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Abstract

Sketch recognition aims to automatically classify human hand sketches of objects
into known categories. This has become increasingly a desirable capability due to recent
advances in human computer interaction on portable devices. The problem is nontrivial
because of the sparse and abstract nature of hand drawings as compared to photographic
images of objects, compounded by a highly variable degree of details in human sketches.
To this end, we present a method for the representation and matching of sketches by ex-
ploiting not only local features but also global structures of sketches, through a star graph
based ensemble matching strategy. Different local feature representations were evaluated
using the star graph model to demonstrate the effectiveness of the ensemble matching of
structured features. We further show that by encapsulating holistic structure matching
and learned bag-of-features models into a single framework, notable recognition per-
formance improvement over the state-of-the-art can be observed. Extensive comparative
experiments were carried out using the currently largest sketch dataset released by Eitz et
al. [15], with over 20,000 sketches of 250 object categories generated by AMT (Amazon
Mechanical Turk) crowd-sourcing.

1 Introduction
Sketch has been used as a basic visual communication media since pre-historic times and is
becoming ubiquitous in recent years due to the popularity of touch sensitive devices such as
smart phones and tablets. Neuroscience studies also suggest that sketching is the elementary
way for human to conceptualize visual information [12, 22], and is more expressive when
retrieving images than raw text [4, 7]. This has resulted in a growing interest in automatic
sketch recognition systems [15] and sketch-based image retrieval (SBIR) systems [4, 9, 14].
However, automatically interpreting human sketches consistently is nontrivial. This is be-
cause (1) sketches are typically sparse in details without color and texture, as compared to
natural images that possess richer and denser visual details; (2) the geometric structures of
object sketches often have variable complexity and are inconsistent in details; (3) inter-class
variations of sketches can be small whilst their intra-class differences can be large, making
classification more ambiguous.
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Current methods for sketch recognition and sketch-based image retrieval address the
sparseness problem by densely sampling features [14, 15], using larger patches [13, 15] or
sampling features along the edges [9]. They all employ a bag-of-features (BOF) represen-
tation of object sketches without considering their spatial structures. For instance, although
[15] proposed a method for learning a sketch model per object category using Support Vec-
tor Machines (SVM) by utilizing a very large crowd-sourced database in order to address
the inter-class similarity and intra-class variety problem, they do not exploit structural infor-
mation. A characteristic of sketch is that its basic strokes do not necessarily exhibit strong
discriminative cues in isolation. Instead, the structures of a sketch both locally and holis-
tically contain informative visual cues for discriminating different sketches. We argue that
a desirable sketch representation and matching model requires a mechanism to encode its
structure in relation to the sparse features so that the model is capable of capturing suffi-
cient information for inter-class discrimination whilst being flexible enough to cope with
intra-class structural variations (holistic) and subtle structural detail differences (local).

In general, there are a number of ways for representing holistic image structures includ-
ing commonly employed spatial pyramid matching [11] or spatial BOF [3]. On the other
hand, a more robust and potentially flexible approach to image structure representation is a
star graph model [2]. A standard star graph, also known as an ensemble, has an assigned
center with each feature point represented as a node in the graph and connected to the center.
An ensemble model encodes both direction and distance of each feature point to the graph
center therefore provides a richer and more flexible representation of spatial structures than
other alternative schemes. In this work, we exploit a star graph as a structured feature repre-
sentation to encode both local features and the holistic structure of a sketch. We also exploit
the ensemble matching for computing the distance metric when comparing star graph rep-
resentations of different sketches [18]. Moreover, we examine and evaluate alternative local
features for the star graph and use K nearest neighbors (KNN) classification to evaluate the
effectiveness of different features and the star graph representation for sketch recognition.
We show in the experiments (Section 4) that by encoding holistic structures alone, recogni-
tion performance comparable to that of a BOF based alternative [15] can be obtained.

While star graphs can represent holistic structure of sketches well, current BOF ap-
proaches [9, 14, 15] have the benefit of being able to better capture subtle structural details.
For instance, diary cows have similar holistic structure to that of a horse and only differ
to the latter in body local texture patterns (Figure 4(c)). To that end, we further propose a
unified framework to address both holistic structural variations and local detail differences.
More specifically, we introduce a separate category filtering process as a first step prior to
ensemble matching. This filtering process not only preserves sketch categories having sim-
ilar local patterns, but also speeds up the ensemble matching process since less candidate
categories are considered during matching. We follow [15] who trained SVM classifiers us-
ing a BOF representation per sketch category. However, instead of classifying into just the
top one category, the classifier is used to select top N sketch categories that are most similar
to the query, where N is much smaller than the total number of categories. We demonstrate
the advantages of this unified approach against both a standard star graph based ensemble
matching model and the local BOF based model [15] with extensive comparative evaluations
in the experiments (Section 4).

The contributions of this work are: (1) introduce a model for encoding holistic structure
of sketches by exploiting a star graph and ensemble matching, this is specifically designed
to overcome the feature sparsity problem encountered in sketch recognition; (2) propose
a unified sketch recognition framework that addresses both holistic structural changes and
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subtle local detail variations; (3) examine and evaluate different local feature representations
for sketch recognition using star graph and ensemble matching, and demonstrate the per-
formance advantage of our proposed model over alternative sketch recognition techniques
published in the literature.

2 Related Work
The general concept of a structured feature representation has been adopted elsewhere in-
cluding scene category recognition [11], landmark images retrieval [3] and sketch-based
retrieval of drawings [7, 19]. However, most of these structure encoding methods are fairly
specific to the problem domains they were designed to address, therefore are not readily
applicable to the problem of representing sketches. Many techniques are designed for the
image domain and work with BOF representations. For instance, the spatial pyramid match-
ing method [11] utilizes a series of increasingly sparser grids over the image, then obtains
a weighted sum of the number of matches yielded at each grid level. It is designed for
scene categorization and optimized for capturing frequently emerged representative patterns
of certain scene categories. However, such a scheme is not directly suitable for sketches due
to large deformations and variations in sketches, and potential poor structural information
captured by fixed-position grid cells due to the sparsity and uncertain distribution of sketch
details. Alternatively, 2D features can be projected from a 2D feature space onto certain
lines, or circles in order to group the features by sectors [3]. This concept of 1D encoding
of local features by their 2D locations works well for landmark images when a dominant
direction(s) may be readily obtained, a property cannot be found generally in sketches.

There are a number of methods proposed for structured representations of sketches, in
which topological relationships between sketch parts were exploited for improving matching
accuracy [7, 19]. However, such schemes are restricted to a certain type of sketches, namely
technical drawings (e.g. CAD), when sketch parts can be relatively easily segmented into
well-defined topological parts. This is not generally the case for human free-hand drawn
sketches. It has been shown that grouping and segmenting human free drawn sketches con-
sistently and reliably is a challenging problem on its own and remains an open problem to
be resolved [20].

Many local feature representations commonly found in the image domain have been
investigated for sketches. Eitz et al. [14] offers a detailed account of many popular fea-
tures including angular radial partitioning (ARP), edge histogram descriptor (EHD), and
histogram of oriented gradients (HOG), and investigated their performance for SBIR where
a BOF representation was adapted. It is found that HOG generally outperforms others, but
the performance of which is sensitive to patch size and codebook size of the BOF model.
Very recently, an evaluation was conducted by Hu and Collomosse [8], where several local
features including gradient field HOG (GF-HOG), multi-resolution HOG (MR-HOG), scale-
invariant feature transform (SIFT), self-similarity (SSIM), shape context (SC) and structure
tensor (ST) are investigated within a BOF model for SBIR. HOG based features were again
found to outperform others.

Sketch recognition shares some common characteristics with shape matching [1, 5].
However, significant differences exist. Most shape matching techniques work on enclosed
2D outline contours of objects without inner structural details and/or with more consistent
shape characteristics extracted from object images. On the other hand, hand-drawn object
sketches are relatively free (less regularized) with internal feature details of a sketch being
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Figure 1: Four components (a-d) of our approach with working flows and visualization of a
star graph (e).

important for discriminating sketches of different objects, especially on large-scale datasets
where ambiguities commonly exist [15].

3 Methodology
The proposed sketch recognition model consists of four main components (shown in Figure
1). They are: local feature extraction, structure representation by star graph ensemble match-
ing, KNN classification and category filtering via SVM classification. We shall describe each
component in details as follows.

3.1 Feature Extraction
We sample feature points densely along sketch strokes while ignoring background. The
descriptors and locations of the features are then used to form the star graph model which
encodes both holistic geometrical structures and local features of the sketch. We consider
three types of local features as candidates for constructing a model representation.
Histogram of Oriented Gradients (HOG): computed on a dense grid of uniformly divided
cells. The gradients in each cell are interpolated into several orientation bins, which are
then formed into a histogram reflecting the cell sequence. This feature has commonly been
reported to have best performance with sketches [9, 13, 14, 15].
Self-Similarity (SSIM): proposed by [18] to capture the salient geometric structure in the
image computed on repeated patch patterns other than pixels. It is closely related to ensemble
matching with the potential for different visual domains, like photos, paintings and drawings.
Local Binary Pattern (LBP) : labels the texture of each pixel by thresholding the neigh-
borhood of the pixel into a binary number that is within a fixed pattern set. Then the pixels’
textures are formed into a histogram of the fixed set of patterns [16]. LBP is robust to mono-
tonic gray-scale changes and has good discriminative power.

3.2 Ensemble Matching
The matching of two ensembles is essentially a graph matching problem, where each en-
semble is encoded as a star graph. More precisely, we denote a star graph as G = (V,E ,A),
where V , E , A represent respectively a set of nodes, edges and attributes of the graph. In
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Figure 2: Ensemble matching visualization of four pairs of sketches: first two images of
each cell show the matched points (in red); the last two illustrate matching correspondences
where matched points have the same color.

particular, V = {vi}Ns
i=1 ∪ c is the set of all Ns sample points {vi}Ns

i=1 and the center c, and
ei ∈ E is the implicit link between vi and c. Moreover, aic ∈ A represents the geometrical
relationship between vi and c, and ai ∈ A denotes the corresponding feature descriptor of
vi, which can be one of the three candidate feature descriptors, HOG, SSIM and LBP, to be
evaluated for star graph ensemble matching.

The computation of the similarity between ensemble q (query) and t (target) is formulated
as follows:

P(Gq,Gt) = ∑
i

P(at
i|a

q
i )P(at

ic|a
q
ic) (1)

where Gq = (Vq,Eq,Aq) and Gt = (V t ,E t ,At) are their corresponding star graphs. P(·, ·)
denotes the normalized distance metric value and is considered as probability. The feature
similarity term P(at

i|a
q
i ) accounts for the similarity between features and is computed with a

sigmoid function:

P(at
i|a

q
i ) =

1
1+ exp(−‖at

i−aq
i ‖1)

(2)

on the L1 distance of two features according to [18]. The feature location correlation term
P(at

ic|a
q
ic) stands for the location correlation between two features and is computed with

Equation (3) following [2].

P(at
ic|a

q
ic) = exp(−(at

ic−aq
ic)

T S−1
L (at

ic−aq
ic)) (3)

where SL is a constant covariance matrix to allow for some deviations in patch locations.
A visualization of matching results for several pairs of ensembles is shown in Figure 2,

where matched points are assigned the same color. It can be seen that points having similar
appearance and location correspondences are well matched.

We modify traditional ensemble matching [18] in several minor ways. First, similar to
[2], we employ a two steps ensemble matching algorithm to accelerate the matching process.
It first finds the most similar D target features {at

j}D
j=1 for each feature in the query according

to Equation (2) (D is much smaller than the total feature amount in the target), then calculates
location correlations only for these D features. The similarity between the query and the
target is then:

P(Gq,Gt) = ∑
i

max
j

P(at
j|a

q
i )P(at

jc|a
q
ic) (4)

Second, the sum rule is employed to obtain the overall matching score (c.f. Equation (1)) in-
stead of the product rule employed in [2], as it is proven to be the most resilient to estimation
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errors [10]. Third, we get rid of the center estimation and multi-scale matching, due to the
single subject essence of the sketch images and pre-scale procedure for the sketches. And
the center of the ensemble is set to the geometrical center of the sketch. Fourth, to ensure
the matching score between two sketches is constant, two sides comparison is employed by
swapping the query and the target. And a partial matching penalty factor is added to penal-
ize the matching score according to how many points in the target is not matched. The final
matching score is then:

P f (Gq,Gt) = w1 ∗P(Gq,Gt)+w2 ∗P(Gt ,Gq) (5)

where, wi is the proportion of points being matched in the current target.

3.3 KNN classification
Given a query sketch ensemble, q, represented by a star graph, Gq, and a test set of sketches
T = {T m}M

m=1, T m = {Gml}L
l=1, where T m is a set of L sketches belonging to the mth cate-

gory, each represented by a star graph Gml . M is the total number of categories in the dataset
and the total sketch number is M×L (assuming L is constant for all categories). Matching is
then performed following Equation (1), and the distance function for KNN classification is
the reciprocal of Equation (1):

D(Gq,Gml) =
1

P(Gq,Gml)
=

1
∑i P(aml

i |a
q
i )P(aml

ic |a
q
ic)

(6)

For each query ensemble q, its K nearest neighbors are found using the metric of Equation
(6). And its category is assigned to the one where the majority of the K nearest neighbors
belong to.

3.4 Category Filtering
We employ SVM classifiers to filter sketch categories prior to ensemble matching, therefore
keep N categories closest to the query in term of local details other than holistic structure.
That is, we reduce T to T̂ = {T̂ i}N

i=1, where N�M.
More specifically, we represent a sketch by a n-dimensional BOF histogram hhh. A set

of SVM classifiers are trained with respect to the number of sketch categories in a training
dataset. For a probe sketch image to be classified, the following voting function classifies a
given probe sketch image into the ith category:

ci(h) = ∑
j

wi
jK(si

j,h)+b (7)

where K is a kernel function, si
j are the support vectors, wi

j are weights, and b is the bias.
ci(h) is therefore the classification response measuring similarity between the probe and the
ith category. All parameters are obtained during SVM training, and the RBF kernel was used
for K.

For each category i, a classifier ci is trained using the sketches from category i as positive
examples and sketches from all the rest categories as negative examples. Given a probe
sketch, we compute classification responses for all classifiers, {ci(h)}M

i=1, and keep the top
N categories as the closest categories in terms of representative local features.
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We deploy k-means clustering to generate a visual codebook U = {ui}Vi=1 [15, 17]. We
then represent a feature by assigned weights to each word ui using a Gaussian kernel to
improve classification performance. σ of the Gaussian kernel is essential to the final perfor-
mance and is optimized using cross-validation in this work.

4 Experiments
In this section, we demonstrate the effectiveness of our proposed sketch recognition method
and compare its performance against BOF based models [15]. Moreover, we also compare
the benefit of the ensemble matching with category filtering approach over a star graph en-
semble matching based model. From the experiments, it is evident that structured feature
representation using a star graph with ensemble matching can significantly improve sketch
recognition rate. In addition, category filtering can further enhance ensemble matching by se-
lecting a much smaller subset of the most relevant categories according to the local structural
details presented in the probe sketch image. Among the three local feature types considered,
our experiments show that the HOG features remain to be the most effective for structured
feature representation using star graph ensemble matching.

4.1 Dataset and settings
Dataset Eitz et al. [15] provided a large-scale human sketch dataset, currently the largest
sketch benchmark dataset publicly available with 250 object categories and 20,000 sketches.
The dataset was generated by AMT crowd-sourcing using 1,350 unique non-expert draw-
ers participated in the experiment, therefore make it diverse in terms of drawing style and
sophistication level. In our experiments, to be comparative with [15], each sketch is normal-
ized to 256× 256 pixels, by extracting the bounding box with the sketch and then scaling
and locating it in the center of the 256×256 area.
Features Three types of features are evaluated with the proposed frameworks. They are
HOG, SSIM and LBP. Self similarity feature is computed with VGG’s implementation [6].
The ‘var_noise’ parameter is set to 50,000, 5 radical bins and 12 angular bins were used. A
51×51 grid (every 5 pixels) is used to extract the sample points. VGG’s saliency checking,
homogeneity checking and second-nearest neighbor checking were all disabled, for their
unsuitability for sketches. A customized homogeneity checking is introduced to keep sample
points all along the sketch contour and these sample points are adopted by the rest two
features. HOG is computed using the VLFeat [21] implementation, where each patch is
divided into 4× 4 cells, and the orientation parameter is set to 4. LBP is computed using
CMV’s implementation [16], and the default settings are kept.
Cross validation 4-fold cross validation is employed for all the experiments reported in this
work, as compared to the 3-fold cross validation carried out in [15]. The whole dataset is sep-
arated into growing subsets (20,40,60,80 sketches per category), with 4-fold cross validation
performed on each subset.
Bag-of-features representation For all the features referred, the BOF representations are
obtained from a codebook containing 1,000 visual words. 1,000,000 features are randomly
sampled to train the codebook with k-means clustering. The σ parameter for the Gaussian
kernel is searched between [0.001,1] and set to 0.5 for HOG and SSIM, and 0.01 for LBP.
K nearest neighbors parameter settings For KNN classification on BOF, K is searched
among {1,2,3,4,5}, and the distance metric is searched in {cityblock,euclidean,cosine,
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correlation}. The parameter settings we chosen for HOG, SSIM, LBP are
[5,cityblock], [5,cityblock], [5,cityblock] respectively.
SVM parameter settings The γ and C parameters of SVM are searched between [2−2,28].
A coarse grid search is performed first with an interval of 22, followed by a fine grid
search with an interval of 20.25. The best parameter settings for HOG, SSIM, LBP are
[26.25,23.25], [27,23], [27,24] respectively.

4.2 Evaluation against Unstructured Feature Representation Model
Table 1 shows quantitative comparisons between the proposed matching method using HOG
features against that of [15]. We further breakdown the comparisons into two categories,
unsupervised and supervised, based on whether explicit training was involved in any part of
the recognition process. We compare two methods in the unsupervised category: KNN clas-
sification with ‘soft’ assignment reported by Eitz et al. [15], and ensemble matching without
category filtering of ours. Supervised result for Eitz et al. refers to their result of SVM classi-
fication with ‘soft’ assignment, while for ours refers to ensemble matching with SVM based
category filtering result. It is worth pointing out that using structure encoding by star graph
and utilizing ensemble matching, our unsupervised method is capable of giving comparable
recognition performance (53.3%) to the supervised learning model (56%) reported by [15].
Moreover, the performance from our ensemble matching with SVM based category filtering
approach improves significantly against [15], that is from 56% to 61.5%, where the reported
human-to-human recognition rate on the same dataset is 73% [15]. The following sections
will offer more detailed analysis of our results.

Eitz et al. [15] Ours

Unsupervised 44% 53.3%
Supervised 56% 61.5%

Table 1: Result comparisons.

4.3 Effect of Ensemble Matching
We compare our ensemble matching only approach against BOF based KNN sketch recogni-
tion method [15], using three features stated in Section 3.1. The KNN parameters are stated
in Section 4.1. Figure 3(a) offers quantitative results for the three features. It is evident
that for all three feature types, ensemble matching provides significant improvement than
the KNN classification on BOF. It is also evident that HOG features yield the best perfor-
mance. Figure 4(b) shows three top retrieval sketches of BOF(HOG) and Ens(HOG). The
KNN on BOF results normally have weak structure correspondence while ensemble match-
ing results generally have very tight structure correspondence. This somewhat explains the
significant improvement in recognition shown in Figure 3(a), and demonstrates the impor-
tance of structured feature representation and the effectiveness of the proposed ensemble
matching method.

4.4 Effect of Category Filtering
To evaluate the effect of category filtering given a probe sketch image, SVM models are
trained per category using the parameter settings stated in Section 4.1. A probe is then
classified by each model to generate corresponding classification response. The categories
are then ranked by the classification responses, among which top N are kept. We empirically
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Figure 3: (a) quantitative results of ensemble matching (Ens(*)) and KNN classification
on bag-of-features (BOF(*)) for HOG, SSIM and LBP; (b) recognition accuracies of our
ensemble matching with category filtering approach (Ens+SVM(*)) and SVM classification
(SVM(*)) on HOG, SSIM and LBP.

tested the N value variation among {10,15,20,25}, and found the best choices for HOG,
SSIM and LBP features are 10, 25, 25 respectively. Figure 4(a) illustrates how N correlates
with classification rate. It can be seen that our filtering step can generally preserve the correct
categories, especially using HOG. After the category filtering step, ensemble matching is
utilized for sketch classification. The recognition results using the three different feature
types are shown in Figure 3(b).

To train SVM models of [15], we use the same features involved in the star graph, and
quantize them into BOF representations. The SVM models are trained per category using
parameters stated in Section 4.1. And the query is assigned to the category whose SVM
model yields the highest classification response. Different recognition accuracies for the
three features are shown in Figure 3(b).

From Figure 3(a) and 3(b), it is evident that the unified framework outperforms both
ensemble matching only and SVM classification using BOF, and HOG yields the best per-
formance. Figure 4(c) shows the top retrieval examples of ensemble matching without
(Ens(HOG)) and with category filtering (Ens+SVM(HOG)). Without category filtering, en-
semble matching would mismatch the query due to the high similarity in the holistic structure
and ignoring the subtle structural details. However, with category filtering, those mistakes
are minimised to some extent. Note that similar qualitative results for SVM(*) are not pro-
vided since SVM does category classification only.

5 Conclusions
Holistic geometrical structures of sketches are helpful source of information for sketch
recognition, yet have been largely ignored by existing methods. In this work, a star graph
based ensemble matching method is presented to model holistic geometrical structures of
a sketch. By integrating ensemble matching into sketch recognition, the structure informa-
tion of a sketch can be effectively represented using a star graph. Extensive comparative
experiments and staged analysis on the effect of different components of our method are
carried out using the largest human sketch dataset currently available in the public domain.
One limitation of a standard star graph based ensemble matching is that it stresses more on
holistic structure than subtle local detail differences of the sketches. To overcome this limi-
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Figure 4: (a) classification rates of category filtering when N is {10, 15, 20, 25} for HOG,
SSIM and LBP; (b) qualitative comparisons of top retrieval results of three sketch probes on
KNN classification on bag-of-features (BOF(HOG)) and ensemble matching only method
(Ens(HOG)). (c) qualitative comparisons of top retrieval results of three sketch probes
on ensemble matching only (Ens(HOG)) and ensemble matching with category filtering
(Ens+SVM(HOG)).

tation, an unified ensemble matching with multi-SVM classification based category filtering
is designed to simultaneously benefit from both holistic structure and subtle local details
of sketches. Our experiments show that such a combined approach is able to outperform
significantly the current state-of-the-art using supervised training of SVMs given a bag-of-
features representation [15]. We also show that HOG features are most effective for sketch
recognition when encoded in a star graph representation, as compared to self-similarity and
LBP local features.
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