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ABSTRACT

Person Re-identification (ReID) has been advanced remark-
ably over the last 10 years. However, the i.i.d. (indepen-
dent and identically distributed) assumption is somewhat non-
applicable to ReID considering its objective to identify im-
ages of the same pedestrian across cameras at different loca-
tions. In this work, we propose a Feature-Distribution Per-
turbation and Calibration (PECA) method to derive generic
feature representations for person ReID. Specifically, we per-
form per-domain feature-distribution perturbation to refrain
the model from overfitting to the domain-biased distribution
of each source (seen) domain by enforcing feature invariance
to distribution shifts caused by perturbation. Furthermore, we
design a global calibration mechanism to align feature distri-
butions across all the source domains to improve the model’s
generalization capacity by eliminating domain bias. These lo-
cal perturbation and global calibration are conducted simulta-
neously, which share the same principle to avoid models over-
fitting by regularization respectively on the perturbed and the
original distributions. Extensive experiments were conducted
and the proposed PECA model outperformed the state-of-the-
art competitors by significant margins.

Index Terms— Person ReID, Domain Generalization,
Feature Perturbation, Distribution Alignment, Invariant Rep-
resentation

1. INTRODUCTION

Person Re-identification (ReID) aims to identify the images
of the same pedestrians captured by non-overlapping cameras
at different times and locations. It has achieved remarkable
success when both training and testing are performed in the
same domains [1, 2]. However, the widely held i.i.d. as-
sumption does not always hold in real-world ReID scenarios
due to significantly diverse viewing conditions at different lo-
cations of biased distributions at different camera views, and
more generally across different application domains. As a
result, a well-trained model with i.i.d. assumption can de-
grade significantly when applied to unseen new target do-
mains [3–5]. To that end, Domain Generalization (DG) [6–8],
which aims at learning a domain-agnostic model, has drawn

increasing attention in the ReID community. It is a more prac-
tical and challenging problem, which requires no prior knowl-
edge about the target test domain to achieve “out-of-the-box”
deployment.

Recent attempts on generalized ReID aim to prevent mod-
els from overfitting to the training data in source domains
from either a local perspective by manipulating the data dis-
tribution of each domain, or a global view by representing the
samples of all domains in a common representational space.
The local-based methods [9–12] are usually implemented by
feature perturbation and/or normalization. However, the per-
turbed distributions constructed from the original data of a
single source domain is subject to subtle distribution shift
and domain biased. On the other hand, the global-based ap-
proaches [4, 7, 13, 14] aim to align the feature distributions
of multiple domains so that the per-domain data character-
istic (i.e., mean and variance of the data distribution which
is assumed to be a Gaussian distribution) is ignored when
representing images of different domains. They often explic-
itly pre-define a target distribution to be aligned, or implic-
itly learn a global consensus by training a single model with
data from all the source domains. [4, 14] However, even the
domain gap is reduced by such a global regularization from
restricted ‘true’ distributions, the learned representations are
inherently domain-biased toward the consensus of the mul-
tiple seen training domains rather than the desired universal
distribution scalable to unseen target domains given the num-
ber of domains available for training is always limited.

In this work, we present a Feature-Distribution Pertur-
bation and Calibration (PECA) model to accomplish gener-
alized ReID. This is achieved by regularizing model train-
ing simultaneously with local distribution perturbation and
global distribution calibration. Specifically, on the one hand,
we introduce the local perturbation module to diversify the
feature distribution based on a perturbing factor estimated
per domain, which enables the model to be more invariant
to distribution shifts. On the other hand, we propose to si-
multaneously calibrate the feature distributions across all the
source domains, so to eliminate the domain-specific data
characteristics in feature representations that are potentially
caused by identity-irrelevant redundancy. Both the proposed
local perturbation and global calibration modules reinforce



the same purpose of regularizing the model training, but
they are devised in different hierarchies and complementary
to each other. Different from the existing methods which
consider only partially from the local or global perspectives,
our method handles both to promote the model in learning
domain-agnostic representations.

Contributions of this work are three-fold: (1) To our best
knowledge, we make the first attempt to exploit jointly the
local feature-distribution perturbation and the global feature-
distribution calibration for improving the model’s generaliz-
ability to arbitrary unseen domains while maintaining its dis-
crimination. (2) We formulate the PECA model which as-
sociates a local perturbation module (LPM) to diversify per-
domain feature distribution so to refrain the model from over-
fitting to each source domain, and a global calibration module
(GCM) to further eliminate domain bias by aligning the dis-
tribution of multiple source domains. PECA simultaneously
regularizes both to strike the optimal balance between these
two competing objectives. (3). Extensive experiments ver-
ify the superior generalizability of the proposed PECA model
over the state-of-the-art DG models on a wide range of ReID
datasets by a notable margin, e.g., the mAP is improved abso-
lutely by 5.8% on average.

2. METHODOLOGY

Given K source domains D = {D(k)}Kk=1, the objective of
generalized ReID is to derive a domain-agnostic model θ
which is capable of extracting domain-invariant representa-
tions for identity retrieval by a distance metric, e.g., Cosine
similarity or Euclidean distance, for any unseen target domain
Dt, This is inherently challenging due to the unpredictable
domain gap between training and testing data.

2.1. Overview

In this work, we propose a Feature-Distribution Perturbation
and Calibration (PECA) model to derive domain-agnostic yet
discriminative ID representations. It regularizes the model
training to satisfy simultaneously both local perturbation
and global calibration. The local regularization is built to
perform per-domain feature-distribution diversification, and
the global calibration is designed to achieve cross-domain
feature-distribution alignment, as shown in Figure 1. During
training, for each source domain D(k), a batch of samples
(x(k), y(k)), representing the pedestrian image and identity
label, is fed into the network backbone to extract the feature
map e(k). Then we perform per-domain diversification with
Local Perturbation Module (LPM) to enable the local model
to be invariant against per-domain shifts by training with the
perturbed features {ê(k)}kk=1. The balancing Global Calibra-
tion Module (GCM) further regularizes the model learning
by aligning the holistic representation (the input feature of
the classifier) into a common feature space constructed from

the global memory bank M regardless of domain label. To
distinguish the holistic representation from the intermedi-
ate representation e(k), we note it as v(k) ∈ RB×d and its
perturbed counterpart as v̂(k) correspondingly, where d is
a hyperparameter to the representation dimension, and B
denotes the batch size (equal for all the domains).

2.2. Local Feature-Distribution Perturbation

Given an intermediate feature e
(k)
i ∈ RB×C×H×W extracted

from the source domain D(k) at i-th layer, the objective of
LPM is to perturb per-domain features to avoid local-domain
overfitting. For notation clarity, we omit the layer index i
in the following formulations. Inspired by feature augmenta-
tion [15] and Instance Normalization (IN) [16, 17], LPM per-
forms perturbation by randomly substituting the transforma-
tion factors of IN. Specifically, we first calculate the channel-
wise moments µ(e(k)) ∈ RB×C and σ(e(k)) ∈ RB×C for IN
as

µ(e(k)) =
1

HW

H∑
h=1

W∑
w=1

e
(k)
h,w,

σ2(e(k)) =
1

HW

H∑
h=1

W∑
w=1

(e
(k)
h,w − µ(e(k)))2.

(1)

As suggested by [11], these statistical moments encode not
only style information but also certain task-relevant infor-
mation dedicated to ReID. Instead of discarding all of them
for style bias reduction as adopted in [12, 18], we propose
to maintain the discrimination while increasing the local-
domain data diversity by holistically shifting its distribution.
This is achieved by perturbing the per-domain instance mo-
ments as

µ̂(e(k)) = µ(e(k)) + ϵµh(µ(e(k))),

σ̂(e(k)) = σ(e(k)) + ϵσh(σ(e(k))),
(2)

where h(·) ∈ RC calculate the perturbation factors which are
mathematically the standard deviation, they reflect the dis-
persed level of the local domain, and ensures the perturbation
within a plausible range, so to avoid over-perturbation which
causes model collapse, or under-perturbation which cannot
provide any benefit in model learning. ϵµ and ϵσ are sampled
randomly from the normal distribution to introduce variability
in both the direction and intensity of perturbation, to ensure
a diverse set of perturbed features. We subsequently perform
feature transformation by substituting the local-domain mo-
ments with broadcasting subtraction as

ê(k) = σ̂(e(k))
e(k) − µ(e(k))

σ(e(k))
+ µ̂(e(k)). (3)

By introducing the perturbed representation ê(k), the per-
domain feature becomes more diverse so to improve the
model’s generalizability against the per-domain shift.
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Fig. 1. Overview of the proposed Feature-Distribution Perturbation and Calibration (PECA) model. The overall objective
is to derive generic feature representation by avoiding model overfitting to the source domains, which is achieved by Local
Perturbation Module to enforce the learned feature invariant to per-domain distribution shifts caused by perturbation, and
Global Calibration Module to align cross-domain distribution regardless of domain annotations.

2.3. Global Feature-Distribution Calibration

The global calibration module (GCM) is complementary to
LPM by aligning the distribution of cross-domain features
into a common feature space. GCM considers the associa-
tion between the perturbed holistic representation v̂(k) and a
global memory bank M. Specifically, we calculate the global
statistical moments µg ∈ Rd and σg ∈ Rd in each training
iteration as

µg =
1

K

K∑
k=1

1

N (k)

N(k)∑
n=1

M(k)
n ,

σ2
g =

1

K

K∑
k=1

1

N (k)

N(k)∑
n=1

(M(k)
n − µg)

2,

(4)

where M(k)
n ∈ Rd is the prototypical feature of the n-th iden-

tity in the k-th domain. These global statistical moments de-
pict a feature space shared by the prototypical representations
on M for all the identities. Subsequently, the holistic repre-
sentations are calibrated into the joint feature space by

Lg =
1

K

k∑
k=1

(||µ(v̂(k))− µg||1 + ||σ(v̂(k))− σg||1). (5)

Here, µ(v̂(k)) ∈ Rd and σ(v̂(k)) ∈ Rd are the channel-wise
mean and standard deviation of the perturbed representa-
tion v̂(k). GCM enables the extracted features to fall into
a domain-invariant space. The hierarchical regularization
achieved by LPM and GCM makes the model generic in
extracting domain-agnostic representations.

2.4. Training Pipeline

Learning objective. The proposed PECA model is jointly
trained with the identity loss Lid and the global regularization
item Lg as

L = Lid + λLg, Lid = −
C∑

j=1

p
(k)
j log p̃

(k)
j ,

p̃(k) = Softmax(MC(v̂(k))),

(6)

where p(k) is a one-hot distribution activated at y(k), and λ
balances the importance. The function MC(·) stands for the
memory-based classifier [18, 19], which is refreshed by Ex-
ponential Moving Average with a momentum of 0.2.

3. EXPERIMENTS

Implementation details. We used ResNet50 [20] pre-trained
on ImageNet to bootstrap our feature extractor. The batch
size B for each domain was set to 128, including 16 randomly
sampled identities and 8 images for each identity. All images
were resized to 256×128. We randomly augmented the train-
ing data by cropping, flipping, and colorjitter. The proposed
PECA was trained 60 epochs by Adam optimizer [21], and we
adopted the warm-up strategy in the first 10 epochs to stabi-
lize model training. The learning rate was initialized as 3.5e−
4 and multiplied by 0.1 at 30th and 50th epoch. The momen-
tum for the memory update was set to 0.8. The dimension of
extracted representations was conventionally set to 2048. All



Table 1. Comparison with SOTA methods. Best results are highlighted in bold, while the second-best results are underlined.

Method
PRID GRID VIPeR iLIDs Average

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1
Agg PCB [33] 32.0 21.5 44.7 36.0 45.4 38.1 73.9 66.7 49.0 40.6
MLDG [34] 35.4 24.0 23.6 15.8 33.5 23.5 65.2 53.8 39.4 29.3
PPA [35] 45.3 31.9 38.0 26.9 54.5 45.1 72.7 64.5 52.6 42.1
DIMN [23] 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5
DDAN [36] 67.5 62.9 50.9 46.2 60.8 56.5 81.2 78.0 65.1 60.9
DML [9] 60.4 47.3 49.0 39.4 58.0 49.2 84.0 77.3 62.9 53.3
META [37] 71.7 61.9 56.6 51.0 60.4 53.9 83.9 79.3 68.2 61.5
PECA (Ours) 72.2 62.7 59.4 48.4 70.1 61.2 85.7 79.8 71.9 63.0

the experiments were conducted on the PyTorch [22] frame-
work with four A100 GPUs. Mean average precision (mAP)
and Rank-1 accuracy are adopted as evaluation metrics.

3.1. Comparisons to the State-Of-The-Art Methods

We follow the conventional benchmarking setting [9, 11, 23],
by using five datasets, including Market1501 (M) [24],
MSMT17 (MT) [5], CUHK02 (C2) [25], CUHK03 (C3) [26],
CUHK-SYSU (CS) [27], and DukeMTMC (D) [28], as
source domains, and evaluated the generalizability on four
datasets of different domains not contributing to training
(unseen), which are PRID [29], GRID [30], VIPer [31],
and iLIDs [32]. All the images in the source domains were
used for training, regardless of the original training or test-
ing splits. We performed 10-trial evaluations by randomly
splitting query/gallery sets, and reported the averaged perfor-
mance in Table 1, which shows the superiority of the proposed
PECA over the state-of-the-art (SOTA) competitors.

3.2. Ablation Study

Components analysis. We investigated the effects of differ-
ent components in PECA model design to study individual
contributions. We trained a baseline model with only iden-
tity loss Lid. Table 2 shows that both the LPM and GCM are
beneficial individually, and the benefits become clearer when
they are jointly adopted as in the PECA model. From another
perspective, it also verifies that solely considering the local
or global regularization is biased, and it is non-trivial that the
PECA explores both in a unified framework.

Table 2. Components analysis of LPM and GCM. PECA as-
sociates both. Evaluated on mAP (%).

Setting PRID GRID VIPeR iLIDs Average
baseline 69.1 59.0 68.9 82.5 69.9
+LPM 71.5 58.0 69.7 85.3 71.1
+GCM 69.7 59.1 69.7 85.3 71.0
PECA 72.2 59.4 70.1 85.7 71.9

Table 3. Effects of the global calibration objective, whose
importance is decided by the weight λ in Eq. 6.

Metric w/o λ = 0.1 λ = 1 λ = 10 λ = 100
mAP 71.0 71.2 71.9 70.8 33.9
Rank-1 61.9 62.2 63.0 62.1 23.9

Effects of the global calibration objective. By linearly vary-
ing λ from 0.1 to 100, we observed from Table 3 that mod-
erately applying GCM (e.g., 0.1 or 1) is beneficial to PECA’s
generalizability; further increasing λ to a larger value (e.g.,
10 or 100) brings more harm than help. This is because the
learning process is dominated by the calibration regulariza-
tion and the model can barely learn from identity loss, hence,
the resulted feature is less discriminative. Given the above
observations, we set λ = 1 in practice for our PECA model.

4. CONCLUSIONS

In this work, we presented a novel Feature-Distribution Per-
turbation and Calibration (PECA) model to learn generic
yet discriminative representation. PECA simultaneously
conducts model regularization on local per-domain feature-
distribution and global cross-domain feature-distribution to
learn a better domain-invariant feature space representation.
Benefited from the diverse features synthesized by local per-
turbation, PECA expands per-domain feature distribution for
more domain shifts robustness. From the global calibration,
feature distributions of different domains are represented and
holistically referenced in a shared feature space with their
domain-specific data characteristics being ignored, resulting
in higher model generalizability.
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