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Fig. 8. Performance of our models given different numbers of candidate exemplar (i.e. S) on Sports, PPMI, Gupta and SYSU action dataset. The X-axis and
Y-axis indicate selected exemplar number and the performance (accuracy) respectively.

Accuracy(mAP) Gupta SYSU action
Proposed Weighted Average (Eq.(9)) 92.3(91.1) 52.1(51.7)

Traditional Average 92.3(90.1) 47.9(50.0)
Max 88.5(90.5) 50.0(43.7)

TABLE VI
COMPARISON RESULTS OF DIFFERENT POOLING METHODS(%).

in person/object detection.
3) Effect of the weighted pooling in video frames: As

discussed in Sec. IV, we employ a weighted pooling method
(Eq. (9)) to integrate all the responses calculated from video
frames. As can be observed from Table VI, the performance
would drop when we replace our weighted pooling with tradi-
tional average pooling and max pooling methods. The results
indicate that the implicit frame selection by our weighted
pooling method is useful for alleviating the effect of irrelevant
or noisy frames during video HOI modelling.

4) Effectiveness of the matching model: Our matching mod-
el attempts to learn a set of weights to measure the reliability
of each component in the HOI descriptor. Here, we show the
advantage of the proposed matching model over the traditional
learning methods such as multiple kernel learning [47], linear
SVM, Ranking SVM and a naive weighted method by simply
averaging over all the components. We present the results in
Table VII. It can be observed that our matching model can
achieve the best classification accuracy on all four datasets.
The margin is particularly big on the two video datasets.
This result demonstrates that the proposed direct ranking
method can learn more robust and discriminant information
about the relative weighting of different components in the
HOI descriptor. We also observe that RankSVM performs
worse than the baseline Naive Weights on the two video
datasets. The poor performance of RankSVM on the two video
datasets can be largely explained by the fact that those action
classes have a much greater degree of inter-class variations
due to more temporal, lighting and pose changes than the
ones on still image datasets, so a single set of weighting for
all classes are no longer appropriate. Moreover, RankSVM
employs relative comparisons of all the sample pairs to train
the model, which may suffer from the over-fitting problem
with the two relatively smaller size video datasets.

5) Effectiveness of individual HOI descriptor components:
In Table VIII, we evaluated the contribution of each com-
ponent in our full HOI descriptor by removing one compo-
nent from the full descriptor. The results show that all the
components have contributed positively towards the superior

Accuracy Sports PPMI Gupta SYSU action
Matching Model 92.5 49.3 92.3 52.1

LSVM 91.7 48.4 80.8 45.2
Naive Weights 87.5 43.1 76.9 40.9

MKL [47] 89.1 49.1 88.5 47.9
RankSVM 89.1 43.3 73.1 33.8

TABLE VII
COMPARING OUR MATCHING MODEL AGAINST THE ALTERNATIVES. THE

RESULTS ARE IN CLASSIFICATION ACCURACY (%).

results of our method. Furthermore, we can make the fol-
lowing observations: (1) Among the four components of the
HOI descriptor (scene context, object detection vector, pose
appearance feature, and the novel spatial exemplar feature),
overall on the four datasets, the proposed spatial exemplar-
based HOI feature has the biggest contributions, as on average
the performance drops the most when this feature is removed.
(2) The scene context is important in the two still image
datasets (Sports and PPMI). This is because the background
of the HOI actions in each class in these two sets is often
similar, and dissimilar to that of other classes. Therefore scene
context becomes a very effective cue. For instance, in the
Sports dataset, the action ’croquet’ often occurs outdoor on
green grass, whilst the action ’volleyball smash’ often occurs
in an indoor volleyball court. However, for video HOI actions,
scene context is less important because most action classes
feature sequences were captured in the same scene. For these
dataset, our results show that the object detection and the
spatial interaction exemplar cues have a stronger influence on
the performance of our video-based HOI recognition method.
(3) The recognition accuracy decreases on the SYSU dataset
(52.1 to 38.0) to a greater extent than that on the Gupta
dataset (92.3 to 84.6) when removing the spatial interaction.
This is because in the SYSU dataset, the same set of objects
(phone, cup and book) appears in most HOI action instances
regardless of the action class. The spatial relations between
human subject and the manipulated object thus become even
more important for distinguishing different actions.

VI. CONCLUSION AND FUTURE WORK

We have proposed to represent human-object interactions
using a set of spatial pose-object interaction exemplars and
formed a new HOI descriptor consisting four parts, where
the weights for each part are learned by a ranking model.
A key characteristic of our exemplar-based approach is that
it models the mutual structure between human and object
in a probabilistic way, so as to avert explicit human pose
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Method Sports PPMI Gupta SYSU action
Full 92.5(95.3) 49.3(47.6) 92.3(91.1) 52.1(51.7)

Without Context 88.3(92.5) 43.3(41.2) 84.6(83.1) 46.5(48.9)
Without Object 88.3(94.8) 45.6(44.0) 80.8(81.3) 43.7(42.2)
Without Pose 88.3(94.1) 48.0(46.8) 88.5(86.0) 49.3(51.1)

Without Spatial Interaction 86.7(92.1) 44.6(43.4) 84.6(83.7) 38.0(41.3)

TABLE VIII
ACTION RECOGNITION RATES (%) MEASURED BY BOTH ACCURACY AND
(MAP) USING THE HOI DESCRIPTOR WITH VARIOUS FEATURES REMOVED

IN THE PROPOSED MODEL

estimation and alleviate the effects of imperfect detection
of object and human. The proposed exemplar modelling is
also able to reduce irrelevant and noisy frames during HOI
modelling on videos. Our experimental results suggest that our
exemplar approach is able to outperform most existing related
HOI techniques in both still images and video frames. On-
going work focuses on further improvement of the exemplar
learning. Specially, our approach depends on the use of atomic
poses. However, for some activities, e.g. repairing bike and
phoning, it is not easy to mine a set of representative atomic
poses from limited data. Hence, in the future, we consider
exploring the use of large scale data mined from the internet
for learning exemplars. Note that our exemplars are obtained
based on a large amount of manual annotations during training,
which may be expensive for dealing much more larger scale
data. So exploring a weakly supervised or even unsupervised
method for learning a set of pose-object interaction exemplars
is another direction of our future work.
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