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Abstract

In this work, boosting the efficiency of Mean-Shift Trackingusing random
sampling is proposed. We obtained the surprising result that mean-shift track-
ing requires only very few samples. Our experiments demonstrate that robust
tracking can be achieved with as few as even 5 random samples from the im-
age of the object. As the computational complexity is considerably reduced
and becomes independent of object size, the processor can beused to handle
other processing tasks while tracking. It is demonstrated that random sam-
pling significantly reduces the processing time by two orders of magnitude
for typical object sizes. Additionally, with random sampling, we propose
a new optimal on-line feature selection algorithm for object tracking which
maximizes a similarity measure for the weights of the RGB channels. It se-
lects the weights of the RGB channels which discriminate theobject and the
background the most using Steepest Descent. Moreover, the spatial distri-
bution of pixels representing the object is estimated for spatial weighting.
Arbitrary spatial weighting is incorporated into Mean-Shift Tracking to rep-
resent objects with arbitrary or changing shapes by pickingup non-uniform
random samples. Experimental results demonstrate that ourtracker with on-
line feature selection and arbitrary spatial weighting outperforms the original
mean-shift tracker with improved computational efficiencyand tracking ac-
curacy.

1 Introduction

Much effort has been made to solve the problem of real-time object tracking over the
years. However, tracking algorithms still suffer from fundamental problems including
drifts away from targets [3] (partially due to change of viewpoint), inability to adapt
to changes of object appearance, dependence on the first frame for template matching
[4], instability to track objects under deformations (e.g.deformed contours), the ineffi-
ciency of Monte Carlo simulations for temporal tracking [5], and reliance on gradients
by active contours [6], i.e. problems with similar intensities on the background and the
object, or high gradient edges on the object itself. These problems are due to the com-
plexity of the object dynamics. We also have to deal with difficult tracking conditions
which include illumination changes, occlusions, changes of viewpoint, moving cameras
and non-translational object motions like zooming and rotation.

Recently, Mean-Shift Tracking [2] has attracted much attention because of its effi-
ciency and robustness to track non-rigid objects with partial occlusions, significant clutter
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and variations of object scale. As pointed out by Yang and Duraiswami [7], the computa-
tional complexity of traditional Mean-Shift Tracking is quadratic in the number of sam-
ples, making real-time performance difficult. Although thecomplexity can be made linear
with the application of a recently proposed fast Gauss transform [7], tracking in real-time
remains a problem when large or multiple objects are involved. We propose to boost the
efficiency of mean-shift tracking using random sampling. When the computational ef-
ficiency for mean-shift tracking with random sampling was evaluated, we obtained the
surprising result that mean-shift tracking requires only very few samples. We show that
robust tracking can be achieved with as few as even 5 random samples from the image of
the object. With random sampling, the computational complexity of Mean-Shift Tracking
is independent of object size. Large or multiple objects canbe tracked in real time. As the
computational complexity is considerably reduced, the processor can be used to handle
other processing tasks while tracking. Near real-time performance is obtained even in our
Matlab implementation which demonstrates that Mean-ShiftTracking with random sam-
pling runs much faster than 30 frames per second as a Matlab implementation is typically
at least two orders of magnitude slower than an implementation with C. It is also shown
that, instead of passing hundreds of samples to a traditional mean-shift tracker, only 5
random samples are required for the mean-shift tracker to track objects with a relatively
simple distribution and 15 samples for a typical distribution. In our experiments, random
sampling significantly reduces the processing time by two orders of magnitude for typical
object sizes.

In addition, with random sampling, we propose a new optimal on-line feature selection
algorithm for object tracking which maximizes a similaritymeasure for the weights of the
RGB channels. It selects the weights of the RGB channels which discriminate the object
and the background the most using Steepest Descent. However, the problem is that the
Bhattacharyya coefficient as the objective function of the weights for the RGB channels
is not uni-modal. A simpler measure using random sampling isproposed so that Steepest
Descent can be applied to find the optimal weights.

Moreover, the spatial distribution of pixels representingthe object is estimated for
spatial weighting. Arbitrary spatial weighting is incorporated into Mean-Shift Tracking
to represent objects with arbitrary or changing shapes by picking up non-uniform random
samples. For Mean-Shift Tracking, the probability of the color is derived using a convex
and monotonic decreasing kernel profile with a smaller weight to the pixels farther from
the centroid of the object to increase the robustness of the tracking. The multivariate
Epanechnikov kernel [2] and the Gaussian kernel [7] have been successfully applied to
Mean-Shift Tracking. However, they are not able to deal withobjects in arbitrary or
changing shapes very well. Apart from using a convex and monotonic decreasing kernel
profile to model the reliabilities of different parts of the object, pixels representing the
object are used to estimate the spatial importance or weighting in each part of the tracking
subwindow. The pixels of the object are extracted by segmentation using Normalized Cut
[8]. Random samples are picked up from the candidate and model images according to
our estimate. Instead of using all samples from the candidate and model images, the
random samples are given to the mean-shift tracker.
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2 Computational Efficiency of Mean-Shift Tracking
with Uniform Random Sampling

Figure 1: Experiments 1, 2, 3 and 4: The four rows of images represent four separate
video sequences produced by four experiments respectively. In the first experiment (first
row), only 5 random samples are picked from each of the candidate and model images, 10
samples in the second experiment (second row), 15 samples inthe third (third row) and
150 samples in the fourth (fourth row).

In this section, we propose to boost the efficiency of mean-shift tracking using random
sampling and evaluate the efficiency of the proposed method.When the computational
efficiency for mean-shift tracking with random sampling wasevaluated, we obtained the
surprising result that mean-shift tracking requires only very few samples. We show that
robust tracking can be achieved with as few as even 5 random samples from the image of
the object. With random sampling, the computational complexity of Mean-Shift Track-
ing is independent of object size. Near real-time performance is obtained even in our
Matlab implementation because, instead of passing hundreds of samples to a traditional
mean-shift tracker, only 5 random samples are required for the mean-shift tracker to track
objects with a relatively simple distribution and 15 samples for a typical distribution. The
speed of our tracker is 2.17 fps (frames per second) to track the head of a person in a
given video sequence while the speed of a traditional implementation used in [7] is 0.011
fps (197 times slower) with the same tracking sub-window size of 24x25 (600 samples
without random sampling).
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Figure 2: Experiments 5, 6, 7 and 8: The four rows of images represent four separate video se-
quences produced by four experiments respectively. In Experiment 5 (first row), only 2 random
samples are picked from each of the candidate and model images, 3 samples in Experiment 6 (sec-
ond row), 5 samples in Experiment 7 (third row) and all samples from the candidate and model
images (traditional Mean-Shift Tracking) in Experiment 8 (fourth row).

Our first four experiments, as shown in Figure 1, evaluate thenumber of random
samples required to track a typical object which is a human face in the experiments.
In the first experiment, only 5 random samples are picked fromeach of the candidate
and model images, 10 samples in the second experiment, 15 samples in the third and all
samples from the candidate and model images (traditional Mean-Shift Tracking) in the
fourth. Tracking fails with too few samples. The tracker fails with 5 samples from the
image of the object. With 10 samples, as shown in the second row of Figure 1, the tracker
tracks the object successfully but the trajectory is not very stable when compared with
the tracker with 150 samples (fourth row). There is no difference between the tracking
performance of the mean-shift tracker with 15 samples (third row) and that of the tracker
with 150 samples. A larger number of samples more than 15 doesnot make any difference
to the tracking performance of the tracker. On Matlab, the time required for the tracking
in Experiments 1, 2, 3 and 4 are 2.95 fps (frames per second), 2.63 fps, 2.18 fps and 0.04
fps respectively. Experiments 5, 6, 7 and 8, as shown in Figure 2, evaluate the number of
random samples required to track an object with a relativelysimple distribution which is
the head of a person. In Experiment 5, only 2 random samples are picked from each of
the candidate and model images, 3 samples in Experiment 6, 15samples in Experiment 7
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and all samples from the candidate and model images (traditional Mean-Shift Tracking)
in Experiment 8. The tracker fails with 2 samples from the image of the object. With 3
samples, as shown in the second row of Figure 2, the tracker tracks the object successfully
but the trajectory is not very stable when compared with the original mean-shift tracker
(fourth row). There is no difference between the tracking performance of the mean-shift
tracker with 5 samples (third row) and that of traditional Mean-Shift tracking. Therefore,
for an object with a relatively simple color distribution, alarger number of samples more
than 5 does not make any difference to the tracking performance of the tracker. With
our Matlab implementation, the time required for the tracking in Experiments 5, 6, 7
and 8 are 3.19 fps (frames per second), 3.12 fps, 2.17 fps and 0.011 fps respectively.
Successful tracking with 5 random samples is 197 times faster than traditional Mean-
Shift Tracking with the same tracking sub-window size of 24x25 (600 samples without
random sampling). The computational complexity of traditional Mean-Shift Tracking is
quadratic in the number of samples. In our experiments, random sampling significantly
reduces the processing time by two orders of magnitude for typical object sizes.

2.1 Optimal On-Line Feature Selection with Random Sampling

An on-line feature selection method for Mean-Shift Tracking is proposed recently [1]. It
is demonstrated that Mean-Shift Tracking can be made adaptive to the changing environ-
ment and more robust with the method. It adapts to changing appearances of both tracked
object and scene background by selecting the most discriminative feature with discrete
weighting for the RGB pixel values. The weight for each of theRGB pixel values can be
set to either -2, -1, 0, 1 or 2. Hence, the most discriminativefeature is a linear combina-
tion of the RGB pixel values. Because of redundancy, a pool ofonly 49 candidate features
are left for feature selection. All features are, then, ranked and the most discriminative
feature is selected accordingly. However, because of the nature of the discrete weighting,
the method prevents the feature selection from being optimal. We propose an optimal
on-line feature selection method for mean-shift tracking using Steepest Descent for our
real-valued weights, i.e.αi ∈ R, i = 1,2,3.

The objective of our on-line feature selection for object tracking is to maximize a
similarity measure for the weights of the RGB channels. It selects the weights of the
RGB channels which discriminate the object and the background the most. However, the
problem is that the Bhattacharyya coefficient as the objective function of the weights for
the RGB channels is not uni-modal. Local optimization techniques could not be applied
to selecting the best features whereas global optimizations are undesirable because of
its complexity. A simpler measure using random sampling is proposed so that Steepest
Descent can be applied to find the optimal weights. For mean-shift tracking, traditionally,
the probabilities of the coloru in the target model and the target candidate are given by

q̂u = C
n

∑
i=1

k(||x∗i ||
2)δ [b(x∗i )−u], and (1)

p̂u(y) = Ch

nh

∑
i=1

k(||
y− xi

h
||2)δ [b(xi)−u] (2)

whereC andCh are normalization factors,x∗i andxi are the pixel locations of the target
model and the target candidate, andk is a convex and monotonic decreasing kernel profile.
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The distance between the two discrete distributions is defined as [2]

d(y) =
√

1−ρ [p̂(y), q̂] (3)

where

ρ̂(y) = ρ [p̂(y), q̂] =
m

∑
u=1

√

p̂u(y)q̂u, (4)

the sample estimate of the Bhattacharyya coefficient between p andq.
Instead of maximizing the Bhattacharyya coefficient with the multivariate Epanech-

nikov kernel for the estimates ˆp andq̂, we pick up random samples from the object and the
background distributions. Non-uniform random sampling can be used to select samples
from the model image for spatial weighting. The chosen random samples from the two
distributions are, then, compared. Motivated by theχ2 difference, our similarity measure
based on the sum of squared difference of the random samples is defined to be

g = ∑
j

(∑
i

αi f ∗i j −∑
i

αi fi j)
2 (5)

with the constraint

∑
i

α2
i = 1 (6)

where f ∗i j and fi j are the pixel values of Samplej for Channeli from the target model and

the target candidate respectively.α2
i are the weights for the RGB channels withi = 1,2,3

representing R, G and B. The first and second derivatives of the functiong are

∂g
∂αl

= ∑
j

2(∑
i

αi f ∗i j −∑
i

αi fi j)( f ∗l j − fl j), and (7)

∂ 2g

∂α2
l

= ∑
j

2( f ∗l j − fl j)
2
. (8)

Notice thatg(α) is a convex function. We should, thus, maximizeg in polar coordinates
instead of maximizingg(α). In polar coordinates,

α1 = rsinφ cosθ , (9)

α2 = rsinφ sinθ , and (10)

α3 = rcosφ . (11)

By combining Equations 6, 9, 10 and 11, we obtainr = 1. Therefore,

g = ∑
j

(sinφ cosθ ( f ∗1 j − f1 j)+sinφ sinθ ( f ∗2 j − f2 j)+cosφ( f ∗3 j − f3 j))
2
. (12)

The partial derivatives ofg are

∂g
∂φ

= ∑
j

2[sinφ cosθ ( f ∗1 j − f1 j)+sinφ sinθ ( f ∗2 j − f2 j)+cosφ( f ∗3 j − f3 j)]

[cosφ cosθ ( f ∗1 j − f1 j)+cosφ sinθ ( f ∗2 j − f2 j)−sinφ( f ∗3 j − f3 j)], and (13)

∂g
∂θ

= ∑
j

2[sinφ cosθ ( f ∗1 j − f1 j)+sinφ sinθ ( f ∗2 j − f2 j)+cosφ( f ∗3 j − f3 j)]

[−sinφ sinθ ( f ∗1 j − f1 j)+sinφ cosθ ( f ∗2 j − f2 j)]. (14)
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2.2 Tracking Objects in Arbitrary Shapes with Non-Uniform
Random Sampling

1. Use Normalized Cut to extract the pixels of the object in the
user-selected subwindow of the first frame.

2. Estimate the spatial importance,o(x), using the spatial distribution
of the pixels representing the object with a histogram.

3. Select random samples,xi from the target model according to
our estimate , ˆo(x), using the rejection method.

4. Select random samples,x∗i from the target candidate according to
our estimate , ˆo(x), using the rejection method.

5. Use the random samples for Mean-Shift Tracking instead ofprocessing
all samples from the candidate and model images.

Table 1:The algorithm to Track Objects in Arbitrary Shapes with Non-Unform Sampling

For Mean-Shift Tracking, the probability of the color is derived using a convex and
monotonic decreasing kernel profile with a smaller weight tothe pixels farther from the
centroid of the object to increase the robustness of the tracking. The multivariate Epanech-
nikov kernel [2] and the Gaussian kernel [7] have been successfully applied to Mean-Shift
Tracking. However, they are not able to deal with objects in arbitrary or changing shapes
very well. Apart from using a convex and monotonic decreasing kernel profile to model
the reliabilities of different parts of the object, pixels representing the object are used to
estimate the spatial importance or weighting in each part ofthe tracking subwindow. We
define the spatial importance to be the probability that Pixel x is part of the object,o(x).
Instead of estimatingo(x) with a number of the examples of the object, only one sample,
the original model image, is used. This avoids the problem for the user to collect a num-
ber of examples similar in appearance to the object. It is demonstrated in our experiments
that our estimate using only one single sample is very effective.

The spatial importance,o(x), can be estimated using the spatial distribution of the
pixels representing the object. As the distribution is two-dimensional, a histogram would
suffice for the purpose. Therefore, our estimate, ˆo(x), is the two-dimensional spatial his-
togram of the pixels corresponding to the object. The pixelsof the object are extracted by
segmentation using Normalized Cut [8]. Random samples are picked up from the candi-
date and model images according to our estimate , ˆo(x), for the two-dimensional spatial
distribution representing the spatial importance using the rejection method. Furthermore,
instead of using all samples from the candidate and model images, the random samples
are given to the mean-shift tracker. Our algorithm for tracking objects in arbitrary shapes
with non-unform sampling is summarized in Table 1.

3 Experimental Results
Our further experiments investigate the performance of themean-shift tracker with our
methods for online feature selection and arbitrary spatialweighting. It is demonstrated
that our tracker with online feature selection and arbitrary spatial weighting outperforms
the original mean-shift tracker with improved computational efficiency and tracking ac-
curacy. In Experiment 9, the black hat of a person against a red wall and a glass door
as the background is tracked (Figure 3). It is shown that the tracker combined with our
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Figure 3: In Experiment 9 (first two rows), the black hat of a person against a red wall and
a glass door as the background is tracked. It is shown that thetracker combined with our
on-line feature selection method tracks the black hat successfully when the hat moves in
front of a glass door outside a dark corridor. In the bottom row, Experiment 9 is repeated
without on-line feature selection. The original mean-shift tracker is distracted by the glass
door on the background.

Figure 4:The face of a person against a red wall is tracked successfully with our on-line feature
selection method in Experiment 10.

on-line feature selection method tracks the black hat successfully when the hat moves in
front of a glass door outside a dark corridor. Moreover, in Experiment 10, the face of a
person against a red wall is tracked successfully with our on-line feature selection method
as shown in Figure 4. On Matlab, our on-line feature selection algorithm using Steep-
est Descent on average converges in 0.4 second for each frameand the average number
of iterations for convergence is 23. Figure 5 are two plots showing the weights for the
RGB channels,α1, α2 andα3. The plot on the top shows the change of the weights for
the RGB channels,α1, α2 andα3, when the hat of the person is tracked in Experiment
9 and the plot on the bottom shows the change ofα1, α2 andα3 when the face of the
person is tracked in Experiment 10. From Frame 35 to Frame 60,the hat and the face are
tracked against the red wall. The red channel is considered more important by the tracker
and, thus, given the highest weight. From Frame 210 to Frame 270, the fluctuation of the
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Figure 5: The plot on the top shows the weights for the RGB channels,α1, α2 andα3,
when the hat of a person is tracked in Experiment 9 and the ploton the bottom showsα1,
α2 andα3 when the face of a person is tracked in Experiment 10. From Frame 35 to Frame
60, the hat and the face are tracked against the red wall. The red channel is considered
more important by the tracker and, thus, given the highest weight. From Frame 210 to
Frame 270, the fluctuation of the weights is triggered by the white frame of the glass door.

Figure 6:A car on a busy road is tracked in Experiment 11 and a pedestrian is tracked in Exper-
iment 12. It is shown that the tracker combined with non-uniform sampling for arbitrary spatial
weighting tracks the car and the pedestrian successfully.

weights is triggered by the white frame of the glass door. To evaluate our method using
non-uniform sampling for arbitrary spatial weighting, a car on a busy road is tracked in
Experiment 11 and a pedestrian is tracked in Experiment 12 (Figure 6). It is shown that
the tracker combined with non-uniform sampling for arbitrary spatial weighting tracks the
car and the pedestrian successfully. The spatial distributions of the pixels from the car and
the pedestrian (Figure 7) extracted by Normalized Cut are used to build two-dimensional
histograms for the estimate of the spatial importance, ˆo(x). The number of bins used is 9
for the two-dimensional histograms in both of the experiments. Furthermore, Experiment
9 is repeated without on-line feature selection. Figure 3 shows that the original mean-

9



shift tracker is distracted by the glass door on the background. Experiment 12 is repeated
without non-uniform sampling for arbitrary spatial weighting. As shown in Figure 7, the
original mean-shift tracker fails to track the pedestrian.

4 Conclusion
To conclude, we have proposed Mean-Shift Tracking with random sampling which is
shown to reduce the processing time by two orders of magnitude for typical object sizes.
Besides, a new optimal on-line feature selection algorithmfor object tracking has been
proposed to maximize a similarity measure for the weights ofthe RGB channels. It se-
lects the weights of the RGB channels which discriminate theobject and the background
the most using Steepest Descent. Finally, arbitrary spatial weighting is incorporated into
Mean-Shift Tracking to represent objects with arbitrary orchanging shapes by picking up
non-uniform random samples. Our experimental results demonstrated that our tracker
with online feature selection and arbitrary spatial weighting outperforms the original
mean-shift tracker with improved computational efficiencyand tracking accuracy.
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Figure 7: In the left image, Experiment 12 is repeated without non-uniform sampling for
arbitrary spatial weighting. The original mean-shift tracker fails to track the pedestrian.
The right image shows that the spatial distributions of the pixels from the objects (Experi-
ment 11 and Experiment 12) extracted by Normalized Cut are used to build 2-dimensional
histograms for the estimate of the spatial importance, ˆo(x).

10


