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Abstract 

A coniprehensive novel multi-view dynamic face model 
is presented in this paper to address two challenging prob- 
lems in face recognition and facial analysis: modelling 
faces with large pose variation and modelling faces dynam- 
ically in video sequences. The model consists of a sparse 
3 0  shape model learnt from 2 0  images, a shape-and-pose- 
free texture model, and an afJine geometrical model. Model 
fitting is performed by optimising ( I )  a global fitting crite- 
rion on the overall face appearance whilst it changes across 
views and over time, ( 2 )  a local fitting criterion on a set 
of landmarks, and (3) a temporal fitting criterion between 
successive frames in a video sequence. By temporally es- 
timating the model parameters over a sequence input, the 
identity und geometrical information of a face is extracted 
separately. The former is crucial to face recognition and fa-  
cial analysis. The latter is used to aid tracking and aligning 
faces. We demonstrate the results of successfully applying 
this model on faces with large variation of pose and expres- 
sion over time. 

1. Introduction 
The issue of face recognition and facial analysis (facial 

expression, ageing, and caricature) has been extensively 
addressed in recent years. Various approaches including 
Eigenfaces [ 161, Elastic Graph model [ 1 I], Linear Object 
Classes [ 181, Active Shape Models (ASMs) [3] and Active 
Appearance Models (AAMs) [ 2 ]  have shown to be promis- 
ing under different assumptions. 

1.1. Modelling Faces with Large Pose Variation 
In particular, modelling faces across views is one of the 

most challenging problems because of self-occlusion, self- 
shading, and the consequent non-linearity in both shape and 
texture. Both ASMs and AAMs are unfortunately restricted 
to a narrow view due to the linear assumption of the 2D ap- 
pearance. To address this problem, Romdhani et al [ 151 de- 
veloped a multi-view appearance model using Kernel Prin- 
cipal Component Analysis (KPCA). The non-linearity of 
KPCA enables the model to deal with large pose varia- 
tion, but has a price of intensive computation. Cootes et 
al. [4] proposed the view-based Active Appearance Mod- 
els which employ three models for profile, half-profile and 

frontal views. On the other hand, Moghaddam and Pent- 
land [ 131 presented a view-based and modular eigenspace 
method. Li et al. [ 121 introduced a view-based piece-wise 
SVM (Support Vector Machine) model of the face space. 
But the division of the face space in these methods is rather 
arbitrary and often coarse, therefore ad hoc. 

An alternative approach to alleviate the multi-view prob- 
lem is to use 3D models. DeCarlo and Metaxas [5] pre- 
sented a 3D deformable face model in which optical flow 
and edge information are combined. Their model success- 
fully tracked faces in sequences with significant expression 
change and pose change. Jebara and Pentland [ 101 proposed 
an approach to recover the 3D face structure using Structure 
from Motion. The estimation of the 3D structure is further 
constrained for reliable feature tracking by a 3D range data 
model of an average human face. Vetter and Blanz [ 173 in- 
troduced a flexible 3D face model learnt from examples of 
3D range face data. A novel 2D face image can be matched 
to the 3D model in an analysis-by-synthesis manner. Then 
images of the novel face in different views, illumination, 
and expression can be synthesised by changing the parame- 
ters of the matched model. 

1.2. Modelling Faces Dynamically on Sequences 
In parallel to modelling faces across views, the issue of 

exploiting the face dynamics using spatial-temporal infor- 
mation from video sequences has also received great inter- 
est. From video sequences, not only can more information 
about the visual objects be acquired, but also the temporal 
continuity and subject constancy can provide a more robust 
representation [8]. Gong et al. [9] introduced an approach 
that uses Partially Recurrent Neural Networks to recognise 
temporal signatures of faces. Edwards et al. [6] proposed an 
integrated approach to decouple the identity variance from 
the residual variance of pose, lighting and expression. By 
learning the correlation between the two parts of variance 
online, a class-specific refinement for the identity covari- 
ance can be achieved. Yamaguchi et al. [19] presented a 
method for face recognition from sequences by building a 
subspace for the detected faces from a given sequence and 
then matching the subspace with prototype subspaces. 

1.3. Overview of this Work 
To comprehensively address the two problems stated 

above, we present an integrated multi-view dynamic face 
model. It consists of three parts: a sparse 3D shape model 
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trained from 2D images labelled with pose and landmarks, a 
shape-and-pose-free texture model, and an affine geometri- 
cal model. Section 2 gives the details of model components 
and model construction. A model fitting algorithm is pre- 
sented in Section 3 formulated by optimising the global fit- 
ting criterion of the overall face appearance, the local fitting 
criterion on a set of 2D landmarks, and the temporal fitting 
criterion between the information on successive frames of a 
sequence. Section 4 describes the issue of temporal model 
fitting, i.e. obtaining a robust estimation of model param- 
eters dynamically from sequences where faces are under- 
going large pose and expression changes. Conclusions are 
drawn in Section 5.  

2. Multi-View Dynamic Model 
Our multi-view dynamic face model consists of a sparse 

3D Point Distribution Model (PDM) [3] learnt from 2D 
images in different views, a shape-and-pose-free texture 
model, and an affine geometrical model which controls the 
rotation, scale and translation of faces. The first two parts of 
the model aim to represent the identities of faces to be anal- 
ysed, while the latter is used for alignment and tracking. 

2.1. Constructing 3D Shape from 2D Images 
As the 2D appearance of different people from the same 

view can be more similar than that of one person at differ- 
ent views, the problem of modelling the appearance of faces 
with large pose variation is non-trivial for 2D models. But 
if 3D geometrical information is available, this situation can 
be alleviated to some extent. A straight forward way to col- 
lect 3D information about faces is using sensors such as a 
3D laser scanner. However, the huge amount of 3D range 
data may bring a heavy burden to the computation. Another 
difficulty comes from establishing the correspondence be- 
tween the dense 3D data. In this work, we learn a 3D face 
shape model containing only a sparse set of feature points 
from 2D face images in different views. 

2.1.1. Database of 2D Multi-view Faces 
The database used in this work includes 2D face images 
from 31 subjects, 133 poses of each subject (see [SI for 
more details of the data acquisition process). The pose of a 
face is defined by two parameters: t i l t  and yaw (a ,  p), the 
rotation angles about horizontal and vertical axes respec- 
tively. The rotation in image plane is not taken into account 
on the basis that human heads are assumed mostly upright. 

A sparse set of 44 landmarks locating the mouth, nose, 
eyes, and face contour were semi-automatically labelled on 
each face image. 

2.1.2. Estimating the 3D Shape 
Given a set of 2D face images with known positions of the 
landmarks and pose, the 3D positions of the landmarks can 
be estimated using linear regression. The rotation centre 
used to measure the pose angles is assumed to be the centre 
point of the eye centres and the mouth centre. We set this 
point as the origin of the object coordinate system. 

Orthographic projection is adopted for simplicity. Sup- 
pose the 3D coordinates of a landmark in the object coor- 
dinate system is ( X ,  Y,  Z), the position of this landmark in 
the 2D image with pose (a ,  P )  is given by: 

( 1 )  

where R is the rotation matrix for pose (a ,  p) obtained by 
rotating about the horizontal axis first by a and then about 
the vertical axis by P. 

(x, 51)' = WX, Y,  2)' 

Note that the results are only slightly different if rotating in 
the reverse order, i.e. first P, then a. 

If M ( M  _> 2) face images in different poses are avail- 
able, one can estimate the 3D coordinates ( X ,  Y ,  2) of a 
landmark using linear regression by minimising 

M 

((. - + (Y - 
k l  

where (xi, yi) is the known 2D position of the landmark. 
Then the 3D shape vector p is obtained as: 

(4) 

where Nl is the number of landmarks, 
Ideally, the larger the range of poses covered by the 

training images, the more accurate the 3D position. How- 
ever, when a face rotates to nearly profile view, some of 
the landmarks are invisible in the image. Therefore, for 
each subject, 45 of the 133 face images with poses between 
[-20" ,20" ] in  tilt and [-40" 40" 1 in yaw are selected for 
training. Also, the training set M should be big enough. In 
our experiments, a random selection of 20  out of 45 face 
images from each subject is used to learn the 3D shape vec- 
tor of all landmarks. For each subject, 50 shape vectors are 
estimated in this manner to learn the statistical 3D PDM of 
faces. 

2.2. A Sparse 3D PDM of Faces 
Although only a sparse set of 44 landmarks are chosen to 

represent the 3D shape of faces, the dimensionality is still 
too high to fit the shape model. However, human faces can 
be represented in an abstract low dimensional shape space 
since they are actually share a similar structure. The PDM 
is adopted to construct this low dimensional shape space. 

Performing Principal Component Analysis (PCA) on N 
given 3D face shape vectors {pi, i = 1 , 2 ,  ..., Ai} which are 
estimated using the method described in Section 2.1.2, one 
obtains the mean shape p and the eigen matrix U which is 
comprised of the first N ,  significant eigen vectors 

P = (Xll Yl, 21 9 x2, Y2,~21" ' ,  XN,  > Y N ,  , Z N ,  1' 

U = [ u 1 u a . . . u N , ]  (5) 

Then a shape pattern p can be represented by a vector in the 
PDM space 

s = U'(p - p) (6)  

555 



whose dimension is N,. The reconstructed 3D shape from 
s is obtained from 

p r = u s + p  (7) 

We trained the PDM on a set of 600 3D shape patterns 
from 12 different subjects (50 of each subject) with pose 
changes between [-20" , 20" ] in tilt and [-40" ,40" ] in 
yaw. Each 3D shape pattern was estimated from a random 
selection of 20  of 45 face images of the same subject as 
stated in Section 2.1.2. 

It is important to point out that the reason for using the 
small range of pose in rhe training stage is to make sure 
all landmarks are visible in the image. Otherwise, if some 
landmarks are invisible, it would be difficult to label the 
positions of those landmarks. However, this constraint is 
not imposed when fitting the model onto a novel image or 
sequence. It will be shown later that the model can be fitted 
successfully even when part of a face is invisible in a 2D 
image. 

Figure 1 shows the projection, on [-40" ,40" ] in yaw 
(from left to right), of the first shape mode changing from 
the mean shape by { -3 ,0 ,3}  of standard deviation (from 
top to bottom). The first 10 eigenshapes take 95.5% of all 
variance. 

Figure 1. The first mode of the 3D PDM. 

2.3. A Shape-and-Pose-Free Texture Model 
There is no doubt that texture carries as important repre- 

sentative information as shape. However, accurately mod- 
elling face texture is nontrivial since it is quite sensitive to 
change of illumination, pose, and expression. In this work, 
we mainly focus on the problem of modelling facial tex- 
ture variation arising from pose change. Explicitly mod- 
elling surface reflection and shading properties provides a 
solution to this problem. As an alternative, we present here 
a statistical approach to model face textures by extracting 
shape-and-pose-free texture information. 

To decouple the covariance between shape and texture, a 
face image fitted by the shape model (Section 2.2) is warped 
to the mean shape at frontal view with 0" in both tilt and 
yaw. This is implemented by forming a triangulation from 
the landmarks and employing a piece-wise affine transfor- 
mation between each triangle pair (see left in Figure 2). By 
warping to the mean shape, one obtains the shape-free tex- 
ture of the given face image. Furthermore, by warping to the 
frontal view, a pose-free texture representation is achieved. 
Figure 2 illustrates the triangulation mesh of the mean shape 

in frontal view, a face image, the face fitted by the shape 
model, and the warped texture pattern to the mean shape in 
frontal view. 

Figure 2. Extract the shape-and-pose-free tex- 
ture of a face image. 

We applied PCA to a set of 540 shupe-and-pose-free 
face textures from 12 subjects with pose changes between 
[-20" , 20" ] in tilt and [-40" ,40" ] in yaw (45 from each 
subject). The first 12 eigen modes take 96.4% of all vari- 
ance. 

During the fitting process, a shupe-andpose-free texture 
pattern q of a face image, which is already warped to the 
mean shape in the frontal view, can be represented by 

t = VT(q - q) (8) 

where q is the mean texture, and V is constructed by the 
first Nt significant eigen vectors of the texture PCA 

(9) v = [VIV .)... VN,] 

The reconstruction of the texture pattern is 

q p = v t + q  (10) 

2.4. Representing Face Patterns 
Based on the analysis above, a face pattern can be rcpre- 

sented in the following way. First, a 3D shape model is fitted 

shape parameters of the fitted face is given by Equation (6). 
The face texture is warped onto the mean shape of the 3D 
PDM model in the frontal view. Then the texture parame- 
ters of the face can be obtained using Equation (8). Finally, 
by adding parameters controlling pose, shift and scale, the 
complete parameter set of the dynamic model for a given 
face pattern is 

( 1  1)  

where (a ,  /3) is pose in t i l t  and yaw, (dz,  dy)  is the transla- 
tion of the centroid of the face, and T is its scalc. 

the iden- 
tity information ( s ,  t)  which is crucial to face recogni- 
tion and facial analysis, and the geometrical information 
(a ,  p,  dz, dy, T )  which is important for face alignment and 
tracking. 

3. Model Fitting Algorithm 
Model fitting in this context is to search for the optimal 

parameters of the model for an unknown face imagc to be 
interpreted. The parameters are given by: 

to the given image o r  video sequence containing faces. The 

c = (SI t ,  a ,  p, dz,  d y ,  ?-)' 

The parameter set consists of two parts: 

c* = a r g m i n ( l ( c ) )  (12) 
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where L(C) is a loss function which evaluates how well the 
model fits onto the image. 

We formulate the loss function as 

L(c) = l lSr(C)  -411 + 
NI 

t wiM (Fi(c), Fio) + 
i=l  

Ni 
q C ~ i M ( @ i ( ~ ) , F i ( ~ - - i ) )  (13) 

The first term on the right-hand side evaluates the differ- 
ence between the image appearance and the model synthe- 
sised appearance, where qT(c) is the reconstructed texture 
given by (IO),  and q is the original texture warped onto the 
mean shape in frontal view. This is based on the principle of 
analysis-by-synthesis [7, 2, 171. The better the model fits, 
the smaller the difference. 

The second term, which is measured in Mahalanobis dis- 
tance, describes the local texture similarity of each land- 
mark to the template of this specific landmark estimated 
from training images, where Fi(c) is the response of Gabor 
wavelet filters [ 1 I ]  or derivatives of Gaussian, on the current 
position of the ith landmark. The same filters have been ap- 
plied to the training face images. A set of templates, one for 
each landmark, is obtained using PCA. Fio denotes the tem- 
plate centroid. The Mahalanobis distance M (Fi(c), Fie) 
is calculated using distance-in-feature-space (DIFS) [ 141. 
Each M(Fi(c),Fi0) is weighted by wi, which measures 
the visibility of the ith landmark. The value of wi is com- 
puted from the normal of the landmark on the 3D shape. < is a normalisation coefficient, and Nl is the number of 
landmarks. It was noted in our experiments that the Ga- 
bor wavelet filter does not outperform simpler derivatives 
of Gaussian. 

The last term, which is only enabled when the input is a 
video sequence, compares the difference between the fil- 
tered local texture around each landmark Fi(c) and that 
in the previous frame Fi(c-1). The Mahalanobis distance 
M(Fi(c),Fi(c-l)) is also calculated using DIFS. 77 is a 
normalisation coefficient. 

The loss function defined in (13) can be interpreted as 
follows: it  is a weighted summation of the fitting criterion 
of the global appearance to the model synthesised appear- 
ance, the local fitting criterion around each landmark, and 
the temporal fitting criterion to the previous pattern. 

Based on stochastic search, the fitting algorithm of the 
multi-view face model is implemented as in Table 1. The 
evaluation of the loss function used in step 4 is carried out 
as in Table 2. A Support Vector Machine based method was 
used for real-time pose estimation [ 121 in Step 1. Figure 3 
illustrates the process of applying the above algorithm to a 
face image. 

4. Fitting the Model to Sequences 
By fitting the multi-view face model to face images, one 

extracts and separates the identity parameters and geomet- 

k l  

1 
2 
3 

4 

5 
6 
7 

assume initial parameter CO = ( s ,  a ,  p, T ,  dz, d v )  
randomly sample n parameter points around initial CO 

randomly sample m parameter points around each of 
the n points 
evaluate the values of the loss function L(c) for each 
of the m x n parameters 
sort the loss function values in ascending order 
if no improvement from the top value, stop 
otherwise, save the first n parameters, then go to 3 

Table 1. Fitting algorithm 

1 perform pose estimation using ( s ,  T ,  dz,  d y )  
2 

3 

4 

5 

6 

7 __ 

restore 2D shape using ( s ,  a ,  /3, T ,  ds, d y )  
0 reconstruct 3D shape pr from s using (7) 
0 project pr to (a ,  p)  
0 scale to T and translate to (dz,  dy) 

evaluate the global appearance fitting criterion given 
as the first term in (1  3 )  

0 warp the texture enclosed by the 2D shape to the 
mean shape in frontal view to obtain the shmpe- 
and-pose-free texture q 

0 compute the texture parameter t by projecting q 
using (8) 

0 reconstruct q, using (10) 
0 calculate the similarity 

sample and filter the local texture around each land- 
mark 
evaluate the local fitting criterion of landmarks given 
by the second term in ( 1  3) 
evaluate the temporal fitting criterion of landmarks, i f  
necessary, given by the third term in ( I  3 )  
compute the overall loss in (1  3 )  

Table 2. Evaluation of L(c) 

rical parameters from the raw images. A solution to this 
problem can be greatly improved when a continuous video 
input is available. From video sequences, not only can dif- 
ferent views and various textures be used for model fitting, 
but also the temporal continuity provides the possibility to 
exploit the facial dynamics encoded in the input stream. 

4.1. Temporal Estimation of Model Parameters 
We assume an input sequence contains only one sub- 

ject whose identity is unchanged throughout the sequence. 
Fitting the model onto a sequence frame by frame inde- 
pendently may receive a fluctuant estimation of the model 
parameters since there is no identity constancy constraint 
imposed on the fitting process. Instead, in each frame, it  
only tries to minimise the loss function given in ( 1  3 ) .  Other 
reasons for the fluctuation include local optima and image 
noise. When face recognition or facial analysis is performed 
under continuous video stream input, the model fitting prob- 
lem should be regarded as dynamic parameter estimation 
of an underlying stochastical process where the identity pa- 
rameters ( s ,  t )  are kept constant and the geometrical param- 
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Figure 3, Fit the multi-view face model to a face image. The first two images shows the original face 
image and the fitted pattern warped on the original image. The others are the fitting results in 8 
iterations. 

eters change freely. In this paper, we only discuss the issue 
of temporal estimation of the identity parameters because of 
its importance to face recognition and facial analysis. 

A straightforward method to estimate the identity pa- 
rameters temporally is performing Gaussian estimation [ l] 
which is based on the least squares principle. However, 
this method computes all the information accumulated in 
a batch way which is not appropriate for tracking. Alterna- 
tively, Kalman filters [ 11 provide a recursive solution to this 
problem. 

The problem of estimating the identity parameters of the 
model using a Kalman filter can be formulated as follows. 
For a shape vector, the state transition equation is 

s ( k )  = s ( k  - 1) (14) 
The observation is taken from the 2D projection of the 3D 
shape since this is the only visible part of the 3D shape. 

~ ' ( k )  = Rt(k)(Us(k) + p) + ~ ( k )  (15) 
where w(k) denotes a zero-mean, white observation noise, 
and Rt(k) is the rotation and projection matrix extended by 
R in (2), 

Defining 

H(k) = Rt(k)U (17) 
(18) 

(19) 
Therefore, temporal estimation of the model identity param- 
eters can be performed by a Kalman filter: 

~ ( k )  = ~ ' ( k )  - Rt(k)p 
the observation equation is then given by 

o ( k )  = H ( k ) s ( k )  + ~ ( k )  

S(k)  S(k - 1) + K(k)[o(k) - H(k)S(k - l)] (20) 
P ( k )  1 P ( k  - 1) - K ( k ) H ( k ) P ( k  - 1) (21) 

K(k) = P ( k  - l)HT(k)[H(k)P(k - l)HT(k) + &Ip1 (22) 

where K is Kalman gain, P is the error covariance matrix, 
and Q is the covariance matrix of w(k) which can be esti- 
mated from the training data,. 

A Kalman filter can also be designed for the texture vec- 
tor in  a similar way. However, unlike the one for the shape 
vector, where the observation vector is formulated from the 
2D projection of the 3D shape, the state vector, i.e. the tex- 
ture parameter t, is fully observable, thus the obscrvation 
vector and the state vector can be identical. 

4.2. Tracking Out-of-Range Poses 
As stated in Section 2.2, the 3D PDM shape model is 

trained from 2D images with limited pose range where all 
landmarks are visible. To verify if the model generalises 
well on out-of-range poses, we applied the model on se- 
quences where faces are undergoing large pose change. The 
pose range in those sequences are normally profile to pro- 
file. 

Figure 4. Tracking faces undergoing large 
pose change. The first row is original im- 
ages from sampleframes, and the second row 
shows the reconstructed face patterns over- 
lapped on the original images. 

The results depict that the model is capable of coping 
with large variation of pose even though it is trained on a 
limited range of views. This can be explained for two rea- 
sons. First, the shape information is represented in 3D, so 
the model can be rotated and projected to 2D for any given 
pose. Second, in the loss function (1 3), the local and tempo- 
ral criteria are defined in a pose-specific way since they are 
weighted by a visibility measure which depends on pose. 
In all the experiments, the model has demonstrated a reli- 
able performance between [-70" ,70" ] in yaw. However, 
when the pose is nearly f90"  , tracking may fail since little 
information is available in this view. 

4.3. Tracking Faces with Expression Changes 
To verify the robustness of the model, we also fitted it  on 

sequences containing faces undergoing significant expres- 
sion changes. The results from one of those sequences is 
shown in Figure 5. It is noted that the fitting is less well 
in some frames due to significant expression change. The 
main reason is that all the face images used for training are 
taken in neutral expression. However, due to the averaging 
and smoothing effect of Kalman filter, the fitting process 
still converged to a stable estimation of the subject identity 
and shown to be very robust over time despite errors in in- 
dividual frames. 

It is important to point out that the aim of this exper- 
iment is to estimate the identity parameters and is not to 
recognise the expressions of the subject. In other words, a 
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state-invariant model defined by (14) is used on the basis of 
subject constancy. 

Figure 5. Tracking faces with significant ex- 
pression change. 

5. Conclusions 
In this work, we focus on two important issues of face 

recognition and facial analysis, modelling face appearance 
with large pose variation and modelling faces dynamically 
over time. To address the problems, we present an inte- 
grated multi-view dynamic face model which includes a 
sparse 3D PDM shape model, a s/iLipe-atzd-pose-free texture 
model and an affine geometrical model. The contributions 
of this work are summarised as follows: 

1 .  

2. 

3 .  

4. 

5 .  

6. 

A 3D PDM shape model is learned from 2D images 
labelled with poses and landmarks. Instead of using 
dense 3D range data, this model consists of a sparse 
set of landmarks only. 
A slicipe-and-pose-free texture model is built to decou- 
ple the covariance between shape and texture. 
Although only face images from limited pose range are 
used in the training stage to ensure all landmarks are 
visible in the images, this limitation of pose range is 
never imposed when applying the model for tracking. 
Experimental results indicate that it is able to cope with 
pose variation from profile to profile. 
By applying the model, two sets of information, the 
identity parameters and geometrical parameters, are 
obtained. The former is crucial to face recognition and 
facial analysis, and the latter is important for alignment 
and tracking. 
Fitting criteria are formulated from the global fitting 
criterion of the entire face, the local fitting criterion 
of the landmarks and the temporal fitting criterion to 
previous patterns. 
Temporal estimation of model parameters is employed 
to provide a more robust and stable fit over time. 

References 
[ I ]  K .  Brammer and G. Stffling. Kalman-Bucy Filters. Artech 

House, Norwood, USA, 1989. 
[2] T. Cootes, G. Edwards, and C. Taylor. Active appearance 

models. In European Conference on Computer Vision, vol- 
ume 2, pages 484-498, Freiburg, Germany, 1998. 

(31 T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active 
shape models - their training and application. Computer Vi- 
sion and Image Understanding, 6 I (1):38-59, 1995. 

T. Cootes, K. Walker, and C. Taylor. View-based active 
appearance models. In IEEE International Conference on 
Automatic Face & Gesture Recognition, pages 227-232, 
Grenoble, France, 2000. 
D. DeCarlo and D. Metaxas. Deformable model-based face 
shape and motion estimation. In IEEE International Con- 

ference on Automatic Face & Gesture Recognition, pages 
146-150, Vermont, US, 1996. 
G. Edwards, C. Taylor, and T. Cootes. Interpreting face 
images using active appearance models. In IEEE Interna- 
tional Conference on Automatic Face & Gesture Recogni- 
tion, pages 300-305, Nara, Japan, 1998. 
T. Ezzat and T. Poggio. Facial analysis and synthesis using 
image-based methods. In IEEE International Conference 
on Automatic Face & Gesture Recognition, pages 1 16-1 2 1, 
Vermont, US, 1996. 
S.  Gong, S. McKenna, and A. Psarrou. Dynamic Vision: 
From Images to Face Recognition. World Scientific Pub- 
lishing and Imperial College Press, April 2000. 
S. Gong, A. Psarrou, 1. Katsouli, and P. Palavouzis. Track- 
ing and recognition of face sequences. In European Work- 
shop on Combined Real arid Synthetic Image Processing for  
Broadcast and Video Production, pages 96-1 12, Hamburg, 
Germany, 1994. 
T. Jcbara and A. Pentland. Parametrized structure from mo- 
tion for 3d adaptive feedback tracking of faces. In IEEE 
Conference on Coniputer Vision arid Patter Recognition, 
1997. 
M. Lades, J. Vorbruggen, J.  Buhmann, J.  Lange, C. Mals- 
burg, R. Wurtz, and W. Konen. Distortion invariant object 
recognition in the dynamic link architecture. IEEE Transac- 
tions on Computers, 42(3):300-3 1 I ,  1993. 
Y. Li, S. Gong, and H. Liddell. Support vector regres- 
sion and classification based multi-view face detection and 
recognition. In IEEE International Conference on Auto- 
matic Face & Gesture Recognition, pages 300-305, Greno- 
ble, France, March 2000. 
B. Moghaddam and A. Pentland. Face recognition using 
view-based and modular eigenspaces. In Automatic Systems 
for  the Ideriti3cation and Inspection of Humans. SPIE, vol- 
ume 2277, 1994. 

[I41 B. Moghaddam and A. Pentland. Probalilistic visual leam- 
ing for object representation. lEEE Trotisactions on Pattern 
Analysis and Macliine Intelligence, 19(7): 137- 143, 1997. 

[ 151 S. Romdhani, S. Gong, and A. Psarrou. A multi-view non- 
linear active shape model using kernel pca. In British Ma- 
chine Vision Conference, pages 483-492, Nottingham, UK, 
1999. 

[ 161 M. Turk and A. Pentland. Eigenfaces for recognition. Jour- 
nal of Cognitive Neuroscience, 3( 1):7 1-86, 1991. 

[ 171 T. Vetter and V. Blanz. Generalization to novel views from 
a single face image. In Wechsler, Philips, Bruce, Fogelman- 
Soulie, and Huang, editors, Face Recognition: From Theon 
to Applications, pages 3 10-326. Springer-Verlag, 1998. 

1181 T. Vetter and T. Poggio. Linear object classes and image 
synthesis from a single example image. lEEE Transactions 
on Pattern Analysis and Machine Intelligence, 19(7):733- 
742, 1997. 

[I91 0. Yamaguchi, K.  Fukui, and K. Maeda. Face recognition 
using temporal image sequence. In IEEE International Con- 
ference on Automatic Face & Gesture Recognition, pages 
3 18-323, Nara, Japan, 1998. 

559 


