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Abstract. Current methods for video activity localisation over time as-
sume implicitly that activity temporal boundaries labelled for model
training are determined and precise. However, in unscripted natural
videos, different activities mostly transit smoothly, so that it is intrin-
sically ambiguous to determine in labelling precisely when an activity
starts and ends over time. Such uncertainties in temporal labelling are
currently ignored in model training, resulting in learning mis-matched
video-text correlation with poor generalisation in test. In this work, we
solve this problem by introducing Elastic Moment Bounding (EMB) to
accommodate flexible and adaptive activity temporal boundaries towards
modelling universally interpretable video-text correlation with tolerance
to underlying temporal uncertainties in pre-fixed annotations. Specifi-
cally, we construct elastic boundaries adaptively by mining and discov-
ering frame-wise temporal endpoints that can maximise the alignment
between video segments and query sentences. To enable both more accu-
rate matching (segment content attention) and more robust localisation
(segment elastic boundaries), we optimise the selection of frame-wise
endpoints subject to segment-wise contents by a novel Guided Attention
mechanism. Extensive experiments on three video activity localisation
benchmarks demonstrate compellingly the EMB’s advantages over exist-
ing methods without modelling uncertainty.

1 Introduction

The goal of video activity localisation is to locate temporally video moments-
of-interest (MoIs) of a specific activity described by a natural language query of
an untrimmed continuous long video (often unscripted and unstructured) that
contains many different activities [28,29,21].

One straightforward solution to the task, denoted as proposal-free methods
(Fig. 1 (b)), is to predict directly the start and end frames of a target moment
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Fig. 1. An illustration of different activity localisation methods. (a) Activity’s tem-
poral boundaries are intrinsically uncertain in manual labelling (break-down and high-
lighted in ‘red’). (b) Proposal-free methods learn to identify the frame-wise temporal
endpoints. (c) Proposal-based methods learn the holistic alignment of video segments
and query sentences between their feature spaces. (d) Elastic Moment Bounding (EMB)
optimises simultaneously endpoints selection with maximisation of segment content
agreement between visual and textual representations.

that align to the given query [27,7,28,14]. Such paradigm deploys directly the
fixed manual activity endpoints labels for model training, implicitly assuming
these labels are well-defined and ignoring uncertainties in the labels. However,
unlike labelling object spatial bounding-boxes, there is a considerable variation
in how activities occur in unconstrained scenarios. There may not even be a
precise definition of the exact temporal extent of an activity. Fitting such uncer-
tain temporal endpoints will inevitably lead to semantically mis-matched visual-
textual correlations which are not universally interpretable and result in poor
generalisation in test. For example, the two queries Q1 and Q2 in Fig. 1 (a) are
semantically similar in describing ‘putting on shoes’. Nonetheless, the annotated
activity (gray bars on top) for Q1 starts from putting down a box while Q2

begins with sitting down on a sofa. By training a model with such uncertain
temporal endpoints (Fig. 1 (b)), the model is trained to match notably different
visual features of ‘putting down a box’ and ‘sitting down on a sofa’ with the same
query on ‘putting on shoes’. Clearly, the model suffers from poor learning due
to uncertainty in visual cues. Moreover, as observed in [12], the annotation bias
can be inconsistent from different annotators. Giving the same videos and query
sentences to 5 different annotators, only 42% and 35% of their annotated activ-
ity boundary are mutually agreed (with at least 50% IoU) on Charades-STA [5]
and ActivityNet-Captions [10], respectively. This highlights the extent of activ-
ity label uncertainties in model training inherent to the current proposal-free
methods, and the potential significant misinformation in training such models.
Another solution (Fig. 1 (c)) is to generate many candidate proposals for a target
moment and aligns segment-level video features with the query sentences [1,5,29].
By formulating the localisation task as a matching problem, the proposal-based
methods consider alignment by the whole moment with less focus on the exact
boundary matching [22,21]. By doing so, it can be less sensitive to the boundary
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labels but more reliance on salient content (attention) between proposals and
the target segment. This can make them more tolerant to the uncertainties in
temporal annotations. However, the problem of detecting accurately the start-
and end-point of a target activity moment remains unsolved especially without
constructing exhaustive proposals for efficiency conerns.

In this work, we introduce Elastic Moment Bounding (EMB) to address the
limitation of proposal-free paradigm by modelling explicitly the label uncertainty
in the temporal boundaries of an activity moment. Instead of forcing a model
to fit manually labelled rigid activity endpoints, each MoIs are modelled by an
elastic boundary with a set of candidate endpoints. The model then learns to
select optimally from consistent visual-textual correlations among semantically
similar activities. This introduces model robustness to label uncertainty. Specif-
ically, we conduct a proposal-based segment-wise content alignment in addition
to learning of frame-wise boundary identification. As the predicted segment is
required to be highly aligned with the query textual description, we represent
the gap between the predicted endpoints and the manual labelled endpoints
as an elastic boundary (Fig. 1 (d)). This process imposes explictly label un-
certainties to model training. To enable activity localisation to be both more
attention driven (accurate) and sensitive to an elastic boundary (robust), we
introduce an interaction between the segment-wise content representations and
frame-wise boundary features by assembling representations through a Guided
Attention mechanism. The segment-wise boundary-guided attention helps min-
imise redundant frames in each elastic boundary whilst the frame-wise content-
guided attention highlighting transitional frames with apparent visual changes
indicating the potential start and end points of an activity.

We make three contributions in this work: (1) We introduce a model to
explore collaboratively both proposal-free and proposal-based mechanisms for
learning to detect more accurate activity temporal boundary localisation when
training labels are inherently uncertain. We formulate a new Elastic Moment
Bounding (EMB) method to expand a manually annotated single pair of fixed
activity endpoints to an elastic set. (2) To reinforce directly robust content
matching (the spirit of proposal-based) as a condition to accurate endpoints
localisation (the spirit of proposal-free) of activities in videos, we introduce a
Guided Attention mechanism to explicitly optimise frame-wise boundary visual
features subject to segment-wise content representations and vice versa, so to
minimise redundant frames in each elastic boundary whilst highlighting frames
signalling activity transitions subject to segment content holistically. (3) Our
EMB model provides a state-of-the-art performance on three video activity lo-
calisation benchmark datasets, improving existing models that suffer from sen-
sitivity to uncertainties in activity training labels.

2 Related work

Proposal-based content alignment. By aggregating all the frames within
a video segment and aligning them holistically with the query sentences, the
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segment-wise approaches [1,5,29,30,6] are insensitive to the boundary as its most
salient and semantically aligned parts are not necessarily at its two ends. The
endpoint frames play a significant role to help differentiate video moments from
their overlapping counterparts containing redundant frames, hence, critical for
video activity localisation. Therefore, we explicitly associate the segment-wise
content information with the frame-wise boundary information and complement
them by each other through a novel guided attention mechanism.
Proposal-free boundary identification. In contrast, the proposal-free meth-
ods learn to directly regress the start and end timestamps of the target moments
or predict the per-frame probabilities of being the endpoints [4,27,7,28,14,33,31,11].
In either case, they take the temporal boundaries provided manually as the ora-
cles for learning exactly the same predictions. However, this is prone to be misled
by the uncertainty in manual labels and results in less generalisable models. To
cope with that, we train our EMB model to identify the target boundary from
reliable candidate start and end spans (sets of frames) rather than fitting the sin-
gle pre-fixed manual endpoints, so as to derive consistent video-text correlations
from semantically similar activities that are universally interpretable.
Joint content-boundary learning. There are a few recent attempts [22,21,23]
on localising video activity jointly by the proposal-based and proposal-free strate-
gies. They mostly explored the interaction of frame’s and segment’s feature rep-
resentations for better video comprehension. In this work, we study the combi-
nation of the two strategies for attention learning of activity temporal boundary
conditions beyond feature learning for activity representation. We augment the
fixed manual labels by the video segments selected according to their content
alignments with query sentences to help improve the robustness of temporal
endpoints identification when there is boundary uncertainty.
Temporal boundary uncertainty. Recently, Otani et al . [12] quantitatively
studied the label uncertainty problems on video activity localisation by collect-
ing multiple boundaries for the same activities from different annotators, the
results highlighted the extent of uncertainty in the temporal annotations. How-
ever, Otani et al . [12] did not explicitly propose a solution to the problem.
DeNet [33], on the other hand, addressed it w.r.t. the variety of language de-
scriptions, i.e., the same video activity can be described semantically in different
ways. They generated different copies of the same query sentences by perturbing
the “modified” phrases (adjective, adverb and etc.) so to predict diverse bound-
aries for the same video activities. Rather than studying the uncertainty from
the perspective of semantic description, we analyse the uncertainties in activity
temporal boundary annotations, which is intrinsically harder to avoid.

3 Learning Localisation with Uncertainty

Given the feature representations of an untrimmed videos F composed of T
frames, and that of a natural language sentence Q of L words, the objective of
video activity localisation is to identify the temporal boundary of a target mo-
ment (S,E) – activity endpoints – so that the video segment {ft}Et=S matches
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Fig. 2. An overview of Elastic Moment Bounding (EMB). (a) The EMB model takes
the pretrained 3D-CNN features and the GloVe embeddings as inputs. It consists of
an ‘Alignment branch’ (red dashed box) learning the semantic content alignment of
video segments and query sentences, and a ‘Bounding branch’ (green dashed box) to
predict the temporal endpoints of target activity moments. Both branches are subject
to (b) a Guided Attention mechansim with both self- and cross-modalities attention
in (c) a Multi-grained Interaction Network (MGIN). (d) The most confidently aligned
video segments predicted by the alignment branch are then selected for constructing
the elastic boundary to optimise the endpoints predictions from the bounding branch.

with Q in semantics. It is challenging to acquire high-level semantic understand-
ings of either videos or sentences, let alone aligning them to precisely locate the
temporal endpoints of a specific activity instance.

In this work, we study the problem of model learning subject to temporal
label uncertainty which is inherent to manual video annotation and more impor-
tantly not shared in unseen new test videos or language descriptions. To that
end, we propose an Elastic Moment Bounding (EMB) model (Fig. 2). The EMB
model first predicts the per-frame probabilities to be the temporal endpoints
of a target moment (Fig. 2’s green dashed box) by a Multi-grained Interaction
Network (MGIN) (Fig. 2 (c)) incorporating with a Guided Attention mechanism
(Fig. 2 (b)). EMB then optimises the frame-wise probabilities by mining multi-
ple candidate endpoints beyond the manual annotated ones. The candidate end-
points are discovered by an auxiliary alignment branch (Fig. 2’s red dashed box).
The alignment branch explores the visual-textual content aligment at segment-
level, which is less sensitive to exact endpoints annotations so more robust to
uncertainty. By doing so, we construct an elastic boundary interpretable univer-
sally for semantically similar activities with endpoints uncertainty.

3.1 Temporal Endpoints Identification

Our elastic moment bounding is a generic formulation deployable in any multi-
modal backbone deep networks. Here, we start with the VSLNet [28] and recon-
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struct it by introducing a Guided Attention mechanism to form a multi-grained
interaction network (MGIN). The overall pipeline of MGIN is shown in Fig. 2
(c) to first encode the video F and the sentence Q by attention both within
(self) and across modalities, then predict the frame-wise endpoint probabilities
by the joint-modal representations fused by context-query attention [18,24,25].

Adopting the convention [28,14,22], we represent video frames by a pre-
trained 3D-CNN model [3] as F = {ft}Tt=1 ∈ RDv×T and the query sentence by
the GloVe embeddings [15] of words Q = {wl}Ll=1 ∈ RDq×L. To facilitate cross-
modal feature interactions, we map both the representations to have the same
dimension D by two independent linear projections, i.e., F ← FC(F ) ∈ RD×T

and Q← FC(Q) ∈ RD×L.
Vision-language attention representation. We deploy attentive encod-
ing [20,9] for both the visual and textual representations to explore the dependen-

cies among elements in both. In general, to encode a target sequenceXt ∈ RD×Lt

of Lt elements with the help of a reference sequence Xr ∈ RD×Lr

in size Lr,
we first compute an attention matrix A indicating the pairwise target-reference
correlations, then represent each target element by its correlated references:

A = FC(Xt)⊤ FC(Xr)/
√
D ∈ RLt×Lr

(1)

g(Xt,Xr) = Xt + FC(Xr)Softmax(A)
⊤ ∈ RD×Lt

. (2)

An attention layer formulated in Eq. (2) is parameterised by three independent
fully-connected layers. Our MGIN shown in Fig. 2 (c) is constructed by both self-
attention within modalities: F ← g(F ,F ), Q← g(Q,Q) for context exploration
and cross-attention between modalities: F ← g(F ,Q), Q ← g(Q,F ) to learn
the semantic correlations between video frames and query words.
Guided attention. To effectively locate the temporal endpoints of activi-
ties, it is essential for the model to be aware of not only what is shown in each
individual frame but also what’s different before and after it. As a simple ex-
ample, the starting point of an activity ‘person puts on shoes’ should not be
arbitrary frames involving shoes-like objects in-between the period but be con-
sistent like when the shoes first appear to interact with the person. Therefore,
we propose a content-guided attention module (Fig. 2 (b)’s bottom) to explicitly
encode the preceding and subsequent content information of each frame into its
representation:

Fpre = {MaxPool({fi}ti=1)}Tt=1 ∈ RD×T ,

Fsub = {MaxPool({fi}Ti=t)}Tt=1 ∈ RD×T ,

F̃ = Conv2d({F ,Fpre,Fsub}) ∈ RD×T .

(3)

The feature MaxPool({fi}ti=1) ∈ RD in Eq. 3 aggregate all the frames before ft

by max-pooling as its preceding content representation. Similarly, the subsequent

content of the t-th frame is obtained by MaxPool({fi}Ti=t). Both the preceding
Fpre and subsequent Fsub content features are then stacked and assembled with
the frame-wise representations F by a 2D convolution layer. After that, the
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content-guided representations of video frames F̃ are used for attentive encoding
(Eq. (2)) both within F ← g(F̃ , F̃ ) and across modalities F ← g(F̃ ,Q).

Boundary prediction. Given a video F ∈ RD×T and sentence Q ∈ RD×L

representations, we estimate the frame-wise endpoint probabilities by computing
context-query attention [18,24,25], same as the baseline [28]. It is defined as

(ps,pe)=Softmax(LSTM(F̂ ⊙ h)),where h=σ(Conv1d(F̂ ∥q)) ∈ R1×T ,

F̂ = H(F ,Q) = FC(F ∥Xv2q∥F ⊙Xv2q∥F ⊙Xq2v) ∈ RD×T ; and

A =
FC(F )

⊤
FC(Q)√
D

, Xv2q = QAr⊤, Xq2v = FArAc⊤.

(4)

In Eq. (4), we predict the frame-wise endpoint probabilities by two stacked
LSTM. This is based on fusing the two modalities F and Q by function H
then rescale the per-frame fused feature F̂ ∈ RD×T using their estimated like-
lihood h ∈ R1×T of being foreground to suppress any distractions from redun-
dant frames. Matrix A ∈ RT×L consists of frame-to-word correlation scores; Ar

and Ac are its row and column-wise softmax normalised copies. The q are the
sentence-level representations from weighted sum of words [2]; (·∥·) stands for
concatenation (broadcast if necessary) while ⊙ is the Hadamard Product.

3.2 Elastic Moment Bounding

Given the uncertainty and ambiguity in manually annotated activity temporal
boundaries, it is ineffective to decide heuristically and universally which frames
and how many of them should be taken as the candidate endpoints (S̃, Ẽ) for
different video activities. To address this problem, we formulate an auxiliary
alignment branch in the model to learn the visual-textual content mapping per
each video segment. It serves as an additional self-learning “annotator” to expand
the given single pair of manually annotated boundaries into candidate endpoints
proposal sets tailored for individual activities.

Elastic boundary construction. As shown in Fig. 2’s red dashed box, we
first generate a 2D feature map [29] by enumerating pairwise start-end frames
to represent K = T × T video segments V = {vk}Kk=1 ∈ RD×K as the pro-
posals for a target moment. We flatten the 2D map here for clarity. The k-th
proposal with the temporal boundary of (tsk, t

e
k) is represented by max-pooling

the frames it is composed of vk = MaxPool({ft|∀t ∈ [tsk, t
e
k]}). The segment-

wise representations will then be fed into an independent MGIN equipped with
boundary-guided attention modules (Fig. 2 (b)’s top) for visual encoding. Similar
as in the content-guided attention for video frames, we explicitly assemble the
frame-wise boundary features with the content representations of video segments
to encourage boundary-sensitive content alignment:

Vsta = {ftsk
}Kk=1 ∈ RD×K , Vend = {ftek

}Kk=1 ∈ RD×K ,

Ṽ = Conv2d({V ,Vsta,Vend}) ∈ RD×K .
(5)
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The features Vsta and Vend in Eq. (5) are the representations of the start and
end frames for each of the K proposals. They are stacked and assembled with
the segment-wise content features V to derive the boundary guided segment
representations Ṽ by a 2D convolution layer. Such boundary-guided attention
share a similar spirit with temporal pyramid pooling [32], that is to explicitly
encode the temporal structure into segment’s representation so to be sensitive
to its boundary. Ṽ is then used for attentive encoding (Eq. (2)) within V ←
g(Ṽ , Ṽ ) and across V ← g(Ṽ ,Q) modalities.

Given the segment-level video representations V , we fuse them with the
sentence features by H defined in Eq. (4), and re-arrange it to be a 2D feature
map then predict the per-proposal alignment scores by a 2D convolution layer:

pa = σ(Conv2d(H(V ,Q))) s.t. pak ∈ (0, 1) ∀k ∈ [1,K]. (6)

The segment-wise alignment scores pa activated by the Sigmoid function σ is
then supervised by the temporal overlaps between every proposals and the man-
ual boundary:

αk = IoU((tsk, t
e
k), (S,E))

yak =

1, if αk ≥ τu
0, if αk < τl
αk, otherwise

Lalign(V ,Q, S, E) = BCE(ya,pa).

(7)

The notations τu and τl are the upper and lower overlap thresholds to control
the flexibility of video-text alignment, which are set to 0.7 and 0.3 respectively as
in [29]. With the learned segment-wise alignment scores pa, we take the bound-
ary (tsk∗ , tek∗) of the most confident proposal with the greatest predicted score
pak∗ ≥ pak ∀k ∈ [1,K] as the pseudo boundary and construct the corresponding
candidate endpoint sets by:

S̃ = [min(tsk∗ , S),max(tsk∗ , S)], Ẽ = [min(tek∗ , E),max(tek∗ , E)]. (8)

We customise the candidate endpoint sets for every individual activity by ex-
ploring the content alignments between video segments and query sentences, i.e.,
elastic boundary. This is intuitively more reliable than applying label smoothing
globally [22,23] without considering video context and language semantics.
Reliability vs. flexibility. Introducing too many candidate endpoints that
are semantically irrelevant to the query sentences is prone to distracting the
model from learning effective visual-textual correlations, especially at the early
stage of training a randomly initialised model which is likely to yield inaccurate
pseudo boundaries (tsk∗ , tek∗). Therefore, we balance the reliability and flexibility
of our elastic boundary by a controllable threshold τ :

k∗ = argmax
k

pa s.t. αk ≥ τ. (9)

The αk in Eq. (9) implies the overlap between the k-th proposal and the manual
boundary, whilst the threshold τ serving as a tradeoff between flexibility and
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reliability so that only the sufficiently overlapped proposals will be selected for
constructing the elastic boundary in Eq. (8).
Learning from elastic boundary. With the elastic boundary (S̃, Ẽ), we
formulate the boundary supervision signals to maximise the sum of the candidate
endpoint’s probabilities obtained in Eq. (4):

Lbound(F ,Q, S, E) = − log(
∑
t∈S̃

pst )− log(
∑
t∈Ẽ

pet ). (10)

Comparing with the commonly adopted frame-wise supervision which trains ps

and pe to be one-hot [28,14], we provide in Eq. (10) a more flexible boundary
to the target moments so that the model can learn in a data-driven manner to
select the endpoints beyond the manual boundary and ignore the unconcerned
actions involved.

3.3 Model Training and Inference

Inference. We consider two scenarios when predicting the boundary of video
activity: (a) DET: following the standard protocol of the task [5,8], we predict
a determined boundary enclosed by a single start and end frames according to
the outputs of bounding branch in a maximum likelihood manner

Ŝ = argmax
t

ps, Ê = argmax
t

pe, (11)

where Ŝ and Ê are the predicted start and end frame indices of a video that
are corresponding to a given query. (b) ELA: considering the uncertain nature
of temporal boundary, it is more intuitive to estimate the endpoints of video
activity by temporal spans rather than specific frames. Our model is able to
predict also an elastic boundary in a similar way as in training:

Ŝ = [min(tsk∗ , Ŝ),max(tsk∗ , Ŝ)], Ê = [min(tek∗ , Ê),max(tek∗ , Ê)]. (12)

In Eq. (12), we denote Ŝ and Ê in bold to indicate a set of candidate endpoints,
and differentiate them from the determined boundary in Eq. (11). The (tsk∗, t

e
k∗)

is the boundary of the most confident proposals selected from the alignment
branch without constraint on their overlaps to the ground-truth (Eq. (9)).
Training. In addition to Lbound and Lalign, we follow the baseline to learn h
in Eq. (4) by a binary cross-entropy loss to highlight foreground video content:

Lhigh(F ,Q, S, E) = BCE(yh,h), yht = 1[min(S̃) ≤ t ≤ max(Ẽ)]. (13)

Note that, the boundary (min(S̃),max(Ẽ)) is also extended as in [28] to en-
courage the model to focus on subtle visual changes in activity transitions. The
overall loss function of EMB is then formulated as:

L = λ1Lbound + λ2Lalign + λ3Lhigh (14)

The EMB model is optimised end-to-end by stochastic gradient descent. Its
overall training process is summarised in Alg. 1.
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Algorithm 1 Elastic Moment Bounding

Input: An untrimmed video F , a query sentence Q, a temporal boundary (S,E).
Output: An updated video activity localisation model.
Encode frames by content-guided attention via Eq. (2)(3);
Fuse frames with query and predict per-frame endpoint probabilities via Eq. (4);
Construct 2D feature map of proposals;
Encode proposals by boundary-guided attention via Eq. (2)(5);
Fuse proposals with query and predict proposal-query alignment scores via Eq. (6);
Construct the elastic boundary via Eq. (8)(9);
Optimise model weights by minimising L via Eq. (14).

4 Experiments

Datasets. We evaluated the proposed EMB model on three widely adopted
video activity localisation benchmark datasets: (1) TACoS [16,17], (3) Charades-
STA [5,19] and (2) ActivityNet-Captions [10,8]. Their different data character-
istics are summarised in Table 1. Among the three datasets, the raw videos in
TACoS have the longest durations while that of its MoIs are shortest in con-
trast, which means that the video activities are temporally covering less than
2% of the complete videos on average. Therefore, the videos in TACoS contain a
lot of redundancy in terms of every MoIs. On the other hand, the ActivityNet-
Captions is very different from TACoS whose video activities temporally cover
much larger proportions of the videos (∼ 30%) than the other two.

Performance Metrics. We followed the common practices [28,22,14] to
measure the quality of our video activity localisation results by their aver-
age recall rate at different temporal IoU thresholds (IoU@m). The predicted
boundary (Ŝ, Ê) of a MoI is considered correct if its IoU with the manual
temporal label (S,E) is greater than the thresholds m which are predefined
as m = {0.3, 0.5, 0.7}. Besides, we also reported the mean IoU (mIoU) of all
predictions with their corresponding ground-truth to show the average overlaps
between the predicted and manual boundaries. For our elastic boundary, we enu-
merate all the start-end pairs from Ŝ and Ê (Eq. (12)) respectively. If a manual
boundary’s overlap to any of the combinations is greater than the IoU threshold,
we consider it is correctly predicted.

Table 1. Statistics of datasets. Lv and Lm are the average lengths of videos and MoIs,
respectively. Lq is the average number of words in query sentences.

Datset #Train #Val #Test Lv Lq Lm

TACoS [16] 10,146 4,589 4,083 287.14s 10.1 5.45s

ANet [10] 37,421 17,031 17,505 117.61s 14.8 36.18s

Charades [5] 12,408 - 3,720 30.59s 7.2 8.22s
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Implementation Details. We adopted the video features provided by our
baseline model [28] and the 300D GloVe [15] embeddings to encode the video and
text inputs, respectively. We downsampled videos to have 128 frames at most
by max-pooling and zero-padded the shorter ones. The outputs of all the hidden
layers were 128D as in [28] and the multi-head variant [20] of the attention layer
in Eq. (1) was used with 8 heads followed by layer normalisation and random
dropout at 0.2. Cosine positional embeddings were applied to the inputs. The
EMB model was trained for 100 epochs with a batch size of 16. It was optimised
by an Adam optimiser using a linearly decaying learning rate of 5e−4 and gradi-
ent clipping of 1.0. In the alignment branch, we downsampled the videos to have
16 clips by the max-pooling of every 8 continuous frames for constructing the 2D
feature maps of video segments to avoid over-dense proposals. The threshold τ
in Eq. (9) was initiated to be 1 and progressively decreased to 0.5. The weights
of losses were empirically set to λ1 = λ2 = 1 and λ3 = 5 in all the datasets.

4.1 Comparisons to the State-of-the-art

As shown in Table 2, the determined boundary yielded by EMB (DET) outper-
forms the baseline VSLNet [28] by non-negligble margins on all tests. The more
recent IVG [14] shares the same baseline as EMB. The notable performance ad-
vantages of EMB over both of them demonstrate its non-trivial improvements.
Furthermore, EMB surpasses the state-of-the-art methods on TACoS against
all the performance metrics while remaining its competitiveness on the other
two datasets. Among the three datasets, TACoS poses the hardest test with the
longest average untrimmed videos and the shortest activity moments (see Ta-
ble 1). That is, TACoS exhibits more realistic scenarios for activity localisation
test. In this context, EMB shows its advantage most clearly when the untrimmed
videos are longer whilst the video MoIs are sparse and far between.

Moreover, table 2 shows also the clear performance advantages of the elastic
boundary predicted by our EMB (ELA) model over a wide range of the state-
of-the-art methods. When constructing the elastic boundaries in inference, over
80% of the predictions pairs yielded by the alignment and bounding branches
are consistent with each other (IoU > 0.5). Therefore, the performance improve-
ments we obtained is not due to over-dense sampling of the potential boundaries.
For fairer comparisons, we took the adjacent frames before and after the end-
points predicted by VSLNet to generate multiple candidate boundaries for its
evaluation. The number of frames is set to be 10% of the moment length so
that the density of candidate boundaries is consistent with ours. Although clear
performance gains are observed, the improvements from such a global shifting
strategy are less competitive to our per-sample adaptive designs due to missing
considerations of sample-dependent bias.

4.2 Ablation Study

We conducted comprehensive ablation studies based on the EMB’s determined
predictions to provide in-depth analyses and better understandings.
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Table 2. Performance comparisons to the state-of-the-art models on three video activ-
ity localisation benchmark datasets. The first and second best results are highlighted
in red and blue, respectively. The ‘DET’ modifier of EMB stands for the determined
boundary predicted in Eq. (11) while ‘ELA’ is the elastic boundary (Eq. (12)). The
symbol † denotes the reproduced results of our baseline model under the strictly iden-
tical setups using the code from authors and ⋆ indicates multi-candidate predictions.

Method
TACoS [16] Charades-STA [5] ActivityNet-Captions [10]

mIoU
IoU@m

mIoU
IoU@m

mIoU
IoU@m

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

VSLNet [28] 24.11 29.61 24.27 20.03 45.15 64.30 47.31 30.19 43.19 63.16 43.22 26.16
IVG [14] 28.26 38.84 29.07 19.05 48.02 67.63 50.24 32.88 44.21 63.22 43.83 27.10
2D-TAN [29] - 37.29 25.32 - - - 39.70 23.31 - 59.45 44.51 26.54
LGI [13] - - - - 51.38 72.96 59.46 35.48 41.13 58.52 41.51 23.07
DPIN [21] - 46.74 32.92 - - - 47.98 26.96 - 62.40 47.27 28.31
DRN [27] - - 23.17 - - - 53.09 31.75 - - 45.45 24.36
SCDM [26] - 26.11 21.17 - - - 54.44 33.43 - 54.80 36.75 19.86
BPNet [23] 19.53 25.93 20.96 14.08 46.34 65.48 50.75 31.64 42.11 58.98 42.07 24.69
CPNet [11] 28.69 42.61 28.29 - 52.00 - 60.27 38.74 40.65 - 40.56 21.63
CPN [31] 34.63 48.29 36.58 21.25 51.85 72.94 56.70 36.62 45.70 62.81 45.10 28.10
DeNet [33] - - - - - - 59.75 38.52 - 61.93 43.79 -
CBLN [31] - 38.98 27.65 - - - 61.13 38.22 - 66.34 48.12 27.60
SMIN [22] - 48.01 35.24 - - - 64.06 40.75 - - 48.46 30.34

VSLNet† [28] 28.15 39.07 27.59 16.65 47.33 67.26 50.46 31.53 42.26 57.75 41.10 25.58
EMB (DET) 35.49 50.46 37.82 22.54 53.09 72.50 58.33 39.25 45.59 64.13 44.81 26.07

VSLNet†⋆ 30.61 41.14 30.09 18.97 53.88 71.59 57.98 41.64 49.49 65.83 49.68 32.00
EMB⋆ (ELA) 48.36 63.31 52.49 37.02 62.16 79.73 69.22 51.40 56.25 73.72 58.65 40.74

Components analysis. We investigated the individual contributions of dif-
ferent components in our EMB model to its improvements over the baseline
model [28]. As shown in Fig. 3, both our elastic boundary learning objective
(Eq. (10)) and the multi-grained interaction network brought clear benefits to
the baseline. Such results demonstrate the effectiveness to learn the temporal
endpoints of video activities with higher flexibility so to tolerant the uncertainty
of manual labels. Besides, they also imply the superiority of our visual encoders
which conduct both within and cross-modal attention learning and complement
the boundary and content information of video segments mutually.

Candidate endpoints mining. We evaluated the advantages of mining can-
didate endpoints adaptively over several heuristic strategies without the MGIN
design: (1) boundary extension [28], (2) smoothing by a gaussian kernel [22,23]
and (3) single-frame endpoints (baseline). As shown in Fig. 4, simply improving
the boundary’s flexibility without considering their reliability (“Extend”) tends
to degrade the model’s performances on both datasets. Boundary smoothing
by a gaussian kernel (“Kernel”) is sometimes beneficial but less stable than our
adaptive designs because their candidates were determined according to only the
duration of MoIs without considering the video context and query’s unambiguity.

Evolving threshold. We studied the effects of threshold’s evolving schemes
to our elastic boundary constructions (Eq. (9)). Fig. 5 shows the curves of
schemes and their corresponding performances. The model trained with a con-
stant threshold yielded the worst results in most cases while the ‘Sigmoid’ scheme



Elastic Moment Bounding 13

10
20
30
40
50
60
70
80

IoU@0.3 IoU@0.5 IoU@0.7 IoU@0.3 IoU@0.5 IoU@0.7 IoU@0.3 IoU@0.5 IoU@0.7

Charades TACoS ActivityNet

Re
ca

ll
(%

)

Baseline Baseline+A Baseline+B Baseline+A+B (EMB)

Fig. 3. Effectiveness of different proposed
components. The elastic moment bound-
ing formulation is denoted as component
“A” while the multi-grained interaction
network is component “B”.
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Fig. 4. Effects of multi-candidate mining
strategies in training. “Fix”: single-frame
boundaries. Multiple endpoints are gen-
erated by extension (Extend), a gaussian
kernel (Kernel), or our elastic bounding.

is always the best. This is because the ‘Sigmoid’ scheme maintains a persistently
high threshold at the early training stages to avoid introducing distractions when
the alignment branch is under-trained, then drops rapidly to involve more diverse
candidate endpoints when the alignment branch is reliable.
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Fig. 5. Effects of constructing elastic
boundary subject to an evolving thresh-
old on Charades-STA.
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Fig. 6. Effectiveness of guided attention
mechanism by comparing with the con-
ventional attention modules [20].

Guided attention. We validated the effectiveness of our guided attention
mechanism by replacing it in our MGIN encoder by the conventional attention
modules proposed in [20]. From the comparison results shown in Fig. 6, the
models trained with guided attention outperformed their counterparts which
learned the video representations without interacting information in multiple
granularities. Such results imply the complementary of segment’s content and
boundary information, which encourage the video feature representations to be
sensitive to redundancy and activity transitions.

Qualitative case study. We provide several video examples in Fig. 7 which
are showing video activities corresponding to semantically similar sentence de-
scriptions. However, their manual boundary are inconsistent, demonstrating the
uncertainty in temporal boundaries. Specifically, the manual boundary for Q1

starts from grabbing the food right before putting it into the mouth while Q2

skipping the action of “grabbing” and starts when the person takes a bite. The
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22.614.311.7 21.8

Fig. 7. Cases of video activities with similar semantics but inconsistent manual bound-
aries. The manual and predicted boundary are shown in red and green, respectively.

Q3 involves even more redundancy which covers the actions of taking a plate
from a desk and blending foods by a folk. In contrast, the predictions made by
our model are more consistent on interpreting the action of “eat” in different
videos, i.e., always starts from delivering food to the mouth. This is accom-
plished by learning with highly flexible boundaries instead of fitting rigid and
ambiguous manual endpoints which are prone to visual-textual miscorrelations.

5 Conclusion

In this work, we introduced a new Elastic Moment Bounding (EMB) approach
to learn a more robust model for identifying video activity temporal endpoints
with the inherent uncertainty in training labels. EMB is based on modelling
elastic boundary tailored to optimise learning more flexibly the endpoints of
every target activity moment with the knowledge that the given training la-
bels are uncertain with inconsistency. EMB learns a more accurate and robust
visual-textual correlation generalisable to activity moment localisation in more
naturally prolonged unseen videos where activity of interests are fractionally
small and harder to detect. Comparative evaluations and ablation studies on
three activity localisation benchmark datasets demonstrate the competitiveness
and unique advantages of EMB over the state-of-the-art models especially when
the untrimmed videos are long and activity moments are short.
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