene-2

Fig. 2. Two public road scenarios for experiment

Failure Mode For Tracking: We first highlight the inadequacy of tracking
based representation for behaviour modelling in a crowded scene such as Scene-
1. Fig. 3 (a) shows the trajectories extracted from a two-minute video clip. In
(b), we plot a histogram of the durations of all the tracked object trajectories
(red), 331 in total and compare it to that of the ground-truth (blue), which was
exhaustively labelled manually for all the objects appeared in the scene (in total
114 objects). It is evident that inevitable and significant fragmentation of object
trajectories makes a purely trajectory based representation unsuitable for accu-
rate behaviour analysis in this type of scenes. Moreover, it is equally important
to point out that monitoring object in isolation even over a prolonged period of



(a) Trajectories (b) Histogram of duration

Fig. 3. Trajectory analysis

time through tracking does not necessarily facilitate the detection and discovery
of unexpected and previously unknown anomaly in a complex scene.

Event Clustering and Scene Segmentation: In this section, we show the
performance of semantic event clustering and scene segmentation. In Scene-1,
22000 frames were used for training, in which 121583 image events were de-
tected and grouped into 2117 atomic video events using K-means. In Scene-2,
415637 image events were detected from 45000 frames and grouped into 4182
atomic video events. The global atomic video events were automatically grouped
into 13 and 19 clusters using the EM algorithm where the number of clusters in
each scene was automatically determined by the BIC model selection method.
The clustering results are shown in Fig. 4 (a) and (d) where clusters are dis-
tinguished by colour and labels. After mapping from feature domain to image
domain, the modified Zelnik-Manor and Perona’s image segmentation algorithm
was then used to segment Scene-1 and Scene-2 into 6 regions and 9 regions, re-
spectively, as shown in Fig. 4 (b) and (e). For comparison, we also segmented the
scenes using Zelnik-Manor and Perona’s original algorithm (ZP) which resulted
in 4 segments for Scene-1 and 2 segments for Scene-2 (Fig. 4 (c) and (f)). It is
evident that Zelnik-Manor and Perona’s original algorithm suffered from under-
fitting severely and was not able to segment those scenes correctly according to
expected traffic behaviours. In contrast, our approach provides a more meaning-
ful semantic segmentation of both scenes.

Anomaly Detection: We tested the performance of anomaly detection using
Scene-1. Comparing to Scene-2, Scene-1 contains more complex behaviour corre-
lations that also subject to frequent deviations from normal correlations. Given
the labelled scene segmentation shown in Fig. 4 (b), we re-classified atomic video
events in each region. We performed a feature selection procedure which selected
the 5 dominant features in each region with largest entropy values. The selected
features in each region are shown in Table 1.



(a) Scene-1 (b) Proposed: THp = 300 (c) Original: THp = 300

(d) Scene-2 (e) Proposed: THp = 200 (f) Original: THp = 200

Fig. 4. Atomic video event classification and semantic scene segmentation

Table 1. Regional feature selection

x y w h rs rp u v ru rv

R1
√ √ √ √ √

R2
√ √ √ √ √

R3
√ √ √ √ √

R4
√ √ √ √ √

R5
√ √ √ √ √

R6
√ √ √ √ √

Atomic video events were then clustered in each region. From region 1 to
region 6, the BIC determined 6, 5, 6, 4, 5 and 4 classes of events (behaviours)
respectively. The clustering resulted in 30 local clusters of atomic video events
in total (see Fig. 5 (a)). The number of concurrence for each pair of atomic event
classes was then accumulated using the 73 clips in the training data to construct
a 30 × 30 dimension accumulating concurrence matrix C. By removing those
behaviour which occurred less than 10 times (i.e. THb = 10), the dimension of
the matrix C was reduced to 25 × 25. The concurrence matrix Cf was then
computed by normalising and re-scaling C which is shown in Fig. 5 (b).

According to the scores shown in Fig. 5 (c), 7 clips had been picked out of
a testing video consisting of 12000 frames (39 clips) as being abnormal with
irregular concurrences shown in Fig. 6, in which objects with irregular concur-
rence are bounded by red and green boxes and the corresponding segments are
highlighted using colour. Clip 4 detected a situation when a fire engine suddenly
appeared and the surrounding moving vehicles had to stop unexpectedly. In Clip



(a) Distributions of Local
Behaviours

(b) Concurrence Matrix (c) Anomaly Scores: THc =
0.12, THs = 0.9

Fig. 5. Local events classification and anomaly detection. In (a), the mean and covari-
ance of the location of different classes of regional events are illustrated using ellipses
in different colour

28, another fire engine appeared. Although the fire engine did not significantly
interrupt the normal traffic, it did caused a white van to stop in Region 3 which
was not expected to be concurrent with horizontal traffic. A typical example was
detected in Clip 30. Moreover, the second fire engine also caused strange driving
behaviour for another car labelled in Clip 28 which strongly conflicted with the
normal traffic. In Clip 9 and 37, two right-turn vehicles were detected in Region
2 and Region 5 respectively showing that they were quite close to each other
which were not observed in the training data. Clip 27 indicates a false alarm
mainly due to the imperfect blob detection which resulted in regional events
being classified into wrong classes. In Clip 38, the irregular atomic events were
detected in the same clip without frame overlapping (Fig. 6 (g) and (h)). This
is an example that when the size of objects are large enough to cover two re-
gions, error could also be introduced as most of vehicles in the training data
have smaller size.

For comparison, we performed irregular concurrence detection without scene
segmentation, i.e. only using globally clustered behaviours. The results are shown
in Fig. 7. Compared with the proposed scheme, the scheme without scene seg-
mentation gave much more false alarms (comparing (a) of Fig. 7 with (c) of
Fig. 5). From the examples of false detections in Fig. 7 (b) and (c), it can be
seen that using global behaviours without scene decomposition cannot accu-
rately represent how objects behave locally. In other words, each of the global
behaviour categories for the vehicles and pedestrians may not truly reflect the
local behaviours of the objects and this would introduce more errors in detect-
ing such abnormal correlations of subtle and short-duration behaviours. On the
other hand, true irregular incidents were missed, e.g. the interruption from the
fire engine was ignored. To summarise, when only using global classification,
contextual constraints on local behaviour is not described accurately enough
and general global correlation is too arbitrary. This demonstrates the advantage
in behaviour correlation based on contextual constraint from semantic scene
segmentation.



(a) Clip 4 (b) Clip 9 (c) Clip 27

(d) Clip 28 (e) Clip 30 (f) Clip 37

(g) Clip 38 (h) Clip 38

Fig. 6. Detected irregular concurrences

6 Conclusion

This paper presented a novel framework for detecting abnormal pedestrian and
vehicle behaviour by modelling cross-correlation among different co-occurring
objects both locally and globally in a given scene. Without tracking objects, the
system was built based on local image events and atomic video events, which
made the system more suitable for crowded scenes. Based on globally classified
atomic video events, a scene was semantically segmented into regions and in
each region, more detailed local events were re-classified. Local and global events
correlations were learned by modelling event concurrence within the same region
and across different regions. The correlation model was then used for detecting
anomaly.

The experiments with public traffic data have shown the effectiveness of
the proposed system on scene segmentation and anomaly detection. Compared
with the scheme which identified irregularities only using atomic video events



(a) Anomaly scores (b) False Alarm 1 (c) False Alarm 2

Fig. 7. False detections without scene segmentation

classified globally, the proposed system provided more detailed description of
local behaviour, and showed more accurate anomaly detection and less false
alarms. Furthermore, the proposed system is entirely unsupervised which ensures
its generalisation ability and flexibility on processing video data with different
scene content and complexity.
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