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Abstract —Discovering rare categories and classifying new instances of them is an important data mining issue in many fields, but fully
supervised learning of a rare class classifier is prohibitively costly in labeling effort. There has therefore been increasing interest both
in active discovery: to identify new classes quickly, and active learning: to train classifiers with minimal supervision. These goals occur
together in practice and are intrinsically related because examples of each class are required to train a classifier. Nevertheless, very few
studies have tried to optimise them together, meaning that data mining for rare classes in new domains makes inefficient use of human
supervision. Developing active learning algorithms to optimise both rare class discovery and classification simultaneously is challenging
because discovery and classification have conflicting requirements in query criteria. In this paper we address these issues with two
contributions: a unified active learning model to jointly discover new categories and learn to classify them by adapting query criteria
online; and a classifier combination algorithm that switches generative and discriminative classifiers as learning progresses. Extensive
evaluation on a batch of standard UCI and vision datasets demonstrates the superiority of this approach over existing methods.

Index Terms —active learning, rare class discovery, imbalanced learning, classification, generative models, discriminative models
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1 INTRODUCTION

Many real life problems are characterized by data dis-
tributed between vast yet uninteresting background
classes, and small rare classes of interesting instances
which should be detected. In astronomy, the vast ma-
jority of sky survey image content is due to well under-
stood phenomena, and only 0.001% of data is of interest
for astronomers to study [1]. In financial transaction
monitoring, most are perfectly ordinary but a few un-
usual ones indicate fraud and regulators would like to
find future instances [2]. Computer network intrusion
detection exhibits vast amounts of normal user traffic,
and a very few examples of malicious attacks [3]. In
computer vision based security surveillance of public
spaces, observed activities are almost always everyday
behaviours, but very rarely there may be a dangerous
or malicious activity of interest [4], [5]. All of these
classification problems share two interesting properties:
highly unbalanced proportions – the vast majority of
data occurs in one or more background classes, while
the instances of interest for detection are much rarer; and
unbalanced prior knowledge – the majority classes are
typically known a priori, while the rare classes are not. In
order to discover and learn to classify the interesting rare
classes, exhaustive labeling of a large dataset would be
required to ensure coverage and sufficient representation
of all rare classes. However this is often prohibitively ex-
pensive as generating each label may require significant
time from a human expert.

Active learning strategies can help to discover rare
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classes [1] or train a classifier [6], [7] with lower label
cost. However, training a classifier for a priori undis-
covered classes requires both discovery and classifier
learning. This is challenging due to the dependence
of classifier learning on discovery (training a classifier
requires some examples of each class) and the conflict
between good discovery and classifier learning criteria
(an unlabeled point whose label is likely to reveal a
new class is unlikely to improve an existing classifier
and vice-versa). The problem of joint discovery and
classification via active learning has received little at-
tention despite its importance and broad relevance. The
only existing attempt to address this is based on simply
applying schemes for discovery and classifier learning
in fixed iteration [3]. Sequential or iterative [3] methods
effectively treat discovery and classification indepen-
dently, in that the selection of criteria at each step does
not depend on their relative success. They may therefore
make inefficient use of queries and perform poorly. For
example, spending active learning queries to perfect a
particular classifier is useless if the interesting classes
are not yet discovered; and spending queries searching
for new classes is a poor use of resources if all classes
have been discovered.

We address joint discovery and classification by adap-
tively balancing multiple criteria based on their success
both at discovery and improving classification. Specif-
ically, we propose to build a generative-discriminative
model pair [8] because as we shall see, generative
models naturally provide good discovery criteria and
discriminative models naturally provide good classifier
learning criteria. As a second contribution, we note that
depending on the actual supervision cost and sparsity of
rare class examples, the availability of labels will vary
across datasets and classes. Given the nature of data
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dependence in generative and discriminative models [8]
(in which generative models are often better with very
little data; and discriminative models are often better
asymptotically) the better classifier will vary across both
the dataset and the stage of learning. We address this
uncertainty by proposing a classifier switching algorithm
to ensure the best classifier is selected for a given
dataset and availability of labels. Evaluation on a batch
of vision and UCI datasets covering various domains
and complexities, shows that our approach consistently
and often significantly outperforms existing methods
at the important task of simultaneous discovery and
classification of rare classes.

2 RELATED WORK

A common approach to rare class detection that avoids
supervised learning is outlier detection [4], [9], [10]:
building an unconditional model of the data and flag-
ging unlikely instances under this model. Outlier detec-
tion has a few serious limitations however: i) It cannot
detect instances of non-separable categories, where the
interesting classes are embedded in the majority distribu-
tion; ii) It does not subsequently exploit any supervision
about the true class of flagged outliers, limiting its
accuracy – especially in distinguishing rare classes from
noise; iii) It is intrinsically binary, treating all data as
either normal or outlying. Different rare classes, which
may be of varying importance, can not be distinguished.

If it is possible to label some examples of each class,
iterative active learning approaches are often used to
learn a classifier with minimal supervision effort [6], [7].
Much of the active learning literature is concerned with
the relative merits of different criteria for supervision
requests. For example, querying points that: are most
uncertain [11], [12]; reduce the version space [12], [13];
or reduce direct approximations of the generalization
error [14], [15]. Different criteria may function best for
different datasets [6], e.g, uncertainty based criteria is
often good to refine an approximately known decision
boundary, but may be poor if the classes are non-
separable (the most uncertain points may be hopeless)
or highly multi-modal. This has led to attempts to fuse
[7], [16] or select dataset specific criteria online [17]. All
these approaches rely on classifiers, and do not generally
apply to scenarios in which the target classes have not
been discovered yet.

Recently, active learning has been applied to discov-
ering rare classes. That is, using selective supervision
to quickly find an example of each class. Points may
be queried based on e.g., likelihood [1], gradient [18],
clustering [19] or nearest neighbor [20] criteria.

Most existing studies exploiting active-learning are
single-objective: either discovery or classification, but
not both. Using active learning to solve discovery and
classifier learning together is challenging because even
for a single dataset, good discovery and classification
criteria are often completely different. Consider the toy
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Figure 1. Problems with (a) a complex decision boundary
and (b) multiple classes.

scenarios in Figure 1. Here the color indicates the true
class, and the symbol indicates the estimated class based
on two initial labeled points (large symbols). The black
line indicates the initial decision boundary. In Figure 1(a)
all classes are known but the decision boundary needs
refining. Likelihood sampling (most unlikely point un-
der the learned model) inefficiently builds a model
of the whole space (choosing first the points labeled
L), while uncertainty sampling selects points closest to
the decision boundary (U symbols), leading to efficient
refinement. In Figure 1(b) only two classes have been
discovered. Uncertainty inefficiently queries around the
known class decision boundary (choosing first the points
U) without discovering the completely new (and cur-
rently incorrectly classified) classes above. In contrast,
these are the first places queried by likelihood sampling
(L symbols). Evidently, single-criterion approaches are
insufficient. Moreover, multiple criteria may be desirable
for a single dataset at different stages of learning, e.g.,
likelihood to detect new classes and uncertainty to learn
to classify them. The only existing study addressing both
discovery and classification is [3], which non-adaptively
iterates over criteria in fixed proportions. However as
we will see, such inflexible approaches risk performing
poorly due to making inefficient use of the limited
supervision.

Our innovation is to adaptively select criteria online,
which can increase efficiency dramatically for learning
to classify in the presence of undiscovered classes. Typ-
ically “exploration” will be preferred while there are
easily discoverable classes, and “exploitation” to refine
decision boundaries will be preferred when most classes
have been discovered. We will however see that this is
not the case for every dataset, and that our model can
adapt to situations the ideal order is reversed, where
one criterion is consistently best, or where it is useful to
return to searching for the rarest classes after learning
to classify easier ones. This ultimately results in better
rare class detection performance than single objective,
or non-adaptive methods [3].

Finally, there is the issue of what base classifier to
use with active learning. One can categorize classifiers
into two broad categories: generative and discrimina-
tive. Discriminative classifiers directly learn p(y|x) for
class y and data x. Generative classifiers learn p(x|y)
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and p(y) and then compute p(y|x) via Bayes rule. The
importance of this for active learning is that there is
some empirical and theoretical evidence that for a given
generative-discriminative pair (in the sense of equivalent
parametric form, e.g., naive Bayes & logistic regression
[8], [21] or Gaussian mixtures and support vector ma-
chines [22]), generative classifiers often perform better
with very few training examples, while discriminative
models are often better asymptotically. One intuitive
reason why this can occur is that by imposing a stronger
parametric constraint p(x|y)p(y) on the data, generative
models may overfit less with low data whereas more
flexible discriminative models tend to overfit [22]. On
the other hand, with ample data, generative model mis-
specification (e.g., an assumption of Gaussianity in p(x|y)
not quite met by the data) will penalize accuracy more
compared to a more flexible discriminative model simply
representing p(y|x) [21]. The ideal classifier is therefore
likely to change at some unknown point during active
learning. An automatic way to select the right classifier
at test time is therefore crucial. This is especially so in the
rare class context where some classes may never obtain
more than a few examples. Existing active learning work
tends to focus on generative [11], [14] or discriminative
[12], [17] classifiers. We develop an algorithm to switch
classifiers online in order to get the best of both worlds.

3 ACTIVE DISCOVERY AND LEARNING

3.1 Active Learning

Standard learning problems assume an instance space of
data X and labels Y , with joint statistics p(X,Y ). The aim
is to learn a classifier f : X → Y with low generalization
error:

E(f) =

ˆ

∑

Y

L(f(X), Y )p(X,Y )dX, (1)

where L is a loss function penalizing disagreement be-
tween f(X) and Y . In pool based active learning [6],
[7], [15], we are given a large set of unlabeled instances
U = (x1, ..,xm) and a small set of labeled instances
L = ((x1, y1), .., (xn, yn)). Active learning proceeds by
iteratively: i) training a classifier f on L, and ii) using
query function Q(f,L,U) → i∗ to select an unlabeled
instance i∗ to be labeled, removing xi∗ from U and
adding (xi∗ , yi∗) to L. The goal of active learning is to
choose instances i∗ to label, so as to obtain a low error
E(f) classifier f with few iterations. Directly selecting
the sequence of ideal i∗s to minimize (1) is usually
intractable, so various approximations [6], [7], [14], [23]
have been proposed.

The crucial difference between our problem and tra-
ditional active learning [6], [7] is that the initial labeled
set L does not cover all possible labels Y . This makes it
unclear how to choose i∗ to minimize (1) even approxi-
mately. We note, however, that the likelihood sampling
criterion (4) has been shown effective at discovering

new classes [1]; while uncertainty sampling (2) provides
a simple greedy approximation [7], [23] to minimizing
error (1) – but only if all classes are known in advance.
Since success at discovery is necessary for error reduc-
tion, combining the criteria appropriately will be essen-
tial for good performance. We will bridge this gap by
introducing an intuitive adaptive query strategy which
balances likelihood and uncertainty criteria according to
their success at their respective goals: discovering new
classes, and reducing error for known classes.

3.1.1 Query Criteria

Uncertainty. The intuition behind uncertainty sampling
is that if the class of a point is highly uncertain, obtaining
a label should improve discrimination between the two
classes. Uncertainty is typically quantified by posterior
entropy, which for binary classification reduces to select-
ing the point whose posterior is closest to p(y|x) = 0.5.
The posterior p(y|x) of every point in U is evaluated and
the uncertain points queried,

i∗ = argmax
i

(

−
∑

yi

p(yi|xi; θ) log p(yi|xi; θ)

)

, (2)

pu(i) ∝ exp

(

β
∑

yi

p(yi|xi; θ) log p(yi|xi; θ)

)

. (3)

Rather than selecting a single maxima (2), a normalized
degree of preference for every point can be expressed by
putting the entropy into a Gibbs function (3). For non-
probabilistic SVM classifiers, p(y|x) can be approximated
based on the distance to the margin at each point [6].

Likelihood. A complementary query criteria is that of
low likelihood p(x|y). Such points are badly explained
by the current (generative) model, and may reflect an
as yet unseen class [1]. This may involve marginalizing
over the class or selecting the maximum likelihood label,

i∗ = argmin
i

(

max
yi

p(xi|yi; θ)

)

, (4)

pl(i) ∝ exp

(

−β max
yi

p(xi|yi; θ)

)

. (5)

The uncertainty measure in (2) is in spirit discriminative
(in focusing on decision boundaries), although p(y|x)
can obviously be realized by a generative classifier. In
contrast, the likelihood measure in (4) is intrinsically
generative, in that it requires a density model p(x|y) of
each class y, rather than just the decision boundary.
The uncertainty measure is usually poor at finding new
classes, as it focuses on known decision boundaries,
and the likelihood measure is usually good at finding
new classes, while being poorer at refining decision
boundaries between known classes (Figure 1). Neither of
these are always the case, however. For example, a risk
of the uncertainty measure is that it can perform poorly
if parts of the data are highly non-separable – it will
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indefinitely query impossible to separate areas of space;
meanwhile, the likelihood measure could still improve
known-class classification if the classes are multi-modal
– it will explore different modes. Our adaptation method
in Section 3.3 will allow the criteria to flexibly applied
according to which is more likely to reduce error (1) at
the current stage of learning on a particular dataset.

3.1.2 Density Weighting

There is one potential concern with how uncertainty,
and especially likelihood sampling relate to the uncon-
ditional density of the data p(x). It may be that the most
uncertain or unlikely points are in low-density regions
of the input space, so learning a good model there is
not a good use of supervision since few test points will
be drawn there and the generalization error (1) will
not be significantly improved. At worst, uncertain or
unlikely points may simply be actual noise rather than
interesting rare classes. If this is the case, a good solution
is to additionally weight the criteria by the unconditional
density of the data p(x) which we will readily obtain in
the process of building a generative model of the data
(see Section 3.2). We can then define a density-weighted
variant of uncertainty or likelihood sampling as:

pwu(i) ∝ exp

(

β
∑

yi

p(yi|xi; θ) log p(yi|xi; θ)p(xi)

)

, (6)

pwl(i) ∝ exp

(

−β max
yi

p(xi|yi; θ)p(xi)

)

. (7)

Various studies [16], [24], [25], [26] have advocated
density weighting of query criteria to improve gener-
alization by ensuring points are both informative and
representative. Notably [25] suggests weighted uncer-
tainty sampling early in the learning process, moving
toward unweighted uncertainty sampling later in the
learning process. The intuition is that it is worth refining
the decision boundary in areas relevant to many points
first, and only move onto learning about sparse areas
once dense areas are reliably modeled. In our case we
can leverage this idea by simply including the den-
sity weighted variant of each criteria another option to
be adapted (see Section 3.3). Next we discuss specific
procedures for learning the required generative model
p(x|y)p(y) and discriminative model p(y|x).

3.2 Generative-Discriminative Model Pairs

We use a Gaussian mixture model (GMM) for the gener-
ative model and a support vector machine (SVM) for the
discriminative model. These were chosen because they
may both be incrementally trained (for active learning
efficiency), and they are a complementary generative-
discriminative pair in that (assuming a radial basis
SVM kernel) they have equivalent classes of decision
boundaries [22], but are optimized with different criteria
during learning. Given these models, we will initially

use the GMM and SVM to compute the likelihood and
uncertainty criteria respectively, (although we will see
later that this is not always the best strategy).

3.2.1 Incremental GMM Estimation

For online GMM learning, we use the constant time
incremental agglomerative algorithm from [10]. To sum-
marize the procedure, for the first n = 1..N training
points observed with the same label y, {xn, y}Nn , we
incrementally build a model p(x|y) for y using kernel
density estimation with Gaussian kernels N (xn,Σ) and
weight wn = 1

n . d is the dimension of x.

p(x|y) =
1

(2π)
d/2 |Σ|1/2

·
N
∑

n=1

wn exp−
1

2

(

(x− xn)
TΣ−1(x− xn)

)

. (8)

After some maximal number of Gaussians Nmax is
reached, merge two existing Gaussians i and j by mo-
ment matching [27] as follows

w(i+j) = wi + wj ,

µ(i+j) =
wi

w(i+j)
µi +

wj

w(i+j)
µj ,

Σ(i+j) =
wi

w(i+j)

(

Σi + (µi − µ(i+j))((µi − µ(i+j))
T
)

+
wj

w(i+j)

(

Σj + (µj − µ(i+j))((µj − µ(i+j))
T
)

. (9)

The components to merge are chosen by the selecting the
pair (Gi, Gj) whose replacement G(i+j) is most similar,
in terms of the Kullback-Leibler divergence:

i∗, j∗ = argmin
i,j

Cij (10)

Cij = wiKL(Gi||G(i+j)) + wjKL(Gj ||G(i+j)),(11)

where the divergence between two multivariate Gaus-
sians of dimension d is:

KL(Gi||Gj) =
1

2

(

log
|Σj |

|Σi|
+ Tr(Σ−1

j Σi)

+(µi − µj)Σ
−1
q (µi − µj)

T − d

)

.(12)

Importantly for active learning online, merging Gaus-
sians and updating the cost matrix requires constant
O(Nmax) computation every iteration once the initial
cost matrix has been built. In contrast, learning a GMM
with latent variables requires multiple expensive O(n)
expectation-maximization iterations [1]. The initial co-
variance parameter Σ is assumed to be uniform diagonal
Σ = Iσ, and is estimated by leave-one-out cross valida-
tion using the large pool of unlabeled data in U .
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σ̂ = argmax
σ





∏

n∈U

σ− d
2

∑

x 6=xn

exp−
1

2σ2
(x− xn)

2



. (13)

Given the learned models p(x|y, θ), we can classify
ŷ ← f(x), where

f(x) = argmax
y

p(y|x),

p(y|x) ∝
∑

i

wiN (x;µi,y,Σi,y)p(y). (14)

3.2.2 SVM
We use a standard SVM approach with RBF kernels,
treating multi-class classification as a set of 1-vs-all de-
cisions, for which the decision rule [22] is given (by an
equivalent form to (14)) as

f(x) = argmax
y





∑

vi∈SVy

αy,iN (x;vi) + αy,0



, (15)

and p(y|x) can be computed via an optimization based
on the binary posterior estimates [28].

3.3 Adapting Active Query Criteria

Our first concern is how to adaptively combine the
query criteria online for discovery and classification.
Our algorithm involves probabilistically selecting a query
criteria Qk according to some weights w (k ∼Multi(w))
and then sampling the query point from the distribution
i∗ ∼ pk(i) ((3), (5-7)).1 The weights w will be adapted
based on the discovery and classification performance
φ of our active learner at each iteration. In an active
learning context, [17] show that because labels are few
and biased, cross-validation is a poor way to assess clas-
sification performance, and suggest the unsupervised
measure of binary classification entropy (CE) on the un-
labeled set U instead. This is especially the case in the
rare class context where there is often only one example
of a given class, so cross-validation is not well defined.
To overcome this problem, we generalize CE to multi-
class entropy (MCE) of the classifier f(x) and take it as
our indication of classification performance,

H = −

ny
∑

y=1

∑

i I(f(xi) = y)

|U|
logny

∑

i I(f(xi) = y)

|U|
, (16)

where ny is the number of classes observed so far. The
intuition here is that in a rare-class scenario with extreme
class imbalance, classifiers are typically at risk of bias
toward the majority class. A classifier with a higher

1. We choose this method because each criterion has very different
“reasons” for its preference. An alternative is querying a product or
mean [17] of the criteria. That risks querying a merely moderately
unlikely and uncertain point – neither outlying nor on a decision
boundary – which is useless for either classification or discovery.

entropy on the unlabeled data shows less bias and is
therefore likely to be generalize better than classifier with
a more biased response. Next, we must also explicitly
reward the discovery of new classes to jointly optimize
classification and discovery. To drive future adaptation
of query criteria, we therefore define a reward function
φt(i) upon querying point i at time t as,

φt(i) = αI(yi /∈ L) + (1− α)
(eHt − eHt−1)− (1− e)

2e− 2
.(17)

The first term rewards discovery of a new class, and
the second term rewards an increase in MCE (where the
constant factors ensure the range is 0 to 1) after labeling
point i. The parameter α is the weighting prior for
discovery vs. classification. Given the reward function
φt(i), we define an update for the future weight wt+1 of
each active criterion k,

wt+1,k(q) ∝ λwt,k + (1− λ− ǫ)φt(i)
pk(i)

p(i)
+ ǫ. (18)

Here we define an exponential decay (first term) of the
weight in favor of (second term) the current performance
φ weighted by how strongly criteria k recommended the
chosen point i, compared to the joint recommendation
p(i) =

∑

k pk(i). λ is the forgetting factor which deter-
mines how quickly the weights adapt. The third term
encourages exploration by diffusing the weights so every
criterion is tried occasionally. In summary, this approach
adaptively selects more frequently those criteria that
have been successful at discovering new points and/or
increasing MCE, thereby balancing discovery and classi-
fier improvement so as to improve overall performance.

3.4 Adaptive Selection of Classifiers

Although we broadly expect the generative GMM clas-
sifier to have better initial performance, and the dis-
criminative SVM classifier to have better asymptotic per-
formance, the best classifier will vary with dataset and
active learning iteration. The question is how to combine
these classifiers [29] online for best performance given
a specific training supervision budget. Cross-validation
to determine reliability is infeasible because of lack of
data; however we can again resort to the MCE over the
training set U (16). In our experience, MCE is indeed
indicative of generalization performance, but relatively
crudely and non-linearly so. This makes approaches
based on MCE weighted posterior fusion unreliable. We
therefore choose a simpler but more robust approach
which switches the final classifier at the end of each
iteration to the one with higher MCE, aiming to per-
form as well as the better classifier for any supervision
budget. Specifically, after each training iteration, having
learned the n points in L and obtained parameters θnSVM

and θnGMM , we compute multi-class classification en-
tropies Hgmm(fgmm(U ; θngmm)) and Hsvm(fsvm(U ; θnsvm))
over the train set U . If training is then terminated and
we are asked to predict a test point x∗, we predict as



ACCEPTED BY IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 1 Active Learning for Discovery and Classi-
fication
Active Learning

Input: Initial labeled L and unlabeled U samples. Clas-
sifiers {fc}, query criteria {Qk}, weights w.

1) Build unconditional GMM p(x) from L∪U (8)-(12)
2) Estimate σ by cross-validation on p(x) (13)
3) Train initial GMM and SVM classifiers on L

Repeat as training budget allows:

1) Compute query criteria plik(i) (5) and punc(i) (3)
2) Sample query criteria to use k ∼Multi(w)
3) Query point i∗ ∼ pk(i), add (xi∗ , yi∗) to L
4) Update classifiers with label i∗ (14) and (15)
5) Update query criteria weights w (17) and (18)
6) Compute entropies Hgmm and Hsvm (16)
7) If Hgmm > Hsvm: select classifier fgmm(x) (19)
8) Else: select fsvm(x) (19)

Testing

Input: Testing samples U∗, selected classifier c.

1) Classify x ∈ U∗ with fc(x) ((14) or (15))

f(x∗) =

{

fgmm(x∗; θngmm) Hgmm > Hsvm

fsvm(x∗; θnsvm) Hgmm ≤ Hsvm

. (19)

Additionally, the process of multi-class posterior es-
timation for SVMs [28] requires cross-validation and is
inaccurate with limited data. To compute the uncertainty
criterion (3) at each iteration, we therefore use posterior
of the classifier determined to be more reliable by MCE,
rather than always using the discriminative model poste-
rior. This ensures that uncertainty sampling is as accurate
as possible in both low and high data contexts.

3.5 Summary

Algorithm 1 summarizes our approach. Our algorithm
has four parameters: Gibbs parameter β, discovery vs.
classification prior α, forgetting rate λ and exploring rate
ǫ. None of these were tuned to obtain good results; we
set them all crudely to intuitive values for all experi-
ments, β = 100, α = 0.5, λ = 0.6 and ǫ = 0.02. The GMM
and SVM classifiers both have regularization hyperpa-
rameters Nmax and (C, γ). These were not optimized2,
but set at standard values Nmax = 32, C = 1, γ = 1/d.

4 EXPERIMENTS

4.1 Illustrative Example

We first illustrate the operation of our model (Algo-
rithm 1) by way of a synthetic example in Figure 2.
This dataset contains a majority class organized in a

2. Standard SVM optimization exploits cross-validation, but this is
not feasible in this study as there are usually only a few examples of
each rare class for most of the learning process. In any case the aim of
our approach is to adapt between two imperfect classifiers.

ring (Figure 2(a), dots) and five Gaussian distributed rare
classes (Figure 2(a), other symbols) around the majority
class in geometrically descending prior proportion. On
iteration 1 (Figure 2(a)) only the majority class has
been sampled (Figure 2(a), large bold symbols indicate
observations). The preferred points under the likelihood
criterion (5) are those far from the current samples, (Fig-
ure 2(a), likelihood row), while the uncertainty criterion
has no basis to choose yet, so there is no preference (Fig-
ure 2(a), uncertainty plot). On iteration 4 (Figure 2(b))
the likelihood criterion discovers an outlying rare class.
The classification accuracy and hence likelihood crite-
rion weight (18) are thus increased (Figure 2(b), top).
The local region to this class is no longer preferred by
the likelihood criterion (Figure 2(b), likelihood) and the
region between the two known classes is preferred by
the uncertainty criterion (Figure 2(b), uncertainty). In the
next three iterations, the likelihood criteria is applied
repeatedly and the other three outer rare classes are
found (Figure 2(c)). Accuracy is greatly improved, and
the likelihood criteria is weighted strongly due to its
success (Figure 2(c), top). With four rare class regions
accounted for, the remaining low-likelihood domain is in
the central ring (Figure 2(c), likelihood). The likelihood
criterion discovers the final rare class (Figure 2(d)) on
iteration 13 – taking slightly longer because being within
the ring, this rare class is near many majority distribution
points. With no new classes to discover, the uncertainty
criterion generates better rewards (via greater MCE in-
crease (17)) and begins dominate, effectively refining the
decision boundary (Figure 2(e)) and raising accuracy to
98%. Finally, by iteration 64, the model is close to peak
performance, and without further reward, the weights
of each criteria are returning to equilibrium. The the
majority model has surpassed its maximum complexity
Nmax = 32. The larger blobs in Figure 2(f) now illustrate
the pairs of points chosen for fusion (10).

4.2 UCI Data

4.2.1 Evaluation Procedure

In this section, we test our method on 7 standard
datasets from the UCI repository [30]. These datasets
were selected because they contained multiple classes in
naturally unbalanced proportions, thereby representing
real discovery and classification problems. In every case
we started with one labeled point from the largest class
and the goal was to discover and learn to classify the
remaining classes. Table 1 summarizes the properties of
each dataset. Performance was evaluated by two mea-
sures at each active learning iteration: i) the percentage of
distinct classes in the training dataset discovered and ii)
the average classification accuracy over all classes. Note
that in contrast to (1), this accuracy measure ensures that
ability to classify each rare class is weighted equally with
the majority class despite the fewer rare class points.
Moreover, it means that undiscovered rare classes au-
tomatically penalize accuracy. Accuracy was evaluated
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Figure 2. Illustrative synthetic example of rare class discovery and classification. Bottom: true class indicated by
symbols, observed points by bold symbols, predicted class by shade/color. Second row: badly explained points
preferred by likelihood criteria. Third row: ambiguous points preferred by the uncertainty criteria. Fourth row: accuracy
and likelihood vs uncertainty criteria weighting.

Dataset N d Nc S% L%

Ecoli 336 7 8 1.5% 42%
Pageblocks 5473 10 5 .5% 90%

Glass 214 10 6 4% 36%
Covertype 5000 10 7 3.6% 25%

Shuttle 20000 9 7 .01% 78%
Thyroid 7200 21 3 2.5% 92%
KDD99 33650 23 15 .04% 51%

Table 1
UCI dataset properties. (N) number of instances. (d)
dimension of data. (Nc) number of classes. (S%/L%)

proportions of smallest and largest classes.

by 2-fold cross-validation, averaged over 50 runs from
random initial conditions – except for the shuttle dataset
which is provided with a dedicated test set.

4.2.2 Discovery and Classification

We compared the following algorithms: S/R: A baseline
SVM classifier with random queries. G/G: GMM classi-
fication, querying the GMM likelihood criterion (4). S/S:
SVM classifier using the SVM uncertainty criterion (2).
This corresponds to the strategy in [12], [31]. S/GSmix:
SVM classifier alternating GMM likelihood and SVM

uncertainty criteria. Note that this corresponds to the
approach in [3]. S/GSonline: SVM classifier querying
GMM likelihood & SVM uncertainty criteria fused by
the method in [17]. S/GSadapt: SVM classification with
adaptive fusion of GMM likelihood & SVM uncertainty
criteria by our method in (16)-(18). GSsw/GSadapt: Our
full model including online switching of GMM and SVM
classifiers, as detailed in Algorithm 1.

Shuttle (Figure 3(a)). Our methods S/GSadapt and
GSsw/GSadapt, exploit likelihood sampling early on for
fast discovery, and hence early classification accuracy.
They then switch to uncertainty sampling later on, and
hence achieve higher asymptotic accuracy than the pure
likelihood based G/G method. Figure 4(a) illustrates
this process via the query criteria weighting (18) for
one typical run. The likelihood criterion discovers a
new class early, leading to higher weight (17) and rapid
discovery of the remaining classes. After 75 iterations,
with no new classes to discover, the uncertainty criterion
obtains greater reward (17) and dominates, efficiently
refining classification performance.

To provide some context for our discovery rate re-
sults, we re-plot the discovery rates for this dataset re-
ported by some contemporary discovery studies [1], [18],
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[19]3. [1] exploits low likelihood similarly to our model,
but under-performs due to the heuristic of spending a
large fraction of the query budget on randomly selected
points. The low likelihood criterion selects points based
on dissimilarity to known classes. In contrast, [18] relies
on a local gradient to identify rare classes. This will be
successful depending on how much the dataset “looks
like” a uniform majority class background with spikes of
rare class data. In this case our low likelihood approach
outperformed [18], but the better method will vary de-
pending which assumption is better met by the data.

Thyroid (Figure 3(b)) This dataset has only two rare
classes to be found, so classification chance is 33%.
Our GSsw/GSadapt model has best classification perfor-
mance here because of our two key innovations: adap-
tive sampling (Section 3.3) and switching classifiers (Sec-
tion 3.4). The switching classifier permits GSsw/GSadapt
to match the initially superior classification performance
of the G/G likelihood-based model, and asymptotic
performance of the SVM based models. Figure 5(a) illus-
trates switching via the average (training) classification
entropy and (testing) classification accuracy of each of
the classifiers composing GSsw/GSadapt. The GMM
classifier entropy is greater than the SVM entropy for the
first 25 iterations. This is approximately the period over
which the GMM classifier has better performance than
the SVM classifier, so switching classifier on training
entropy allows the classifier pair to perform as well
as the best classifier for that iteration. The adaptive
weighting allows GSsw/GSadapt to rapidly switch to
exploiting uncertainty sampling after the few classes
have been discovered (Figure 4(b)) (contrast the shuttle
dataset, which required more extensive use of likelihood
sampling to discover all the classes). In contrast non-
adaptive S/GSmix (corresponding to [3]) continues to
“waste” half its observations on likelihood samples once
all classes are discovered, and so is consistently and
asymptotically outperformed by our GSsw/GSadapt.

Glass (Figure 3(c)). Again, our GSsw/GSadapt ap-
proach is competitive at discovery, and best at classi-
fication because it matches the good initial performance
of the GMM classifier and asymptotic performance of
the SVM classifiers by exploiting classifier switching
(Figure 5(b)). Note the dramatic improvement over the
SVM models in the first 50 iterations. Page Blocks
(Figure 3(d)). Here our adaptive classification methods
are not the fastest to detect all classes, but they still show
good overall classification. Covertype (Figure 3(e)) Our
GSsw/GSadapt model performs best because it explores
new classes as quickly as purely likelihood based G/G
(green) model, but outperforms G/G later on by also
refining the decision boundary. Interestingly, SVM clas-
sifiers perform poorly in general on this dataset (up to

3. Vatturi et al. [19] use a complex discovery criterion based on hier-
archically clustering the data, in contrast to our simpler flat clustering
based likelihood criteria. Our framework is agnostic to the details of the
procedure used to generate the query preference pl, and we expect that
using their criteria would improve the rest of our results accordingly.

50 100 150
1

2

3

4

5

6

7

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

Shuttle: Discovery

 

 
(a)

50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Shuttle: Classification

Vatturi 2009
He 2007
Pelleg 2004
S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

50 100 150
1

1.5

2

2.5

3

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

Thyroid: Discovery

 

 
(b)

50 100 150
0.3

0.4

0.5

0.6

0.7

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Thyroid: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

20 40 60 80 100
1

2

3

4

5

6

Labeled Points
C

la
ss

es
 D

is
co

ve
re

d

Glass: Discovery

 

 
(c)

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Glass: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

50 100 150
1

2

3

4

5

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

Pageblocks: Discovery

 

 
(d)

50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Pageblocks: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

50 100 150
1

2

3

4

5

6

7

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

Covertype: Discovery

 

 
(e)

50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Covertype: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

50 100 150
1

2

3

4

5

6

7

8

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

Ecoli: Discovery

 

 
(f)

50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

Ecoli: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

50 100 150

2

4

6

8

10

12

14

Labeled Points

C
la

ss
es

 D
is

co
ve

re
d

KDD: Discovery

 

 
(g)

50 100 150
0

0.2

0.4

0.6

0.8

Labeled Points

A
ve

ra
ge

 A
cc

ur
ac

y

KDD: Classification

S/R
S/S
G/G
S/GSmix
S/GSonline
S/GSadapt
GSsw/GSadapt

Figure 3. Discovery and classification performance for
UCI datasets. (a) Shuttle, (b) Thyroid, (c) Glass, (d) Page-
blocks, (e) Covertype, (f) Ecoli, (g) KDD.
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thyroid datasets.
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Figure 5. Classifier switching by multi-class classification
entropy.

the first 150 data points). Based on the MCE classifier
switching criteria, our GSsw/GSadapt model uses GMM
classification throughout (Figure 5(c)), which helps it
to outperform all the other SVM based models. KDD
(Figure 3(g)). The KDD network intrusion dataset is the
largest UCI dataset in dimension, number of classes, and
extent of class skew. Our proposed models are com-
petitive at discovery rate, and best at classification. In
this example, our MCE-based classifier switching criteria
fails to perform exactly as desired. The GMM classifier
is better throughout, however by iteration 100 the MCE
of the SVM classifier is greater, and our GSsw/GSadapt
model switches to SVM classification prematurely (Fig-
ure 5(d)). In total the combined MCE-based switching
classifier used by GSsw/GSadapt outperformed both of
the individual component GMM and SVM classifiers (in
terms of AUC) for 5 of the 7 datasets.

In summary the G/G method using likelihood crite-
rion was usually the most efficient at discovering classes
– as expected. However, it was usually asymptotically
weaker at classifying new instances. This is because the
generative model mis-specification tends to cost more
with increasing amounts of data [8]. S/S, solely using

uncertainty criteria, was always poor at discovery (and
hence classification). Alternating between likelihood and
uncertainty sampling, S/GSmix (corresponding to [3])
did a fair job of both discovery and classification on aver-
age, but under-performed our adaptive models due to its
inflexibility. S/GSonline (corresponding to [17]) was gen-
erally better than random or S/S, and had decent asymp-
totic performance, but was not the quickest learner. Our
first model S/GSadapt, which solely adapted the multi-
ple active query criteria, was competitive at discovery,
but sometimes not the best at classification in early
phases with very little data. This is due to exclusively
using the discriminative SVM classifier. Finally, adding
generative-discriminative classifier switching, our com-
plete GSsw/GSadapt model was consistently the best
classifier over all stages of learning.

4.2.3 Quantitative Performance Summary
The standard approach to quantitatively summarizing
the (time-varying) performance of active learning algo-
rithms is to compute the area under their classification
curve (AUC) during learning [17], [25]. Table 2 quanti-
tatively summarizes the performance of each model in
terms of the AUC means and standard deviations over
the trials. The left columns represent prior approaches,
and right columns represent the models introduced in
this paper. Of the comparison models, there is no con-
sistent best performer with G/G, S/S, S/GSmix and
S/GSonline performing best on 3, 1, 2 and 1 datasets
respectively. Moreover, each model performs poorly (last
or second to last) on at least one dataset. This supports
our earlier insight that a big challenge of this problem is
the strong dataset dependence of the ideal query criteria.

Overall, our first contribution S/GSadapt performs
competitively in each case, and our second model
GSsw/GSadapt performs best on all datasets. The per-
formance standard deviations of all models are fairly
large, reflecting the significance of the random initial-
ization and selection, but we note that the standard
deviations of our GSsw/GSadapt are among the lowest,
indicating consistent good performance. Finally, we in-
dicate the statistical significance of the performance im-
provement of our GSsw/GSadapt over each comparison
model as computed by two-sided t-test.

4.3 Vision Data

In this section we apply our approach to two vision
datasets, the MNIST handwritten digits dataset4 and the
human gait dataset5. MNIST digits: This dataset has
60,000 examples of 28x28 pixel handwritten digit images
in ten classes. We reduce the number of dimensions
to 25 using PCA. To create a rare class scenario, we
subsample the full dataset to produce 13000 images
in geometrically imbalanced training proportions, as is
standard practice for evaluation of rare class discovery

4. http://yann.lecun.com/exdb/mnist/
5. http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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Area Under Classification Curve
Data G/G S/S [12], [31] S/GSmix [3] S/GSonline [17] S/GSadapt GSsw/GSadapt

Ecoli 59± 2.8∗∗ 55± 2.4∗∗ 60± 2.1∗∗ 60± 2.2∗∗ 60± 2.3 61± 1.8

Pageblocks 56± 7.0∗ 44± 6.7∗∗ 58± 3.1 54± 7.0∗∗ 58± 4.1 59± 4.6

Glass 64± 1.1 53± 4.9∗∗ 56± 6.0∗∗ 58± 6.4∗∗ 57± 6.6 65± 3.6

Covertype 41± 2.0∗∗ 36± 4.1∗∗ 39± 3.1∗∗ 40± 2.1∗∗ 43± 3.2 46± 2.6

Shuttle 38± 4.2∗∗ 36± 9.2∗∗ 39± 1.3∗∗ 41± 2.2∗ 41± 1.9 42± 1.9

Thyroid 50± 1.8∗∗ 56± 7.4∗ 55± 2.8∗∗ 50± 8.6∗∗ 55± 5.7 59± 4.3

KDD99 42± 6.4∗∗ 32± 10
∗∗

31± 11
∗∗

41± 7.0∗∗ 49± 7.6 59± 5.5

Table 2
UCI data classification performance: means and standard deviations of AUC. Superscripts ∗ and ∗∗ indicate

respectively statistically significant improvement in performance by GSsw/GSadapt at p < 0.05 and p < 0.01 or higher.

Dataset N d Nc S% L%

MNIST digits 13000 25 10 .1% 50%
CASIA Gait 2353 25 9 3% 49%

Table 3
Vision dataset properties. (N) number of instances. (d)
dimension of data. (Nc) number of classes. (S%/L%)

proportions of smallest and largest classes.

methods [1], [19]. Specifically, digit 0 gets 4096 examples
and every subsequent digit gets half as many such that
the “rarest” digit 9 gets only eight examples. Gait View:
The gait dataset has 2353 video sequences of 128 subjects
at 9 different angles of view from 18 to 162 degrees. We
address the view angle recognition problem, so the goal
is to learn to classify the viewpoint of an observation,
and the different subjects provide intra-class variability.
We extract a gait energy image (GEI) representation of
each gait cycle in the video according to [32]; but we
truncate the image to focus on most informative leg
region. Again, we reduce the number of dimensions to
25 with PCA, and resample the data geometrically to
create proportions of 200 images for the largest class (18
degrees) to 12 for the smallest class (164 degrees). The
dataset properties are summarized in Table 3.

4.3.1 Handwritten Digits

GSsw/GSadapt outperforms all the others at rare digit
discovery and classification (Figure 6(b), Table 4). The
early class discovery rate is good (competitive with the
best, purely likelihood based G/G) because it can exploit
likelihood based sampling early on (Figure 6(a) and (d),
iterations 1-40) to rapidly discover most of the classes;
later it outperforms G/G because it can also refine
decision boundaries with uncertainty based sampling
(Figure 6(d), iterations 50-100). Finally, as the training
data grows, the SVM begins to learn a better decision
boundary than the GMM, and it switches classification
strategy appropriately (iterations 150+). Figure 6(c) il-
lustrates the actual performance of our GSsw/GSadapt
tracking the better of the GMM or SVM performance.

To illustrate the learning process, Figure 7 shows some
illustrative decisions made by our model during the first
20 iterations of a typical run. The likelihood expert (5)
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Figure 6. Digits dataset. (a) Discovery rate, (b) classi-
fication rate, (c) entropy based classifier switching, (d)
selected query strategy.

is selected first, and the most dissimilar example to the
initial training 0 is new class instance, 2. This success
reinforces the likelihood criteria (18), which is selected
repeatedly. Digits 1 and 3 are then discovered as they ap-
pear very different to the two known classes so far. The
uncertainty expert (3) is eventually selected, querying an
understandably uncertain smudged 2, thereby increasing
the generality of the model for 2s. The likelihood expert
next selects an 8, which is again unlike any labeled
examples it knows so far. The uncertainty expert next
selects a stretched 0 and a slanted 1, further refining the
distribution of these classes. Finally, the likelihood expert
also queries a 2 that is very much unlike the others seen
so far, illustrating the additional value of this strategy for
discovering other modes or clusters of known classes.

4.3.2 Gait View

For gait view classification, GSsw/GSadapt is again the
best model (Figure 8(b), Table 4). The data contains out-
liers, so the likelihood criteria (and hence G/G) are un-
usually weak at discovery. GSsw/GSadapt adapts well
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Area Under Classification Curve
Data G/G S/S [12], [31] S/GSmix [3] S/GSonline [17] S/GSadapt GSsw/GSadapt

MNIST digits 51± 1.4∗∗ 48± 1.8∗∗ 50± 1.9∗∗ 51± 2.2∗∗ 54± 2.0 57± 1.1

CASIA Gait 40± 2.8∗∗ 40± 5.7∗∗ 35± 4.9∗∗ 47± 3.7∗∗ 46± 4.5 57± 2.2

Table 4
Vision data classification performance: means and standard deviations of AUC. Superscripts ∗ and ∗∗ indicate

respectively statistically significant improvement in performance by GSsw/GSadapt at p < 0.05 and p < 0.01 or higher.

Init 3: L 5: L 7: L 8: U

9: L 10: U 13: U 15: L 17: U

Figure 7. Discovering and learning digits. Labels indicate
iteration number, and whether the instance was queried
by the (l) likelihood or (u) uncertainty criterion.
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Figure 8. Gait view dataset. (a) discovery rate, (b) clas-
sification rate, (c) entropy based classifier switching (d)
query criteria weights (average).

to this data by exploiting uncertainty sampling criteria
extensively (Figure 8(d)). SVM classification is gener-
ally poor, especially in the first half of learning while
data is very scarce. The classifier switching strategy for
GSsw/GSadapt correctly tracks the better GMM classi-
fier throughout the 150 iterations tested (Figure 8(c)).

Figure 9 shows the first five decisions made in a
typical run. In this case uncertainty is actually good
at discovering new classes; possibly because the classes
here are actually a continuum, so new classes are often
found “between” existing classes. The agglomerative
process of the incrementally built GMM (Section 3.2)

Init. Class: 18 deg 2: U. Class: 36 deg 3: L. Class: 54 deg 4: U. Class: 72 deg 5: U. Class: 90 deg

Figure 9. Discovering and learning view angles. Labels
indicate iteration, angle and if the instance was queried
by the (l) likelihood criteria or (u) uncertainty criterion.

18 deg 90 deg

Figure 10. Similar gait images chosen for merging

is illustrated in Figure 10 by way of pairs of images
selected for fusion into a single kernel (10).

4.4 Contrast to Sequential Methods

We have argued in favor of our adaptive approach to
the joint discovery and classification problem compared
to simpler sequential approaches. That is, approaches
applying an active learning criteria suitable for dis-
covery for a fixed number of iterations, followed by
a criteria suitable for learning. Sequential approaches
risk performing poorly due to different and unknown
proportions of each criteria being ideal for each dataset.
In this section, we verify that this is indeed a problem
in practice. Specifically, we compare the performance
of a series of sequential models (S/GSseq) using 25,
50, 100 and 150 discovery queries (likelihood criteria,
(5)) before spending the remaining budget (of 150) on
learning queries (uncertainty criteria, (3)).

Table 5 summarizes the classification AUC for each
dataset, with the best scoring model for each highlighted.
Clearly, there is significant variety in the ideal number
of discovery iterations across datasets. For example,
thyroid, ecoli and gait datasets are all fairly quick to
discover all the classes (see discovery curves in Fig-
ure 3(b) and (f) , Figure 8(a)), so performance is better
with fewer discovery iterations. In contrast, there are
many rare classes in dataset KDD, and discovery is fairly
slow (Figure 3(g)) and more discovery iterations help.
Datasets shuttle, pageblocks and digits are in the middle,



ACCEPTED BY IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

with all the classes being discovered around iteration 50
(Figure 3(a) and (d)) and 100 (Figure 6(a)). Only for the
case of pageblocks with 50 discovery queries did any
of the sequential models meet the performance of our
proposed adaptive model GSsw/GSadapt. This diversity
of results highlights the issue that for open ended data
mining problems where the number of classes to be
discovered is unknown, any particular chosen sequential
method may perform poorly. In contrast, the consistently
good performance of our adaptive model highlights the
value of our contribution.

To provide some further context we also show the per-
formance for sequential models based on 25 iterations6

of two contemporary discovery methods [18] and [20]
followed by SVM uncertainty sampling (Table 5). Note
that this is not a fair comparison because [18], [20] exploit
additional information not available to the other models
or indeed for real data mining problems: the number
of rare classes and their prior proportions. Despite this
disadvantage, our model is best for 7 of 9 datasets, and
it generally performs consistently well whereas the two
sequential schemes perform very poorly for at least one
dataset each.

4.5 Density Weighting

Our final experiment investigates how density weight-
ing (Section 3.1) of query criteria affects performance.
We compared our best GSsw/GSadapt model which
adapts uncertainty (3) and likelihood criteria (5) against
two variants which include a third criterion – density
weighted uncertainty (DWU) (6) or density weighted
likelihood (DWL) (7) sampling respectively. If density
weighted criteria are effective for some or all of the
learning process [25], the associated weights will be
increased and the criteria exploited. In general, poor
criteria will tend towards being ignored rather than
seriously hindering performance. However, because of
the need to explore each criteria (Section 3.3) occasionally
in order to determine its value, adding each additional
criteria does impose a cost to performance.

Figure 11 summarizes the effect of density weighting.
Uncertainty weighting turns out to be consistently detri-
mental. The mean weight over all datasets assigned to
DWL and DWU were 0.19 and .25 respectively, showing
that the weighted criteria were indeed adapted down
(compared to uniform weight of 1/3). Likelihood weight-
ing was generally better than uncertainty weighting
(intuitively, as unweighted likelihood is more prone
than uncertainty to query outliers). Nevertheless, it only
improves performance compared to GSsw/GSadapt in
a minority of cases, notably the gait dataset which we
already observed contains outliers.

The poor performance of both DWL and DWU is un-
derstandable: since rare classes are by definition under-
represented, they tend to occur in low density regions

6. Only 25 iterations are used because these algorithms terminate
after all classes are discovered.

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02

Glass

Ecoli

Cover

Shuttle

Digits

Thyroid

Pageblocks

KDD

Gait

AUC Improvement vs GSsw/GSadapt

Effect of Density Weighted Sampling

 

 
Unc Weight
Lik Weight

Figure 11. Effect of including density weighted likelihood
or entropy criterion in GSsw/GSadapt framework.

of the input space, and so are not discovered by DWL
or refined by DWU. This is an important result and
insight, because it shows that although widely supported
for general active learning [16], [24], [25], [26], density
weighting is usually detrimental for rare-class problems.

5 CONCLUSION

5.1 Summary

We have proposed an algorithm for active learning to
classify a priori undiscovered classes based on adapting
two query criteria and choosing classifiers. To switch
generative and discriminative classifiers we used a
multi-class generalization of unsupervised classification
entropy. Classifier learning in the presence of undiscov-
ered classes was achieved by formulating a new model
driven by an adaptive mixture of new class seeking and
multi-class entropy maximization.

In our evaluation on nine datasets of widely varying
domain, size and dimension, our model was consistently
able to adapt query criteria and classifier online as more
data was obtained, thereby outperforming other con-
temporary approaches making less efficient use of their
active query budget (notably non-adaptively iterating
over criteria [3], or sequentially applying discovery and
then learning criteria). We therefore expect our approach
to be of great practical value for many problems. Our
active learning approach is also cheap compared to
alternative active learning criteria, e.g., expected gener-
alization error which requires O(n3) per iteration [14]
vs. our O(n). Our approach is also compatible with
sub-sampling techniques for pool based active learning
such as the “59 trick”, which defines a constant time
approximation to the full algorithm [31].

5.2 Discussion

In this work, we have constructed generative and dis-
criminative models in parallel, exploited their properties
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S/GSseq25 S/GSseq50 S/GSseq100 S/GSseq150 NNDM25 [18] RADAR25 [20] GSsw/GSadapt

Ecoli 60± 2.2 60± 3.1 59± 4.1 56± 5.1 55± 3.5 57± 2.2 61± 1.8

P.Blocks 58± 3.0 59± 4.5 56± 3.8 54± 3.9 47± 3.5 44± 4.7 59± 4.6

Glass 55± 5.8 55± 5.5 55± 5.0 55± 5.0 63± 4.2 63± 4.2 65± 3.6

C.Type 39± 1.5 40± 2.2 40± 2.5 41± 2.5 39± 2.3 36± 2.3 46± 2.6

Shuttle 39± 1.0 40± 1.1 39± 1.1 38± 1.1 44± 2.0 45± 2.5 42± 1.9

Thyroid 57± 2.1 54± 1.5 49± 1.6 47± 1.5 59± 2.3 47± 8.2 59± 4.3

KDD99 29± 11 27± 13 32± 12 34± 8.2 32± 5.8 17± 8.2 59± 5.5

Digits 52± 1.8 52± 1.7 53± 1.3 48± 1.5 47± 3.1 43± 3.2 57± 1.1

Gait 39± 3.5 38± 1.3 31± 0.9 28± 0.8 60± 2.5 51± 3.0 57± 2.2

Table 5
Classification performance for sequential active discovery followed by active learning: means and standard deviations

of AUC. The digits in each column title indicate the number of discovery iterations used for the sequential models.

synergistically for active discovery and learning, and
switched them adaptively for classification. We note that
the improvement we were able to obtain by classifier
switching supports the GMM vs SVM contrast made in
[22]; but exploits it in a more automated way than [22],
which required manually weighting the two models.
A related body of work has tried to construct more
closely integrated model pairs, or single hybrid models
to obtain some benefits of each model type in various
combinations. One approach is to optimize generative
model parameters to maximize discriminative classi-
fication performance rather than data likelihood [33],
[34], which allows some generative models to perform
beyond their normal asymptotic performance. This is
different to our problem because we are particularly
interested in low data performance and also wish to
maintain accurate models of each type for their role as
query criteria. Another approach is to use byproducts of
generative model learning – such as Fisher information,
as features to train discriminative models [34], [35].
This is a promising avenue, but not straightforwardly
applicable to our setting as we have a variable number
of parameters per class in our generative model.

Another related area of research to this study is that of
learning from imbalanced data [36] which aims to learn
classifiers for classes with very imbalanced distributions,
while avoiding the pitfall of simply classifying every-
thing as the majority class. One strategy to achieve this
is uncertainty based active learning [31], which works
because the distribution around the class boundaries is
less imbalanced than the whole dataset. Our problem is
also an imbalanced learning problem, but more general
in that the rare classes must also be discovered, so we
therefore effectively generalize [31].

Although our approach lacks the theoretical bounds
of the fusion method in [17], we find it more compelling
for various reasons: it jointly optimizes searching for
new classes and refining their decision boundaries, and it
adapts based on the current state of the learning process,
typically (but not always) class discovery via likelihood
early on, and boundary refinement via uncertainty later.
In contrast [17] solely optimizes classification accuracy
and is not directly applicable to class discovery.

Some other adaptive methods [24], [25], [26] address

the fusion of uncertainty and density criteria (to avoid
outliers) for classifier learning. [24], [26] sample from a
fixed weighted sum of density and uncertainty criteria.
This is less powerful than our approach because it does
not adapt the weighting online based on the perfor-
mance of each criteria. Most importantly they all prefer
high density points, which we have shown in this study
to be the wrong intuition for rare class problems which
require low likelihood points instead.

Relative to other active rare class discovery work [1],
[18], [19], [20] our framework solves a more general
problem of joint discovery and classification by adapting
two criteria. A different active discovery intuition is
exploited in [18]: using local gradient to detect non-
separable rare classes. We derived an analogous query
criterion based on GMM local gradient and integrated it
into our framework. However, it was generally weaker
than likelihood-based discovery (and was hence adapted
downward in our framework) for most datasets, so we
do not report on it here. Finally, unlike our work here,
many related studies including [1], [18], [20], [25] rely on
the strong assumption that the user specifies the number
and prior proportion of classes in advance. This is a fatal
assumption for the open ended data mining problem
considered here, where one does not know the classes in
advance as they may correspond to previously unknown
types of fraud or intrusions etc.

5.3 Future Work

There are various interesting questions for future
research including: further theoretical analysis and
grounding of the joint discovery-classification problem
and algorithms introduced here; how well our fusion
methods generalize to other generative-discriminative
pairs and query criteria; and how to create tighter cou-
pling between the generative and discriminative clas-
sifiers [22]. A final key goal is to generalize some of
the contributions we have discussed in this paper to
the domain of online – rather than pool-based – active
learning, which is a more natural setting for some prac-
tical problems [37] where online real-time classification
is required and new classes may appear over time.
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