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Abstract

Detecting faces across multiple views is more challenging than in a fixed view, e.g. frontal view, owing to the significant non-linear

variation caused by rotation in depth, self-occlusion and self-shadowing. To address this problem, a novel approach is presented in this paper.

The view sphere is separated into several small segments. On each segment, a face detector is constructed. We explicitly estimate the pose of

an image regardless of whether or not it is a face. A pose estimator is constructed using Support Vector Regression. The pose information is

used to choose the appropriate face detector to determine if it is a face. With this pose-estimation based method, considerable computational

efficiency is achieved. Meanwhile, the detection accuracy is also improved since each detector is constructed on a small range of views. We

developed a novel algorithm for face detection by combining the Eigenface and SVM methods which performs almost as fast as the

Eigenface method but with a significant improved speed. Detailed experimental results are presented in this paper including tuning the

parameters of the pose estimators and face detectors, performance evaluation, and applications to video based face detection and frontal-view

face recognition.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past decade, face recognition has emerged as an

active research area in computer vision with numerous

potential applications including biometrics, surveillance,

human–computer interaction, video-mediated communi-

cation, and content-based access of images and video

databases.

1.1. Background

Statistical methods have been widely adopted in face

detection. Moghaddam and Pentland [27–29,34] introduced

the Eigenface method, where the probability of face patterns

is modelled by the ‘distance-in-feature-space’ (DIFS) and

‘distance-from-feature-space’ (DFFS) criteria. Osuna et al.

[32,33] presented an SVM-based approach to frontal-view

face detection. Unlike the Eigenface method where only the

positive density is estimated, this approach seeks to learn

the boundary between face and non-face patterns. After

learning, only the ‘important’ examples located on the

boundary are selected to build the decision function. Soulie

et al. [44] described a system using neural networks (NNs)

for face detection. They implemented a multi-modal

architecture where various rejection criteria are employed

to trade-off false recognition against false rejection. Sung

and Poggio [46] also presented a NN based face detection

system. They designed six positive prototypes (faces) and

six negative prototypes (non-faces) in the hidden layer.

Supervised learning is performed to determine the weights

of these prototypes to the output node. Rowley et al. [37]

introduced a NN based upright frontal face detection

system. A retinally connected NN examines small windows

of an image and decides whether each window contains a

face. This work was later extended to rotation invariant face

detection by designing an extra network to estimate the

rotation of faces in the image plane [38,39]. Gong et al. [9]

used general and modified hyper basis function (HBF)

networks with Gaussian mixture models to estimate the

density function of face space with large pose variation. As a

result, face recognition can be performed more successfully
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than with either of the linear models. McKenna et al. [23,24]

presented an integrated face detection-tracking system

where a motion-based tracker is used to reduce the search

space and Multi-Layer Perceptron (MLP) based face

detection is used to resolve ambiguities in tracking.

Feature-based methods have also been extensively

addressed in previous work. For example, Brul and Perona

[3] proposed a framework for recognising planar object

classes, such as recognising faces from images, based on

local feature detectors and a probabilistic model of the

spatial configuration of the features. Yow and Cipolla [52]

proposed a face detection framework that groups image

features into meaningful entities using perceptual organis-

ation, assigns probabilities to each of them, and reinforces

the probabilities using Bayesian reasoning. They claimed

that the framework can be applied to face detection under

scale, orientation and viewpoint variations [51].

Recently, Viola and Jones [13] presented an approach to

fast face detection using simple rectangle features which

can be efficiently computed from the so-called Integral

Image. AdaBoost and cascade methods are then used to train

a face detector based on these features. Li et al. [17,53]

adopted similar but more general features which can be

computed from block differences. Also, FloatBoost is

proposed to overcome the monotonicity of the sequential

AdaBoost learning.

1.2. Difficulties

Face detection is normally formulated as a classification

problem to separate face patterns from non-face patterns.

From the statistical point of view, there are mainly three

obstacles for this problem:

(1) The dimensionality of patterns is usually high;

(2) The possible number of non-face patterns is extremely

large and their distribution is very irregular;

(3) It may also be difficult to model the probability

distribution of face patterns, especially the multi-view

face patterns, with a unimodal density function.

Most of the previous work is limited to the frontal view.

The problem of dealing with rotation in depth and hence

being able to detect faces across multiple views remains

difficult. Many researchers addressed this problem by

building multiple view-based face detectors, i.e. to divide

the view sphere into several small segments and to construct

one detector on each of the segments [9,17,28,31]. Never-

theless, a new problem is normally introduced in these view-

based approaches: since the pose of a face is unknown

before detection, which detector should we choose to

determine if it is a face? A common solution to the problem

is to apply all view-based detectors to an input image

(or sub-image) and to make a decision based on the one with

maximal response. Undoubtedly, it is computationally

inefficient.

1.3. Our approach

In this research, an approach to multi-view face detection

based on pose estimation is presented. Similar to Refs. [9,

17,28,31], we also decompose the problem into a set of sub-

problems, each of them for a small range of views.

However, by using the pose information, only one of the

view-based detectors is chosen to determine if a pattern is a

face. Selective attention by motion/skin colour detection

and background subtraction is used to bootstrap Regions of

Interenst (ROI) which make the face detectors focus on

small sub-images only.

This paper includes and significantly extends the work

we have published in Refs. [18,19]. The former presented

the approach to multi-view face detection based on pose

information, and the latter introduced the combined method

of SVM and Eigenface for face detection.

In developing our new approach, we have mainly

benefited from the previous work of Moghaddam and

Poggio [27–29,34], Rowley et al. [38,39] and Osuna et al.

[32,33].

Moghaddam and Poggio [27–29,34] tried to address the

problem of high dimensionality using Principal Component

Analysis (PCA) to linearly extract the most significant

modes of face patterns. They established a statistical density

model based on these abstract features (Eigenfaces).

However, non-face patterns are not modelled in their

approach.

Rowley et al. [38,39] developed a NN based system

which is capable of rotation invariant face detection.

An extra network is designed to estimate the rotation of a

face in the image plane. However, they have not addressed

the rotation out of the image plane.

The SVM-based approach presented by Osuna et al. [32,

33] seems to be a promising method to solve this problem.

Instead of estimating the densities of face and non-face

classes, it seeks to model the boundary of the two classes.

Moreover, the generalisation performance, or the capacity

of the learning machine, is automatically maintained by the

principle of Structural Risk Minimisation [49]. However

their work is only for frontal-view face detection.

The rest of this paper is arranged as follows: We discuss

in Section 2 the overall framework of our approach to multi-

view face detection and the methodology of constructing the

pose estimators and multi-view face detectors. Implemen-

tation issues and experimental results are presented in

Section 3, including parameter tuning in constructing the

pose estimators and face detectors, performance evaluation,

video-based face detection and frontal face recognition.

The conclusions of this paper are presented in Section 4.

2. Multi-view face detection based on pose estimation

As discussed before, detecting face across multiple views

is more challenge than from a fixed view as the appearance
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of faces can be very different from different views. A

straightforward method for multi-view face detection is

to build a single detector which deals with all views of

faces. The second approach is to build several detectors,

each of them corresponding to a specific view. In run-

time, if one or more of the detectors give positive output

for a given pattern, a face is considered as detected.

Previous studies showed that the first method led to poor

performance as it fails to deal with the irregular

variations of faces across multi-views [10,28]. The

second approach usually performs better than the first

one but the computation is expensive since all the multi-

view face detectors need to be computed for a given

pattern.

In this work, we present a novel approach to the problem.

We build several view-based face detectors as in the second

method described above. But when detecting faces, we use

the pose information explicitly, i.e. we estimate the ‘pose’

of a given image pattern first, then use the pose information

to choose only one of the view-based face detectors to

determine whether the targeted image pattern is a face.

The process of multi-view face detection is described as

follows (Fig. 1):

(1) Perform motion estimation, skin colour detection or

background subtraction on input images or an image

sequence to locate ROIs which may contain faces;

(2) Exhaustively scan these image regions at different

scales;

(3) For each image patch from the scan, estimate the ‘pose’

(tilt and yaw) using pre-trained pose estimators;

(4) Choose an appropriate face detector according to the

estimated pose to determine if the pattern is a face;

(5) Refine the results of detection.

It seems that extra computation is applied in pose

estimation for each image patch. However, the estimated

pose can be used to choose the appropriate face detector, so

further computation is only applied to one of the detectors,

therefore computation is actually saved in face detection.

Otherwise, one has to compute all the detector outputs

and combine them for a final detection. For example, with

our method we only need to construct 4 view-based face

detectors as in Fig. 3, and need two computations (one pose

estimation and one face detection) to detect a face. If we do

not use the pose information, eight computations (one for

each detector) have to be performed for the same view space

segmentation.

The issue of selective attention (first block in Fig. 1) is

beyond the topic of this paper. Interested readers may

refer to the following studies: motion [23,24], skin colour

[14,25,26,35,36], and background modelling and subtrac-

tion [4,45,47].

In the rest of this section, we will mainly discuss two

related problems: pose estimation and multiview face

detection.

2.1. Estimating head pose

Pose and gaze estimation can be performed intrusively

by using active and contacted sensing such as the early work

of Hutchinson et al. [12]. Alternatively it can be performed

using non-contact and passive methods directly from

images. A geometrical approach based on facial features

such as eyes, nose and mouth has been reported by Gee and

Cipolla [6] and Horprasert et al. [11]. Meanwhile, some

researchers proposed to use stereo input for head pose and

gaze estimation [21,50]. The feature points chosen for

modelling pose can also be those with the most significant

pictorial characteristics such as edge, valley and ridge, or

those preprocessed by image filtering. For example, Gabor

wavelet jets have been adopted for tracking and pose

estimation [5,16,22].

For both facial-feature-based and image-feature-based

methods, the performance crucially depends on successful

feature location. As opposed to the feature-based approach,

some researchers tried to solve the problem using holistic

facial appearance matching. Previous studies in this

category include the Radial Basis Function network

estimator by Beymer et al. [1], the NN based system by

Rowley et al. which is capable of detecting faces

Fig. 1. The framework for multi-view face detection. Motion estimation, skin-colour detection and background subtraction are adopted for selective attention to

obtain the ROIs that may contain faces. Pose estimation is performed first for each image patch of the search on the ROIs, regardless of whether it contains a

face. The pose information is used to select an appropriate face detector to determine if it contains a face.
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with rotation in the image plane [40], and the method based

on Gabor wavelet transform and PCA presented by

Gong et al. [7].

In this paper, we present an SVM-based approach to pose

estimation. Like [1,7,40], the algorithm performs directly

from image appearance.

2.1.1. Pre-processing and representation of face images

Instead of working on the high-dimensional raw images,

we pre-process them in the following way:

(1) Two Sobel operators (horizontal and vertical) are used to

filter the face images. The two filtered images are

combined together as the composite patterns (see Fig. 2).

(2) PCA [30,34] is performed on the filtered image patterns

in order to reduce the dimensionality of the training

examples. Fig. 2 illustrates sample face images from a

subject in different views, the filtered composite

patterns, the reconstructed patterns from the first 20

PCs, and the first 10 Principal Components (PCs).

Note that we have experimented with applying PCA

directly on the original images, i.e. representing face

patterns without the first step of Sobel filtering. The results

are not as good as those of the method mentioned above.

One possible reason is that the filters capture the changes

both in horizontal and vertical directions so that the filtered

images are more representative for pose changes.

Determining the dimensionality of the PCA subspace,

i.e. the number of PCs to represent face patterns, is a tricky

problem. Usually it is a trade-off between estimation

accuracy and computational efficiency. It is important to

point out that, when dealing with data with noise such

as imagery noise or misalignment of face patterns, keeping a

smaller number of PCs may result in filtering out the noise,

while a larger number of PCs does not necessarily lead

to performance improvement. This is illustrated by

experimental results shown in Fig. 6, and will be discussed

in more detail in Section 3.2.2.

2.1.2. Estimating head pose using SVM regression

Two tasks need to be performed for head pose estimation:

constructing the pose estimators from face images with

known pose information, and applying the estimators to a

new face image. We adopt the method of SVM regression to

construct two pose estimators, one for tilt (elevation) and the

other for yaw (azimuth). The input to the pose estimators is

the PCA vectors of face images discussed in Section 2.1.1.

The dimensionality of PCA vectors can be reasonably small

in our experiments (20, for example). More on this will be

discussed in Section 3.2.2. The output is the pose angles in

tilt and yaw.

The SVM regression problem can be solved by

maximising

Wðap
;aÞ ¼2

1

2

Xl

i;j¼1

ðap
i 2 aiÞða

p
j 2 ajÞkðxi; xjÞ

2 1
Xl

i¼1

ðap
i þ aiÞ þ

Xl

i¼1

yiða
p
i 2 aiÞ ð1Þ

st
Xl

i¼1

ðap
i 2 aiÞ ¼ 0 ð2Þ

0 # ap
i ; ai # C ð3Þ

Fig. 2. Representation of face patterns “(a) From top to bottom are the original face images, the filtered patterns with horizontal and vertical Sobel operators,

and recontstructed patterns from the first 20 PCs”. “(b) The first 10 significant PCs”.
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which provides the solution

f ðxÞ ¼
Xl

i¼1

ðap
i 2 aiÞkðx; xiÞ þ b ð4Þ

where x is the PCA feature vector of a face image, k is the

kernel function used in the SVM pose estimator, yi is

the ground-truth pose angle in yaw or tilt of pattern x; C is

the upper bound of the Lagrange multipliers ai and ap
i ; and 1

is the tolerance coefficient. More details about SVM

regression can be found in Ref. [49].

Two pose estimators in the form of Eq. (4), ft for tilt and

fy for yaw, are constructed. The Quadratic Programming

problem is solved by a decomposition algorithm based on

the LOQO algorithm [48]. The decomposition algorithm

can be briefly described as follows: At each iteration, only a

small set of training patterns are processed by the LOQO

algorithm. The support vectors (SVs) and patterns with the

largest error from the previous iteration have higher priority

for selection. The algorithm is stopped when no significant

improvement is achieved.

Compared with other learning methods, the SVM-based

method has distinguishing properties such as:

(1) No model structure design is needed. The final decision

function can be expressed by a set of ‘important

examples’ (SVs).

(2) By introducing a kernel function, the decision function

is implicitly defined by a linear combination of training

examples in a high-dimensional feature space.

(3) The problem can be solved as a Quadratic Program-

ming problem, which is guaranteed to converge to the

global optimum of the given training set.

2.2. Multi-view face detection

Like other previous work, we define face detection as a

classification problem, i.e. to build one or more classifiers to

separate faces from non-faces. As described at the

beginning of this section, we construct several view-based

face detectors (classifiers), each responsible for a segment

of the view space. When detecting faces from images or

image sequences, we estimate the pose information first, and

then use the pose information to choose an appropriate

classifier to perform detection.

2.2.1. View space segmentation

The view space is divided into eight segments: left profile,

left frontal, right frontal, right profile in the horizontal

direction (yaw), and upper and lower in the vertical direction

(tilt), as shown in Fig. 3. When constructing the view based

piece-wise face detectors, we adopt the following strategies.

(1) Faces are symmetrical along the vertical line across the

nose-bone, so the faces on the right half of the view

plane can be converted to the left half without losing the

general facial characteristics. Based on this, one only

needs to model the multi-view faces either in the left or

the right view. As illustrated in Fig. 3, only four

detectors are constructed.

(2) The view space is divided at 08 in tilt to separate inclined

faces from declined faces, and at 08 and ^508 in yaw to

separate left-view faces from right-view faces and one-

eye faces (profile) from two-eye faces (frontal)

effectively.

(3) Neighbouring segments overlap with each other by 108.

This is to make sure each view-based detector is

Fig. 3. Modelling multi-view faces. Only four detectors need to be constructed based on the symmetry property of human face: up profile, up frontal, down

profile, down frontal. When detecting faces, only one of the detectors is chosen if pose information is available.
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responsible for a larger view space. This helps to

improve the robustness of face detectors.

2.2.2. Algorithms of face detection

The image patterns are pre-processed in the same way as

in Section 2.1.1, i.e. filtered with Sobel operators and

projected with PCA. We implemented three algorithms for

multi-view face detection, the Eigenface algorithm [28,29],

the SVM-based algorithm [32,33], and a novel algorithm—a

hybrid method of Eigenface and SVM.

Moghaddam and Pentland [28,29] introduced the Eigen-

face method, where the probability PðxÞ of a pattern x being

a face is modelled by the DIFS and DFFS criteria.

PðxÞ ¼

exp 2
1

2

XM
i¼1

u2
i

li

 !

ð2pÞM=2
YM
i¼1

l1=2
i

2
666664

3
777775

exp 2
12ðxÞ

2r

 !

ð2prÞðN2MÞ=2

2
66664

3
77775 ð5Þ

where li is the ith eigenvalue, ui is the projection onto the

ith eigenvector, N is the total number of eigenvectors, M is

the number of significant eigenvectors selected in the

model, and r is an approximation factor.

Usually the histograms of PðxÞ from face patterns

(positive) and non-face (negative) look like the two curves

in Fig. 4. One can choose a threshold based on these curves

to separate faces from non-faces.

Alternatively, an SVM-based face detector [32,33] can

be constructed by maximising

WðaÞ ¼
Xl

i¼1

ai 2
1

2

Xl

i;j¼1

aiajyiyjkðxi; xjÞ ð6Þ

st
Xl

i¼1

aiyi ¼ 0 ð7Þ

0 # ai # C; i ¼ 1; 2;…; l ð8Þ

where yi is the label of a training example xi which takes

value 1 for face and 21 for non-face, k is a kernel function,

and C is the upper bound of the Lagrange multiplier ai: For

a new pattern x; the trained face detector gives an output

f ðxÞ ¼
Xl

i¼1

yiaikðx; xiÞ þ b ð9Þ

where b is the bias.

The Eigenface method actually models the probability of

face patterns, while the importance of non-face patterns in

this method is not significant except when choosing the

threshold. On the other hand, an SVM-based face detector

makes use of both face and non-face patterns: it estimates

the boundary of positive and negative patterns instead of

estimating the probabilities. Generally speaking, the Eigen-

face method is computationally efficient but less accurate,

while the SVM method is more accurate but slow.

In order to achieve improved overall performance in

terms of both speed and accuracy, a novel approach which

combines the Eigenface and the SVM methods is presented.

A schematic illustration of the classification criterion of the

hybrid method is given in Fig. 4.

The whole process consists of a coarse detection phase

by the Eigenface method followed by a fine SVM phase. In

the first phase, the probability density of each class is

estimated as simply as possible. Two thresholds, a rejection

threshold ðtrÞ and an acceptance threshold ðtaÞ; are defined.

For a test sample x; if the value of PðxÞ given by Eq. (5) is

less than tr; it is rejected as a negative example. If the value

is larger than ta; it is accepted as positive. Otherwise, if the

value falls between tr and ta; it is considered as ambiguous

and left to the SVM classifier in the next phase. The values

of the two thresholds should be determined by the

acceptable false positive and false negative rates which

are usually application dependent.

An SVM-based classifier is trained using the examples in

the middle region of Fig. 4. The classifier is only activated

when an ambiguous pattern emerges. Usually the SVM-

based classifier is computationally more expensive than the

Eigenface method, but more accurate. However, since the

proportion of the examples in the ambiguous region is

relatively small, a significant improvement of the classifi-

cation speed can be achieved.

Furthermore, owing to the fact that the SVM classifier is

trained only on the examples in the ambiguous region and not

on the whole training set, the SVM classification problem is

simplified to some degree. A more precise and compact set of

SVs are obtained.

3. Experiments and discussions

This section is organised as follows: We first describe in

Section 3.1 the database used in the experiments. Results on

constructing the pose estimators and face detectors areFig. 4. The hybrid method of Eigenface and SVM.

Y. Li et al. / Image and Vision Computing 22 (2004) 413–427418



presented in Sections 3.2 and 3.3, respectively, together

with parameter tuning, performance evaluation and

implementation issues. Implementation and results on

video based face detection are presented in Section 3.4.

Based on the detection results, we demonstrate the results of

frontal-view face recognition in Section 3.5.

3.1. Database descriptions

In our previous work, a system was designed to capture

the multi-view face images and measure facial pose and

positions of key facial features such as eyes and mouth. The

system utilises a magnetic sensor rigidly attached to a

subject’s head and a camera calibrated to the sensor’s

transmitter. The sensor provides the 3D coordinates and

orientation relative to its transmitter. In the initialisation

stage, the positions of mouth and eyes are manually located

on the screen. These positions are usually adjusted at

different views to make sure they are rigidly ‘attached’ to

the facial features in the images. More details about the

multi-view face acquisition system are described in Ref. [8].

The system provides the positions of the key feature points

and pose information as well as the multi-view face images.

The faces captured in the images are about 50 £ 50

pixels. The range of pose of these face images is [290,

þ908] in yaw and [230, þ 308] in tilt. We have collected a

set of multi-view face images from 31 subjects. We used

part of them in the experiments presented here.

3.2. Pose estimation

When constructing the pose estimators described in

Section 2.1, one needs to choose an appropriate kernel

function, and determine the parameters of the kernel. We

have tried different kernel functions such as linear kernel,

Gaussian kernel and polynomial kennels with different

orders. Experimental results indicate that they provide

similar performance for this problem. However, the best

results are achieved when a Gaussian kernel is chosen, Also,

the performance is not very sensitive to small changes of the

SVM parameters. In our experiments, it is found that the

Gaussian kernel usually performs well when its parameter is

set as 2s2 ¼ 1 and the patterns are normalised to unit

vectors. The parameters of the algorithm used for the

experiments below are listed in Table 1.

3.2.1. Tolerance coefficient 1

The tolerance coefficient 1 is used to define the 1-

insensitive loss function [49] in SVM regression.

lf ðxÞ2 yl ¼
0; if lf ðxÞ2 yl # 1

lf ðxÞ2 yl; otherwise

(
ð10Þ

where f is the regressed function, and y is the known label of

pattern x: By introducing the loss function defined in Eq.

(10), the SVM can provide a sparse solution to a regression

problem, i.e. the number of SVs can be far less than the

number of the training examples.

Normally, 1 can be used to control the accuracy of a

SVM regressor. A large value of 1 may lead to a regression

function with poor accuracy and good real-time perform-

ance since a larger error is acceptable by the loss function

(10) and a smaller number of SVs can be obtained from

training. However, it is important to point out that one

cannot expect to achieve a perfect result by setting 1 to 0 or

near 0. The maximal accuracy of a regression problem is

determined by its VC-dimension [49]. Too small a value of

1 may lead to over-fitting, i.e. the results are perfect on the

training set but deteriorate on the validation set. Scholkopf

et al. [41–43] have discussed this problem extensively.

They also presented a method for automatic accuracy

control in SVM regression.

To investigate the influence of 1 on the performance of a

pose estimator, we designed the following experiments

where the value of 1 changes from 2 to 20. The PCA

dimension is fixed to 20, and other parameters are chosen as

listed in Table 1. Fig. 5 shows the results of SV numbers,

errors in tilt and yaw, and test time.

The experimental results indicate:

(1) The number of SVs increases steeply with the decrease

of 1: The number when 1 ¼ 2 is over eight times as

large as that when 1 ¼ 20:

(2) Lowering the value of 1 does not always improve the

accuracies. Actually, the optimal accuracies are

obtained when 1 is chosen around 10, which may

reflect the intrinsic precision of the training examples.

(3) Better real-time performance is achieved when

increasing 1 so that fewer SVs are obtained. This is

because the estimation speed is determined by the

number of SVs.

3.2.2. PCA dimension

We designed the following experiment to evaluate the

performance of the SVM based pose estimators with different

PCA dimensions. 1 is fixed to 10, and other parameters are

chosen as listed in Table 1 in this experiment.

The performance is evaluated in terms of the number of

Table 1

Parameters of the SVM based algorithm for pose estimation

Kernel Gaussian

2s2 1

C 1000

Image dimension 400 (20 £ 20)

Range of tilt [230, þ 308]

Range of yaw [290, þ 908]

Total number of training images 1596 (12 subjects, 133 images

of each)

Total number of validation images 1283 (from four sequences)
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SVs, the estimation error on the validation set, and validation

time. The results are shown in Fig. 6.

From the experimental results, we have the following

observations:

(1) Except for the very low dimensional case, the number

of SVs remains constant with the increase of the PCA

dimension. This reflects the underlying characteristics

of SVMs since the number of SVs corresponds to the

VC-dimension of the problem. A very high PCA

dimension does not provide further improvement to the

performance. When the PCA dimension is below 15,

the number of SVs is considerably higher since the

representation with very low dimension is incapable of

capturing sufficient information for pose estimation.

(2) Estimation errors are approximately stable except for

the case of very low dimensions. This indicates that a

relatively low PCA dimension can provide sufficient

accuracy. The stable error rates also indicate that the

SVM based pose estimators correctly reflect the

intrinsic precision of the training examples and they

are not over-fitted even when the PCA dimension

is high.

(3) The estimation speed is related to the number of SVs

and the PCA dimension. When the PCA dimension is

below 15, a poor real-time performance is observed

owing to the large number of SVs. Above that, the test

time increases nearly linearly with the increase of

dimension.

These experiments result indicate that a relatively low

dimensional representation, for example, 20 in PCA

dimension, can provide satisfactory performance in terms

of accuracy and run-time speed in pose estimation.

3.2.3. Pose estimation results

Fig. 7 shows estimated pose from a test sequence. The

parameters used for SVM training are listed in Table 1. The

dimension of the PCA vector of face patterns is chosen as

20. Over the whole sequence, the estimation errors in both

yaw and tilt are around 108, which are sufficiently accurate

for the purpose of multi-view face detection.

3.3. Multi-view face detection

When training each multi-view face detector, the face

images corresponding to the specific view range are selected

as positive examples (faces). In the experiments, 2660 face

images of 20 subjects were selected as positive examples

(faces) from the same database, with pose changing from

290 to þ908 in yaw and from 230 to þ308 in tilt. As

described in Section 2.2.1, the face images with yaw angle

in the range of ½0;þ908� were reversed to ½0;2908� along

the central vertical line of the images. This produced 140

Fig. 5. Pose estimation performance vs. tolerance coefficient 1: Results of (b,c) are computed on validation images.

Fig. 6. Pose estimation performance vs. PCA dimension
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face images for each subject, and 2800 face images in total.

These face images were then divided into four segments:

up-profile, up-frontal, down-profile and down-frontal. The

separating pose angles are 08 in tilt and 2508 in yaw which

are included into both neighbouring segments.

Since the number of non-face patterns is very large, it is

impossible to collect all non-face patterns before training the

face detectors. A boot-strapping method [46] is adopted for

non-face pattern selection and iterative training. In our

experiments, negative examples were collected with the

SVM face detector. The Eigenface and hybrid detectors were

then constructed using the same set of training examples.

An arbitrary collection of non-face patterns, which can be

cropped randomly from scenery pictures which do not

contain any faces, were chosen as the first set of negative

examples for training. Then we applied the resulting detector

to the scenery pictures. If positive outputs (false positives)

are reported, save these detections for further training.

This process was repeated iteratively until satisfactory

results were achieved. All example images were scaled to

20 £ 20 pixels when training the face detectors. The images

were then normalised to unit vectors and projected into the

20-dimensional PCA space as described in Section 2.1.1.

The parameters of the face detectors are listed in Table 2.

A decomposition algorithm based on the LOQO [48]

algorithm was developed to train the SVM face

detectors (the SVM method and the hybrid method).

This algorithm is similar to that discussed in Section

2.1.2. A Gaussian was chosen as the kernel function with

parameter 2s2 ¼ 1:

The results from the three methods on a test sequence

are illustrated in Fig. 9, while some sample frames of

the sequence is shown in Fig. 8. The ground-truth position

of the face on each frame is obtained from the multi-view

Fig. 7. Pose estimation on a test sequence. In (b) and (c), the solid curves are the estimated pose in yaw and tilt and the dotted curves are the ground-truth pose

which is measured by the data acquisition system.

Table 2

Parameters used to train the multi-view face detectors

Up-profile Up-frontal Down-profile Down-frontal

Image dimension 400 (20 £ 20)

Number of subjects 20

Images of each subject 140

Total number of face images 2800

Range of tilt [230,08] [230,08] [0, þ 308] [0, þ 308]

Range of yaw [290, 2 508] [250,08] [290, 2 508] [250,08]

Number of face images 800 960 800 960

Number of non-face images 2320 1243 1733 1208
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face acquisition system described in Section 3.1.

Face detection is performed within the outer box with a

doubled size of the ground-truth box. The reason for using

this bounding box is only to ensure that the computation on

each frame (the number of image patches from the scan) is

equal so that the results are comparable through the

whole sequence. We will demonstrate in Section 3.4 that

motion and skin-colour can be used effectively to

determine the bounding boxes on which face detection is

performed.

The experimental results indicate that (Fig. 9):

(1) The SVM method is the most accurate in terms of error

in detection scale and location, but also the slowest;

(2) The Eigenface method is the fastest, but less accurate

in certain frames;

(3) The hybrid method demonstrates the best balance

between accuracy and speed; it is almost as accurate as

the SVM method and not significantly slower than the

Eigenface method in most frames.

3.4. Detecting faces dynamically from video

Once we construct both pose estimators and view-based

face detectors, we can perform multi-view face detection

from video input. In our implementation, we used the skin

colour and motion detection to bootstrap regions of interest

which may contain faces. The motion information normally

sketches the contour and highly textured regions of a

moving object. Skin colour, on the other hand, typically

provides regions of pixels which are usually located on

faces, hands, and arms. The motion and skin colour cues can

be used in a complementary manner for selective attention.

We adopt the Gaussian mixture model to compute the

probability of a pixel being skin colour [26,36].

pðjÞ ¼
Xm
j¼1

pðjljÞPðjÞ ð11Þ

where PðjÞ is the mixing parameter of component j; j is the

pixel colour vector in HS format, and pðjljÞ; the density of

component j; is constructed with mean mj and covariance

matrix Sj:

pðjljÞ ¼
1

2plSjl
1=2

exp 2
1

2
ðj2 mjÞ

TS21
j ðj2 mjÞ

� 
ð12Þ

Once the model has been constructed, a look-up table can be

created off-line for fast real-time performance [26,36].

Motion detection is performed simply by computing the

temporal difference of two successive frames:

›Iðx; y; tÞ

›t
¼ Iðx; y; tÞ2 Iðx; y; t 2 1Þ ð13Þ

where I is the image intensity, x; y are the pixel position in

the images, and t is the time. For a colour image, I can be

computed by averaging the three chromatic components:

red, green and blue (RGB). If the value of Eq. (13) is above a

preset threshold, the pixel ðx; yÞ is regarded as being on a

moving object.

Sample frames of a sequence with the results of motion-

colour based selective attention (large boxes) and face

detection (small boxes) are shown in Fig. 10.

Fig. 8. Sample frames from a test sequence. From top to bottom are the face detection results of the SVM, Eigenface and hybrid methods. For each frame,

detection is performed within the outer box. The small white box is the ground-truth position of the face, and the dark box is the detected face pattern.
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Finally, there are several issues worth mentioning for

implementing the face detection system.

(1) When face detection is performed from video input, it

is not necessary to follow the procedure described in

Section 2 strictly. Besides the selective attention issues

discussed above, the pose information in the previous

frame can be conveniently used for the detector

selection in the current frame (the pose information

can be updated after final detection). However, when

the pose information is not available or not reliable, for

example, in the first frame, or when detection failure

occurs, the whole procedure is needed to recover

detection.

(2) The pose information needed here is only for the

purpose of choosing a detector, therefore a coarse pose

estimator can be trained and used to reduce the

computation. Nevertheless, when the final detection

is obtained, a more precise pose estimation may be

necessary for further processing such as face tracking

and recognition.

(3) Selecting scales for the first frame of an image

sequence (Step 2 of the detection process in Section

2) is arbitrarily determined in our experiment, for

example, from 20 pixels to 1/4 of the image size. For

the following frames however, the scales can be chosen

according to the detected faces in the previous frames.

(4) As we have filtered the images with Sobel operators

and normalised the final pattern vectors to unit vectors,

the system can perform well with uniformly changing

illuminations. We also tested it on cluttered back-

ground (Fig. 10).

Fig. 9. Comparison results of, from left to right, the SVM, Eigenface and hybrid methods for multi-view face detection on a test sequence: (a) shows the

detection time in seconds on each frame; (b) and (c) are the position errors in pixels from the ground-truth position in horizontal ðXÞ and vertical ðYÞ direction,

respectively.
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Fig. 10. Face detection on a video sequence. The larger boxes are obtained by motion-colour based selective attention. Face detection is then performed on these bounding boxes only. The final detections are

labelled with the smaller boxes inside the larger ones.
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3.5. Frontal-view face recognition

As a case study, we performed frontal-view face

recognition based on the results of detection. It is important

to note that we have also tried multi-view face recognition

but the results were unsatisfactory. In psychological vision

research, it has been reported that a human’s ability to

memorise and recognise faces is better in 3/4 views than in

frontal and profile views [2,15,20]. Unfortunately there have

been few similar findings in machine based face recognition

systems. We believe that, for appearance based face

recognition which is the methodology adopted most widely

in this community, correspondence is one of the most

important issues for accurate recognition. Note that the

correspondence should be in 3D which is often difficult from

2D input images. This is perhaps one of the key reasons why

most face recognition systems can only perform well in

frontal or near-frontal views—imagine that the appearance

of a face is very different from different views, or in other

words, misalignment in views may lead to a significant drop

in performance.

The experiments were carried out on a small scale where

the number of subjects is 10. The training set included 90

face images, nine of each subject. All the faces were collected

in frontal view or near frontal view. We ran the multi-view

face detectors on those images, then cropped the detected

patches as the final training examples for face recognition.

Ten one-against-all classifiers were trained using SVM on

nine positive examples and 81 negative examples.

Table 3 lists some results from four test sequences.

From left to right, the parameters are seq: sequence number,

frame: number of frames in sequence, errT: average

absolute error of tilt, errY: average absolute error of yaw,

detected: number of frames where faces were detected,

frontal: number of frames where faces are in frontal view

(recognition is performed), recognised: number of frames

where subjects were correctly recognised.

The results showed that the performance of face

recognition on this small scale problem (10 subjects) is

acceptable, therefore it may have potential applications such

as access control in a small office environment. We must

admit that the correspondence between faces is only

implicitly implemented by the multi-view face detectors,

therefore this method may lack scalability to a larger

number of subjects.

4. Conclusions

We have presented in this paper an integrated approach

to multi-view face detection. The contributions of this work

include:

(1) A novel approach to multi-view face detection, where

pose information is explicitly estimated first, and is

used to select an appropriate face detector.

(2) An SVM regression based method to estimate the head

pose.

(3) A hybrid algorithm combining SVM and Eigenface

methods for face detection which provides improved

performance in terms of accuracy and speed.

Face detection can be defined as a classification problem

of separating face patterns from non-face patterns. There-

fore, estimating a boundary which robustly separates the

two classes of patterns is more promising than other

methods such as probabilistic modelling of the face patterns

or the density functions of both face and non-face patterns

since only the face and non-face patterns located around the

boundary are concerned. This is actually the underlying

characteristic of SVMs. By iteratively collecting near-face

negative patterns using a prototype face detector, we can

gradually refine the detector, making it well fitted to the

boundary between face and non-face patterns.

Unlike the frontal-view problem, detecting faces with

large pose variation is more challenging since the severe

nonlinearity caused by rotation in depth, self-shadowing and

self-occlusion yields an extraordinarily irregular distribution

of face patterns. The straightforward method, constructing a

single universal detector, proved to be inefficient. Some

researchers tried to build view-based piece-wise multiple

models to solve this problem [17,27,31]. However, compu-

tation is intensified since a pattern needs to be evaluated on

more models. In this work, we presented a novel approach to

this problem by explicitly using the pose information. By

determining firstly the possible pose of a pattern, only the

classifier for this specific pose is needed for detection.

Moreover, the computation on pose estimation, which may

be intuitively regarded as an extra burden, does not impose a

significant influence on the real-time performance of a

system since a ‘cheap’ pose estimator, which provides a

coarse estimation, is sufficient.

We have presented an appearance based approach to

pose estimation in this paper. PCA is adopted to represent

multi-view face patterns in a low-dimensional orthogonal

feature space, and SVM regression is employed to construct

the pose estimators. The advantage of the SVM pose

estimator is that it can be trained directly from the data with

little requirement of the prior knowledge about the data and

it is guaranteed to converge.

To improve the overall performance of face detection in

terms of both speed and accuracy, three methods for multi-

view face detection were implemented and compared with

Table 3

Test results on four sequences

Seq Frame errT errY Detected Frontal Recognised

1 100 10.8 5.3 100 (100%) 36 32 (89%)

2 200 11.8 10.2 198 (99%) 64 61 (95%)

3 200 8.8 16.2 200 (100%) 56 53 (95%)

4 200 8.0 7.0 193 (97%) 101 93 (92%)

Total 700 9.7 10.3 691 (99%) 257 239 (93%)
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each other. Experimental results show that the Eigenface

method is faster but less accurate as there is a relatively

large overlap between the confidence distributions of face

and non-face classes (see Fig. 4), while the SVM method is

more accurate but slower since the number of SVs cannot be

efficiently controlled at a low level. By combining the two

methods together, a novel method is proposed which keeps

the advantages and suppresses the disadvantages of both

methods. The properties of the hybrid method include:

(1) Most ‘obvious’ patterns are determined by the Eigen-

face method which is fast;

(2) The ambiguous patterns are classified by the SVM

method which is accurate;

(3) The SVM classifier is trained only on a small set of

ambiguous patterns, thus it is more accurate and

faster.

This hybrid method can also be applied to other

classification problems.

Another interesting issue is dynamic face detection from

video input. In this situation, motion, skin colour and

background information provide enriched information for

detection. Although robust motion estimation and colour

constancy over time can be problematic, a relatively simple

method, which adopts temporal differencing for motion

estimation, mixtures of Gaussians for skin colour modelling,

and grouping motion and skin colour for selective attention,

has proved to be sufficient to improve the real-time

performance.

As a case study, we have also implemented a frontal-

view face recognition system based on the face detection

results. Satisfactory results have been obtained on a small

number of subjects.
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