
1

Learning Multi-modal Latent Attributes
Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong

Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and
annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data
sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the
task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social
group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex
and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute
space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model
for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology
and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches
for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot
transfer learning and importantly zero-shot learning.

Index Terms—Attribute Learning, Latent Attribute Space, Multi-task Learning, Transfer Learning, Zero-shot Learning.
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1 INTRODUCTION

With the rapid development of devices capable of digital
media capture, vast volumes of multimedia data are
uploaded and shared on social media platforms (e.g.
YouTube and Flickr). For example, 48 hours of video
are uploaded every minute in YouTube1. Managing this
growing volume of data demands effective techniques
for automatic media understanding. Such automatic
techniques are important for content based understand-
ing in order to enable effective indexing, search, retrieval,
filtering and recommendation of multimedia content
from the vast quantity of social images and video data.

Content based understanding aims to model and pre-
dict classes and tags relevant to objects, sounds and
events – anything likely to be used by humans to de-
scribe or search for media. One of the most common
but most challenging types of data for content analysis
is that of unstructured social group activity, which is
common in consumer video (e.g. home videos) [18]. The
unconstrained space of objects, events and interactions in
consumer videos makes them intrinsically more complex
than commercial videos (e.g. movies, news and sports).
This unconstrained domain gives rise to a space of
possible content concepts that is orders of magnitude
greater than that typically addressed by most previous
video analysis work (e.g. human action recognition). Fur-
thermore, the casual nature of consumer videos makes
it difficult to extract good features: they are typically
captured with low resolution, poor lighting, occlusion,
clutter, camera shake and background noise.
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1. http://www.youtube.com/t/faq

To tackle these problems, we wish to learn a model
capable of content based prediction of class and tag
annotations from multi-modal video data. However the
ability to learn good annotation models is often limited
in practice by insufficient and poor quality training an-
notations. The underlying challenges here can be broadly
characterised as sparsity, incompleteness and ambiguity.

Annotations are sparse. Consumer media covers a
huge unconstrained space of object/activity/event con-
cepts, therefore requiring numerous tags to completely
annotate the underlying content. However the number
of labelled training instances per annotation concept is
likely to be low. For example, consumer videos shared
on social media platforms only have 2.5 tags on average
versus 9 tags in general YouTube videos [18].

Annotations are intrinsically incomplete. Since the
space of concepts is unconstrained, exhaustive manual
annotation of examples for every concept is impractically
expensive, even through mechanisms such as Amazon
Mechanical Turk (AMT) [35]. Previous studies have
therefore focused on analyzing relatively constrained
spaces of content and hence annotation ontologies [24].
However, there are for example, some 30000 relevant
object classes which are recognizable by humans [3]. This
means that any ontology will either be too small to pro-
vide a complete vocabulary to describe general videos,
or have insufficient training data for every concept.

Annotations are ambiguous. Ambiguity is relatively
less studied in previous work but a significant chal-
lenge for semantic media understanding. Even for the
same image/video, subjective factors (e.g. cultural back-
ground) may lead to contradictory and ambiguous an-
notations. A well-known example is that some countries
take nodding head as “yes”, while others as “no”. This
ambiguity of annotations can be taken as label noise.
Ambiguity also arises from the semantic gap between
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(a) Problem Context

(b) Semi-latent Attribute Space

Figure 1. (a) Learning a semi-latent attribute space is ap-
plicable to various problem domains. (b) Representing data in
terms of a semi-latent attribute space partially defined by the
user (solid axes), and partially learned by the model (dashed
axes). A novel class (dashed circle) may be defined in terms of
both user-defined and latent attributes.

annotations and raw data: semantically obvious anno-
tations are not necessarily detectable from low-level
features; while the most useful annotations for a model
may not be the most semantically obvious ones that
humans commonly provide. Finally the weakly super-
vised nature of annotation, and the multi-modality of
the data are another strong sources of ambiguity, e.g.,
an annotation of “clapping” comes with no information
detailing where it was observed (temporally) in a video,
or whether it was only seen visually, only heard, or both
seen and heard.

One strategy to address the sparsity of annotation is
via exploitation of shared components or parts between
different classes. For example, in an object recognition
context a wheel may be shared between a car and a bi-
cycle [9]; while in an activity context, “bride” can be seen
in classes of “wedding ceremony”, “wedding dance”
and “wedding reception”. These shared parts are often
referred to as attributes. Attributes focus on describing
an instance (e.g., has legs) rather than naming it (e.g.,
is a dog), and they provide a semantically meaningful
bridge between raw data and higher level classes. The
concept of attributes can be traced back to the early work
of intrinsic images [2], but attribute learning has been
popularized recently as a powerful approach for image
and video understanding with sparse training examples
[22], [10], [9], [31], [30]. Most previous work has looked
at attributes as a solution to sparseness of annotation, but
focused on constrained domains and single modalities,
avoiding the bigger issues in intrinsic incompleteness and

ambiguity. This paper shows that attributes not only can
help to solve sparsity, but also assist in overcoming the
intrinsic incompleteness and ambiguity of annotation.

To address these challenges, we introduce a new
attribute learning framework (Fig. 1) which learns a
unified semi-latent attribute space (Fig. 1(b)). Latent at-
tributes represent all shared aspects of the data which are
not explicitly included in users’ sparse and incomplete
annotations. These are complementary to user-defined
attributes, and discovered automatically by a model
through jointly learning of the semi-latent attribute space
(see Section 4.2). This learned space provides a mecha-
nism for semantic feature reduction [30] from the raw data
in multiple modalities to a unified lower dimensional
semantic attribute space (Fig. 1(b)). The semi-latent space
bridges the semantic gap with reduced dependence on
the completeness of the attribute ontology and accuracy
of the training attribute labels. Fig. 1(a) highlights this
property by putting our work in context of various stan-
dard problems. Our semi-latent attribute space consists
of three types of attributes: user-defined (UD) attributes
from any prior concept ontology; latent class-conditional
(CC) attributes [15] which are discriminative for known
classes; and latent generalized free (GF) attributes [13]
which represent shared aspects not in the attribute on-
tology. Jointly learning this unified space is important
to ensure that latent CC and GF attributes represent un-
modeled aspects of the data rather than merely redis-
covering user-defined attributes.

To learn the semi-latent attribute space, we propose
a multi-modal latent attribute topic model (M2LATM),
building on probabilistic topic models [7], [15]. M2LATM
jointly learns user-defined and latent attributes, provid-
ing an intuitive mechanism for bridging the semantic
gap and modeling sparse, incomplete and ambiguous
labels. To learn the three types of attributes, the model
learns three corresponding sets of topics with differ-
ent constraints. UD topics are constrained in 1 to 1
correspondence with attributes from the ontology. La-
tent CC topics are constrained to match the class label
while latent GF topics are unconstrained. Multi-task
classification, N-shot learning and zero-shot learning are
performed in the learned semantic attribute space. To
make the learning and inference scalable, we exploit
equivalence classes for scalability by expressing our topic
model in “vocabulary” rather than “word” domain.

2 RELATED WORK

Semantic concept detection Studies addressing concept
detection [34], [12] (also known as tagging [13], [38], [41],
and multi-label classification [32], image [39] and video
[32], [36] annotation) are related to attribute-learning
[22], [24]. Concept detection has been quite extensively
studied, and there are standard benchmarks such as
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TRECVID2, LSCOM3 and MediaMill4. One way to con-
trast these bodies of work is that these studies typically
predict tags for the purpose of indexing for content
based search and retrieval. In contrast, attribute-learning
studies typically focus on how learned attributes can
be re-used or transferred to other tasks or classes. De-
pending on the ontology, level of abstraction and model
used, many annotation approaches can therefore be seen
as addressing a sub-task of attribute-learning. Some
annotation studies aim to automatically expand [12] or
enrich [41] the set of tags queried in a given search. This
is a related motivation to our latent attributes. However,
the possible space of expanded/enriched tags is still
constrained by fixed ontology and may be very large
(e.g., vocabulary space of over 20, 000 tags in [38]), which
are constraints we aim to relax.

Recently, mid-level semantic concept detectors based
on video ontologies have also been used to provide
additional cues for high-level event detection. For ex-
ample, various submissions [19], [8] to the TRECVID
Multimedia Event Detection (MED)5 challenge have suc-
cessfully exploited variants of this strategy. In this con-
text, semantic concept detectors are related to the idea
of user-defined attributes. However, these studies gen-
erally consider huge and strongly-labelled datasets with
exhaustive and prescriptive ontologies; whereas we aim
to learn from sparse data with incomplete ontologies.

Attribute Learning A key contribution of attribute-
based representations has been to provide an intuitive
mechanism for multi-task [33] and transfer [16] learning:
enabling learning with few or zero instances of each class
via sharing attributes. Attribute-centric semantic models
of data have been explored for images [22], [10] and to a
lesser extent video [24]. Applications include modeling
properties of human actions [24], animals [22], faces [21],
scenes [16], and objects [9], [10]. However, most of these
studies [22], [9], [16], [30], [26], [20] assume that an ex-
haustive space of attributes has been manually specified.
In practice, an exhaustive space of attributes is unlikely
to be available, due to the expense of ontology creation,
and that semantically obvious attributes for humans do
not necessarily correspond to the space of detectable and
discriminative attributes [31] (Fig. 1(b)). One method of
collecting labels for large scale problems is to use AMT
[35]. However, even with excellent quality assurance,
the results collected still exhibit strong label noise. Thus
label-noise [37] is a serious issue in learning from either
AMT, or existing social meta-data. More subtly, even
with an exhaustive ontology, only a subset of concepts
from the ontology are likely to have sufficient annotated
training examples, so the portion of the ontology which
is effectively usable for learning may be much smaller.

Fig. 2 contrasts Direct attribute prediction (DAP [22])

2. http://www-nlpir.nist.gov/projects/trecvid/
3. http://www.lscom.org/
4. http://www.science.uva.nl/research/mediamill/challenge/
5. http://www.nist.gov/itl/iad/mig/med12.cfm

Figure 2. Schematic of conventional (left) DAP [22] versus
(right) M2LATM. Shading indicates different types of constraints
placed on the variables. Symbols are explained in Section 4.

– a popular attribute learning framework – with our
M2LATM. The shading indicates the types of constraints
placed on the nodes, with the dark nodes being fully
observed, and the colored nodes in M2LATM having
UD, CC and GF type constraints. A few studies [10], [24]
augmented user-defined (UD) attributes by data-driven
attributes, similar to CC attributes, to better differentiate
existing classes. However, our more nuanced distinction
between CC and GF latent attributes better helps dif-
ferentiate both existing classes and novel classes: CC are
limited to those which differentiate existing classes; with-
out this constraint, GF attributes provide an additional
cue to help differentiate novel classes. Previous work
[10], [24] also learns UD and CC attributes separately.
This means that the learned CC attributes are not neces-
sarily complementary to the user-defined ones (i.e., they
may be redundant). Finally, we also uniquely show how
to use latent attributes in zero-shot learning.

To the best of our knowledge, prior work has focused
on single modalities, e.g. static appearance. Building
attribute models of multimedia video requires special
care to ensure all content modalities (such as static
appearance (e.g. salient objects), motion (e.g. human
actions) and auditory (e.g. songs)) are coherently and
fully exploited. A powerful class of models for gener-
atively modelling multiple modalities of data and low-
dimensional representations such as attributes is that of
topic modelling, which we discuss next.

Topic Models Probabilistic topic models (PTMs) [7]
have been used extensively in modeling images [39] and
video [40], [29] via learning a low-dimensional topic
representation. PTMs are related to attribute learning in
that multiple tags can be modeled generatively [4], [39],
and classes can be defined in terms of their typical topics
[39], [6], [15], [13]. However these topic-representations
are generally discovered automatically and lack the se-
mantic meaning which attribute models obtain by super-
vising the intermediate representation. There has been
limited work [43], [11] using topics to directly represent
attributes, and provide attractive properties of attribute
learning such as zero-shot learning. These are limited
to user-defined attributes only [43], or formulated in
a computationally non-scalable way and for a single
modality only [43], [11]. In contrast to [43] (as well as
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most annotation studies [37], [36], [34], [32]), we lever-
age the ability of topic models to learn unsupervised
representations from data; and in contrast to [40], [39],
[29], [6], our framework also leverages prior knowl-
edge of user-defined classes and attributes. Together,
these properties provide a complete and powerful semi-
latent semantic attribute-space. Scalability can also be
a serious issue for topic models applied to video, as
most formulations take time proportional to the volume
of features [7], [39], [43], [11]. Our unstructured social
activity attribute (USAA) dataset [11] is bigger than huge
text datasets which have been addressed with large-
scale distributed algorithms and supercomputers [28].
We therefore generalize ideas in sparse equivalence class
updating [1] to make inference tractable in M2LATM.

2.1 Contributions
By extending our preliminary work reported in [11], this
paper formulates systematically a semi-latent attribute
space learning framework that makes the following
specific contributions: (i) We address a key problem in
attribute learning from sparse, incomplete and ambigu-
ous annotation – focusing on multi-modal social group
activities captured in unstructured and complex con-
sumer videos, notably different from previously reported
work. (ii) We introduce a semi-latent attribute space,
which enables the use of as much or as little prior
knowledge as available from both user-defined and the
two types of automatically discovered latent-attributes.
(iii) We formulate a computationally tractable solution of
this strategy via a novel and scalable topic model. (iv) We
show how latent attributes computed by our framework
can be utilised to tackle a wide variety of learning tasks
in the context of multimedia content understanding in-
cluding multi-task, label-noise, N-shot and surprisingly
zero-shot learning. (v) We provide extensive evaluation
of the proposed model against contemporary methods
for a variety of challenging datasets.

3 VIDEO FEATURE EXTRACTION AND REPRE-
SENTATION
The foundation for video content understanding is ex-
tracting and representing suitably informative and ro-
bust features. This is especially challenging for uncon-
strained consumer video and unstructured social activ-
ity due to dramatic within-class variations, as well as
noise sources of occlusion, clutter, poor lighting, cam-
era shake and background noise [17]. Global features
provide limited invariance to these noise-sources. Local
keypoint features collected into a bag-of-words (BoW)
are considered state of the art [18], [17], [41]. We follow
[18], [17], [41], in extracting features for three modal-
ities, namely static appearance, motion, and auditory.
Specifically, we employ scale-invariant feature transform
(SIFT) [25], spatial-temporal interest points (STIP) [23],
and mel-frequency cepstrum (MFCC) respectively6.

6. Refer to [18], [17], [41] for full feature extraction details.

4 METHODS

4.1 Problem Context and Definition
We first formally introduce the problem of attribute-
based learning before developing our contributions in
the next section. Learning to detect or classify can be
formalised as learning a mapping F : X d → Z of d-
dimensional raw data X to label Z from training data
D = {(xi, zi)}ni=1. A variant of the standard approach
considers a composition of two mappings [30]:

F = S(L(·)), L : X d → Yp, S : Yp → Z, (1)

where L maps the raw data to an intermediate represen-
tation Yp (typically with p � d) and then S maps the in-
termediate representation to the final class Z . Examples
of this approach include dimensionality-reduction via
PCA (where L is chosen to explain the variance of x and
Yp is the space of orthogonal principal components of x)
or linear discriminants and multi-layer neural networks
(where L is optimised to predict Z).

Attribute learning [22], [30] exploits the idea of requir-
ing Yp to be a semantic attribute space. L and S are then
learned by direct supervision with instance, attribute
vector and class tuples D = {(xi,yi, zi)

n
i=1}. This has

benefits for sparse data learning including multi-task,
N-shot and zero-shot (Fig. 1(a)). In multi-task learning
[33] the statistical strength of the whole dataset can be
shared to learn L, even if only subsets corresponding
to particular classes can be used to learn each class
in S. In N-shot transfer learning, the mapping L is
first learned on a large “source/auxiliary” dataset D.
We can then effectively learn a much smaller “target”
dataset D∗ = {(xi, z

∗
i )}mi=1, m � n containing novel

classes z∗ by transferring the attribute mapping L to the
target task, leaving only parameters of S to be learned
from the new dataset D∗. The key unique feature of
attribute learning is that it allows zero-shot learning:
the recognition of novel classes without any training
examples F : X d → Z∗ (Z∗ /∈ Z) via the learned
attribute mapping L and a manually specified attribute
description S∗ of the novel class.

4.2 Semi-latent Semantic Attribute Space
Most prior attribute learning work (Sections 2 and 4.1),
unrealistically assumes that the attribute space Yp is
completely defined in advance, and contains sufficiently
many attributes which are both reliably detectable from X
and discriminative for Z . We now relax these assumptions
by performing semantic feature reduction [30] from the raw
data to a lower dimensional semi-latent semantic attribute
space (illustrated in Fig. 1(b)).

Definition 1. Semi-latent semantic attribute space
A p dimensional metric space where pud dimensions encode

manually specified semantic properties, and pla dimensions
encode latent semantic properties determined by some objective
given the manually defined dimensions.
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We aim to define an attribute-learning model L which
can learn a semi-latent attribute space from training data
D where |y| = pud, 0 ≤ pud ≤ p. That is, only a pud
sized subset of the attribute dimensions are user-defined,
and pla other relevant latent dimensions are discovered
automatically. The attribute-space is thus partitioned into
observed and latent subspaces: Yp = Ypud

ud × Ypla

la with
p = pud+pla. To support a full spectrum of applications,
the model should allow: (1) an exhaustively and cor-
rectly specified attribute space p = pud (corresponding to
previous attribute learning work); (2) a partially known
attribute space p = pud+pla (corresponding to an incom-
plete ontology); and (3) a completely unknown attribute
space p = pla. Such a model would go beyond existing
approaches to bridge the gap (Fig. 1(a)) between exhaus-
tive and unspecified attribute ontologies. As we will see,
performing classification in this semi-latent space will
provide increased robustness to the amount of domain-
knowledge/ontology creation budget, and to annotation
noise as compared to conventional approaches.

4.3 Multi-modal Latent Attribute Topic model
To learn a suitable attribute model L (Eq. (1)) with
the flexible properties outlined in the previous section,
we will build on probabilistic topic models [7], [15].
Essentially we will represent each attribute with one or
more topics, and add different types of constraints to the
topics such that some topics will represent user-defined
attributes, and others latent attributes.

First, we briefly review the standard Latent Dirich-
let Allocation (LDA) [7] approach to topic modeling.
Applied to video understanding [14], [15], [13], [29],
conventional LDA learns a generative model of videos
xi. Each quantized feature xij in clip i is distributed
according to a discrete distribution p(xij |βyij

, yij) with
a Dirichlet parameter β corresponding to its (unknown)
parent topic yij . Topics in video i are distributed ac-
cording to another discrete distribution p(yi|θi) para-
materized by the Dirichlet variable θi. Finally, the prior
probability of topics in a video are distributed according
to the p(θi|α) with parameter α.

Standard LDA is uni-modal and unsupervised. Un-
supervised LDA topics can potentially represent fully
latent (GF) attributes. We will modify LDA to constrain
a subset of topics (UD and CC) to represent conventional
supervised attributes [22], [30]. The three attribute types
are thus given a concrete representation in practice by
a single topic model with three types of topics (UD, CC
and GF), differing in terms of the constraints with which
they are learned. We next detail our M2LATM including
learning from (1) supervised attribute annotations and
(2) multiple modalities of observation.

4.3.1 Attribute-topic model
In order to model supervised user-defined attribute an-
notations, M2LATM establishes a topic-attribute corre-
spondence so that attribute k is represented by topic

k. We encode the (user-defined) attribute annotation for
video i via a per-instance vector topic prior αi. An
attribute k is encoded as absent via setting αik = 0,
or present via αik = 1. The full joint distribution for
a database D of videos with attribute annotations αi is:

p(D|{α},β) =

∏
i

ˆ ⎛
⎝∏

j

∑
yij

p(xij |yij ,β)p(yij |θi)

⎞
⎠ p(θi|αi)dθi,(2)

To infer the attributes for a clip, we require the posterior
p(θi,yi|xi,αi,β). As for LDA [7], this is intractable to
compute exactly. Variational inference approximates the
full posterior with a factored variational distribution:

q(θi,yi|γi,φi) = q(θi|γi)
∏
j

q(yij |φij). (3)

where γik parameterizes the Dirichlet factor of
topic/attribute k proportions θi within clip i;
and φijk parameterizes the discrete posterior yij
of topic/attributes for feature xij . Optimizing the
variational bound results in the updates:

φijk ∝ βxijk exp(Ψ(γik)),

γik = αik +
∑
j

φijk, (4)

where Ψ is the digamma function. Iterating Eq. (4)
to convergence completes the variational E-step of
an expectation maximisation (EM) algorithm. The M-
step updates parameter β by maximum likelihood:
βvk ∝ ∑

i,j I(xij = v)φijk. After EM learning, each
attribute/topic y (e.g., clapping hands or singing) will
be associated with a particular subset of the low-level
features via p(x|y,β) and learned parameter β.

4.3.2 Learning multiple modalities
Topic model generalizations exist to jointly model mul-
tiple translations of the same text [27] via a common
topic profile θ, where one language could be considered
one modality. However, this is insufficient because as
we have discussed, a given attribute may be unique
to a particular modality. To model multi-modal data
D = {Dm}Mm=1, Dm = {xim}, we therefore exploit a
unique topic prior θm per-modality m as follows:

p({Dm}|{α}, {βm}) =
∏
i,m

ˆ
dθimp(θim|αi)

×
⎛
⎝∏

j

∑
yijm

p(xijm|yijm,βm)p(yijm|θim)

⎞
⎠ . (5)

By sharing the annotations α across modalities, but
allowing a unique per-modality prior θm, the model
is able to represent both attributes with strong multi-
modal correlates (e.g., clapping hands) and those more
unique to a particular modality (e.g., laughter, candles).
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Figure 3. Graphical model for M2LATM.

Moreover, this approach provides an automatic way
to deal with different modalities being expressed on
different scales. Different scale modalities7 is a serious
problem for most topic models hoping to simply concate-
nate multi-modal data: either one modality dominates
or words underflow is risked if data is normalized. For
this reason studies [43] often only use a single modality
when many are available. Fig. 3 provides a graphical
model representation of M2LATM.

4.3.3 Learning user-defined and latent attributes

With no user-defined attributes (p = pla, pud = 0), a
p-topic LDA model provides a mapping L from raw
data x to a p-dimensional latent space by way of the
variational posterior q(θ|γ). This is a discrete analogy
to the common use of PCA to reduce the dimension of
continuous data. However, to (i) support user-defined
attributes when available and (ii) ensure the latent rep-
resentation is discriminative, we add constraints.

User-defined attributes are typically provided in terms
of length pud binary vectors vud specifying the attributes
of class z or instance i [22], [30]. We have no prior
knowledge of the relation between vud and each word
(i, j), so vud cannot determine y directly. To enforce the
user-defined attribute constraint, we define a per instance
prior αi = [αud

i ,αla
i ], setting αud

i,k = 0 if vudi,k = 0 and
αud
i,k = 1 otherwise. It enforces that instances i lacking

an attribute k can never use that attribute to explain the
data; but otherwise leaving the model to infer attribute
proportions, modality and word correspondence.

To learn the latent portion of the attribute-space, we
could simply leave the remaining portion αla of the
prior unconstrained. However, for the latent space to
be useful, it should be both discriminative (for class)
and generalizable (to potential new classes) [15], [13]. To
obtain both of these properties, we split the prior into
components for “class-conditional” (CC) and “general-
ized free” (GF) topics. When learned jointly with UD
attributes and with appropriate constraints, CC topics
will be selective for known classes and GF topics will
represent attributes shared between known classes, and
hence likely to generalize. Specifically, we split the latent

7. For example, 99% of the feature frequencies in USAA are in the
range of [0, 8] (appearance),[0, 450] (motion), and[0, 50] (auditory).

space prior αla
i = [αcc

i ,αgf ]. In the CC component
αcc

i = {αi,z}Nz
z=1, each subset αi,z corresponds to a class

z. For an instance i with label zi, set αcc
i,z=zi

= 1 and all
other αcc

i,z �=zi
= 0. This enforces that only instances with

class z can allocate topics yccz and hence that these topics
are discriminative for class z. The GF component of the
latent space prior is uniform αgf = 1, meaning that GF
topics are shared between all classes and thus represent
aspects shared among all the data.

4.3.4 Classification
To use M2LATM for classification, we define the map-
ping L in Eq. (2) as the posterior statistic γ in Eq.
(9). The remaining component to define is the attribute-
class mapping S. Importantly, for our complex data, this
mapping is not deterministic (i.e., 1:1 correspondence be-
tween attributes and classes assumed in [22], [30]). Like
[24], we therefore use standard classifiers to learn this
mapping from (zi,γi) pairs obtained from our M2LATM
attribute learner.

4.3.5 Surprising attributes
M2LATM can also be used to find videos which ex-
hibit surprising/abnormal semantics. Given the training
labels and estimated set of posterior semi-latent topic
profiles {zi,γi}, we can fit a multi-variate Gaussian
N (μz

γ ,Σ
z
γ) to the profile of examples from each class

z. At test time, once the class z∗ of a given instance is
estimated, we can detect surprising attribute semantics
by computing the likelihood p(γ∗|μz∗

γ ,Σz∗
γ ). Importantly,

unlike earlier notions of attribute-surprise [10], this ap-
proach (i) also considers surprising latent attributes, and
(ii) inter-attribute and inter-modality correlations.

4.4 Semi-latent Zero Shot Learning

Zero-shot learning addresses classification of unseen
classes via semantic attribute descriptions rather than
via learning from training examples. A description vud

z∗ ∈
Yud for a new class z∗ is provided in terms of attributes
from human prior knowledge. Existing approaches [22],
[30] define simple deterministic prototypes vud

z∗ in terms
of UD attributes only, and classify by matching these
templates vud

z∗ to the estimated UD attributes for each test
instance, e.g., by nearest-neighbour (NN) [10] or naive-
Bayes. Using NN, conventional zero-shot classification of
test instance x∗ with UD attribute representation y∗,ud is:

f(x∗) = argmin
z∗

∥∥y∗,ud − vud
z∗
∥∥. (6)

However, in this approach one needs a large ontol-
ogy of attributes, and to specify an (impractically long)
definition of each new class in terms of every at-
tribute in the ontology. Counter-intuitively, we can work
with a smaller UD ontology (pud ≥ 1) and leverage
the latent portion of the attribute-space to still obtain
a rich representation for classification. We project a
short/incomplete UD attribute description of a novel
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Figure 4. Schematic illustration of latent ZSL mechanism

class into the complete semi-latent attribute space de-
scription as follows:

1) Input a test set D∗ = {x∗} containing novel classes,
and UD attribute prototypes vud

z∗ for those classes.
2) Infer attributes y∗ = [y∗,ud,y∗,la] for each test data

x∗ (given by γ in Eq. (4))
3) Let NNud

k (vud
z∗ , {y∗,ud}) denote the set of k nearest

UD neighbours in D∗ to each prototype vud
z∗ in Yud.

4) Project UD prototypes vud
z∗ ∈ Yud into the full

attribute space Y by averaging their nearest neigh-
bours (Eq. (7)).

5) Perform zero-shot classification in the full attribute
space Y (Eq. (8)).

vz∗ =
1

k

∑
y∈NNud

k
(vud

z∗ ,D
∗)

y, (7)

f(x∗) = argmin
z∗ ‖y∗ − vz∗‖ . (8)

The mechanism of this algorithm is schematically illus-
trated in two dimensions by Fig. 4. The one dimensional
UD prototype y∗,ud (blue line) only weakly identifies
(shading) the target class ‘x’. After projecting into the full
space, the two-dimensional prototype (blue dot) more
clearly identifies (shading) the target class.

Our approach can be viewed in a few ways: as
transductively exploiting the test data distribution; or
as one iteration of an EM-style algorithm for data with
partially-known parameters and unknown variables (in
contrast to the typical semi-supervised learning case
of partially known variables and unknown parameters
[44]). Previous ZSL studies are constrained to user-
defined attributes, thus being critically dependent on the
completeness of the user attribute-space. In contrast, our
approach uniquely leverages a potentially much larger
body of latent attributes via a loose manual definition
of a novel class. We will show later this approach can
significantly improve zero-shot learning performance.

4.5 Efficient Inference and Implementation
Our formulation thus far, as well as the earlier work
[11] and LDA in general8, infers the posterior over top-
ics/attributes for each word (i.e. Eq. (4) indexed by word

8. This is true whether solved with variational inference [7] or
MCMC [43], [27].

j). Computation is thus O(NK) for N total words and K
topics. For our video dataset, where words correspond
to dense interest point detections, N is of the order
1010 and grows with video length. Conventional topic
models do not scale to this data in either processing or
memory demands, requiring days to run on in practice.
In contrast, approaches such as support vector machines
(SVM) [18] use the same data, but operate on word
proportions within the vocabulary V . SVMs are thus
O(V ) and therefore significantly faster than conventional
O(N) topic models because typically V is ≤ 104.

Inspired by [1], we observe that while each observa-
tion xijm has an associated topic posterior, all instances
of the same vocabulary item x ∈ V within one video
have the same posterior φ. Exploiting this equivalence
class, the same inference can therefore be expressed in
the O(V ) vocabulary domain, rather than the O(N) word
domain. Inference for multiple modalities m expressed
in vocabulary-domain is thus:

φivkm ∝ βvkm exp(Ψ(γikm)),

γikm = αik +
∑
v

hv(xim)φivkm. (9)

Here, hv(xim) denotes the histogram of observations
in xim, and the topic posterior matrix φx··m is now of
size V K instead of NK. Further efficiencies may be
obtained by observing that only sufficient statistics for
vocabulary elements observed in each document need to
be computed. That is, Eq. (9) can be updated as a sparse
matrix operation for unique observations Ui at O(UiK)
cost per document i, where typically Ui � V � N .

5 EXPERIMENTS

We first introduce our datasets and baseline models
(Sections 5.1 and 5.2), then report quantitative results ob-
tained for the three main sparse data learning problems:
multi-task learning, N-shot learning and zero-shot learn-
ing (Sections 5.3 and 5.4). We also perform additional
analysis on attribute-understanding tasks, robustness,
and computation time (Sections 5.5-5.8).

5.1 Unstructured Social Activity Attribute Dataset

In previous work [11], we introduced a new attribute
dataset for social activity video classification and anno-
tation: unstructured social activity attribute (USAA)9. We
selected 100 videos per-class for training and testing
from 8 classes of social activities in the CCV dataset [18]
(thus 1600 videos in total). We defined a wide variety of
relevant attributes (illustrated in Fig. 5), and manually
annotated their ground truth at the individual video
level. The classes were selected as the most complex
social group activities and the video length ranged from

9. http://www.eecs.qmul.ac.uk/~yf300/USAA/download/
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Clapping hands, Hugging,Slow moving, People singing, Taking photos,

Party house, Indoor, Song, People talking, Conversation,

Laugher, Birthday song, Wrapped presents, Baloon, Candles

Clapping hands, Blowing candles, Slow moving, People singing,
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Figure 5. (Above) Different types of attributes in visual and auditory modalities are shown in different color. (Below) Examples
from the eighth classes in the USAA dataset.

20 seconds to 8 minutes. The eight classes are: birth-
day party, graduation party, music performance, non-
music performance, parade, wedding ceremony, wed-
ding dance and wedding reception.

We experimented with two attribute-ontologies. In the
first ontology, we extracted keywords from the CCV
class definitions [18] and used these to obtain a set of
15 attributes. For example, the definition of graduation
party is: “Graduation ceremony with crowd, or one or
more people wearing graduation caps and gowns”, from
which we obtain attributes “crowd” and “graduation
cap”. In order to obtain a more exhaustive ontology of
attributes, we further annotated a total of 69 attributes
covering every conceivable property for this dataset
including actions, objects, scenes, sounds, and camera
movement. Real-world video will rarely contain such
extensive tagging. However, this exhaustive annotation
gives the freedom to learn on various subsets in order
to quantify the effect of annotation density and biases.

Using the 69 ground-truth attributes (average density
11 per video) directly as input to a SVM, the videos
can be classified with 86.9% accuracy. Individual SVM-
attribute detectors achieve the mean average precision
in the range [0.22, 1] with average 0.785 across the entire
ontology. The high variability reflects some attributes
which can be detected almost perfectly (e.g., indoor
scene), and others which cannot be detected given the
available features (e.g., parade float). These points il-
lustrate the challenge of these data: there is sufficient
intra-class variability that even perfect knowledge of the
attributes instance is insufficient for perfect classification;
and moreover many attributes cannot be detected reli-
ably.

5.2 Experiment Settings
For each experiment, we use 100 videos per class for
testing, and a set of 100 or fewer per class for train-

ing both the attribute detectors and category classifiers.
We report test set performance averaged over 5 cross-
validation folds with different random selections of in-
stances, classes, or attributes held out as appropriate. We
compare the following models:

• Direct: Direct KNN or SVM classification on raw
data without attributes. SVM is used for experi-
ments with > 10 instances and KNN otherwise10.

• DAP: SVM classifiers learn available UD attributes.
Then zero-shot learning (ZSL) by Direct Attribute
Prediction (DAP), exactly as described by [22]. It is
only applicable to ZSL and deterministic attributes.

• SVM-UD: SVM classifiers learn available UD at-
tributes. For N-shot learning, a logistic regression
(LR) classifier then learns classes given the at-
tribute classifier outputs11. This is analogous to [10].
For ZSL the SVM posteriors are matched against
the manually specified prototype with NN. This
is an obvious generalization of DAP [22] to non-
deterministic attributes.

• SCA: Topic model from [39]. Learns a generative
model for both class label and annotations given
latent topics, in contrast to the attribute paradigm of
expressing classes in terms of annotations/attributes.
It only applies to multi-task learning.

• ST: Synthetic Transfer [43]. A ZSL strategy for at-
tribute topic models: Use the source topic model
to synthesize training data for novel target classes,
which are then learned conventionally. We use this
with our topic model. It only applies to ZSL.

• M2LATM: Our M2LATM is learned, then a LR clas-
sifier learns classes based on the semi-latent topic
profile γ. We use 100 topics in total, with 1 UD topic

10. Our experiments show that KNN performed consistently better
than SVM until #Instance >10.

11. LR is chosen over SVM because it was more robust to sparse
data.
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per UD attribute, 1 latent CC per class, and remain-
ing topics are allocated to GF latent attributes.

For all experiments, we cross-validate the regularisation
parameters for SVM and LR. For all SVM models, we use
the χ2 kernel. For M2LATM, the user-defined part of the
M2LATM topic profile γ is estimating the same quanti-
ties as the SVM attribute classifiers, however the latter
are slightly more reliable due to being discriminative
classifiers, so we use these in conjunction with the latent
topic profile for classification. The significance of this is
quantified in Section 5.6. For semi-latent ZSL, parameter
K (Section 4.4) was fixed to 5% of the instances.

5.3 Multi-task Learning
M2LATM multi-modal latent attributes enhance multi-
task learning of sparse data with incomplete ontology.
When all classes are known in advance, shared attributes
provide a mechanism for multi-task learning [33]. The
statistical strength of data supporting each attribute can
be aggregated across its occurrences in all classes.

Table 1 summarizes our results. We first consider the
simplest upper bound scenario where the data is plenti-
ful (100 instances per class, “100I”) and the attributes
are exhaustively defined (all 69UD, “A/69”). In this
case all the models perform similarly except [39]. Next,
we consider the sparse data and incomplete attribute
space scenario of interest, with only 10 instances per
class to learn from. Here Direct performs poorly due to
insufficient data. Limiting the attributes to a randomly
selected seven every trial (“R/7”), SVM-UD performs
poorly and our M2LATM outperforms all the others by
a large margin. Moreover, SVM-UD cannot apply with a
completely held out attribute-ontology (“N/0”), while
M2LATM performance is almost unchanged. With no
attribute-ontology “N/0”, SCA simplifies to supervised
LDA [6]12. Our model is thus able to share statistical
strength among attributes (unlike Direct); and unlike
SVM-UD, it exploits latent attributes to do so robustly
to the completeness of the attribute-space definition.
M2LATM improves both best and worst case semantic
ontologies. In order to quantify the effectiveness of
each attribute in the ontology we ranked the attributes
in terms of a simple selection criteria of their “infor-
mativeness” used in text categorization [42]: Mutual
information with the class (informativeness) times reli-
ability (detection rate;). We then contrast performance
between a best and worst case user-defined attribute
ontology, by using the top and bottom 10% of UD
attributes (“T/7” and “B/7”) respectively. SVM-UD loses
14% performance from the best to worst case, whereas
our M2LATM model is virtually unchanged. In both
cases, M2LATM provides a significant improvement
over SVM-UD. SCA [39] performs significantly and con-
sistently worse than the other models because it lever-
ages attributes in a weaker way (as annotations rather
than constraints), so we do not consider it further.

12. We used http://www.cs.princeton.edu/~chongw/slda/

Direct SVM-UD SCA[39] M2LATM
100I, A/69 66.0 65.7 44.0 65.6

10I, A/69 26.8 40.2 32.2 40.6
10I, R/7 26.8 26.4 25.6 38.3
10I, N/0 26.8 - 17.3 40.4
10I, T/7 26.8 32.4 26.0 38.3
10I, B/7 26.8 18.2 26.0 38.9

Table 1
Multi-task classification performance for USAA. 8 classes,

chance = 12.5%. Row labels are I: number of training instances
per class, A: all attributes, R: random subset of attributes, N: no

attributes, T: top attributes, B: bottom attributes.

5.4 Transfer Learning
M2LATM multi-modal latent attributes enhance N-shot
learning of sparse data. In N-shot transfer learning, one
assumes ample examples of a set of source classes, and
sparse (N ) examples of a disjoint set of target classes. To
test this scenario, in each trial we randomly split the 8
classes into two disjoint groups of four source and target
classes. We use all the data from the source task to train
the attribute models (M2LATM and SVM-UD), and then
use these to obtain the attribute profiles for the target
task. Using the target task attribute profiles we perform
N-shot learning, with the results summarized by Table
2. Importantly, SVM-UD attribute learning approach can-
not deal with zero attribute situations, so can provide no
benefit over Direct here, while our M2LATM improves
significantly over Direct (“N/0”). In addition to draw-
ing random subsets of attributes (“R/7” and “R/34”),
we also consider the subset of 15 attributes (“O/15”)
we obtained from the CCV ontology (Section 5.1). Our
M2LATM performs comparably or significantly better
than Direct and SVM-UD in every case. Importantly
M2LATM is robust to the both sparse data (performance
> 35% for 1-shot learning), and exhaustiveness of the
attribute-space definition (no attribute “N/0” perfor-
mance within 5% of all attribute “A/69” performance).
In contrast, Direct suffers strongly under sparse data 1-
shot learning, and SVM-UD suffers with sparse attribute-
space (7UD “R/7” performance 12% below all attribute
performance). The robust performance of M2LATM is
enabled by the semi-latent attribute representation.
M2LATM multi-modal latent attributes enhances zero-
shot learning. Like N-shot learning, the task is to learn
transferrable attributes from a source dataset for use
on a disjoint target set. Instead of providing training
examples, users manually specify the definition of each
novel class in the user-defined attribute space. ZSL is
often evaluated in simple situations where classes have
unique 1:1 definitions in the attribute-space [22]. For un-
structured social data [18], strong intra-class variability
violates this assumption, making evaluation more subtle.
To define the novel classes, we take the thresholded
mean (as in [10], [11]) of the attribute profiles for each
instance of that class from our ground-truth.

Our results are summarized in Table 3. The key ob-
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1-shot 5-shot 10-shot
Direct SVM-UD M2LATM Direct SVM-UD M2LATM Direct SVM-UD M2LATM

N/0 29.0 - 35.3 33.6 - 48.0 35.7 - 53.0
R/7 29.0 30.9 35.9 33.6 36.9 48.0 35.7 38.7 52.2
R/34 29.0 35.0 36.5 33.6 44.5 48.9 35.7 47.5 52.8
O/15 29.0 36.1 37.7 33.6 46.8 49.7 35.7 50.2 53.3
A/69 29.0 39.1 38.6 33.6 49.7 52.1 35.7 52.5 56.1

Table 2
N-shot classification performance for USAA dataset (4v4 classes, chance = 25%) .

SVM-UD ST[43] M2LATM
R/7 27.1 18.1 33.8

O/15 31.3 36.9 39.4
R/34 36.7 30.9 39.2
A/69 33.2 31.0 41.9

Table 3
Zero-shot classification performance (%) for USAA (4v4

classes, chance = 25%).

servation is that using latent attributes to support the
user-defined attributes (Section 4) allows M2LATM to
improve on SVM-UD [22], which only uses UD attributes
in ZSL. This is a surprising and significant result, be-
cause it is not obvious that ZSL from human description
should be able to be exploit latent data-driven attributes.
Additionally, we compare the synthetic data transfer
strategy from [43], generating N = 50 synthetic data
instances per class from the zero-shot definition, and
training the classifier based on the learned profiles for
these. We found that this underperformed DAP in most
cases, and M2LATM in every case. This is unsurprising,
because synthetic data adds no truly new information:
it is generated from the UD word-topic distributions β,
learned from the source dataset. M2LATM already uses
β, but additionally exploits latent topics.

5.5 Attribute Understanding
M2LATM makes effective use of multiple modalities.
An important contribution of M2LATM is explicitly
representing the correspondence between attributes and
features of each modality, bridging the cross-modal gap.
Existing approaches often ignore this issue either by
using only one modality [43] or taking a weighted aver-
age/concatenation [22] of modalities, which introduces
issues in selection of scaling/weighting factors. We com-
pare M2LATM against a simpler variant of our approach
approach, LATM. LATM takes the standard approach of
simply concatenating feature vectors (with rescaling to
ensure modalities are represented on the same scale).
Explicit multi-modality consistently improves the results
relative to simple concatenation in multi-task (Fig. 6, left)
and transfer (Fig. 6, right) learning.

M2LATM can associate attributes with their obser-
vation modality. To provide further insight into the
capabilities of our cross-modal model, we consider a
novel task of learning which modalities each attribute
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Figure 6. Exploiting multi-modality: LATM vs M2LATM for
USAA dataset. Left: Multi-task classification. Right: 0/N-shot
learning shown as margin of M2LATM over LATM – positive
value means increase of accuracy.

Modality Attributes
Static (SIFT) Candles, Dark outdoors, Party House

Motion (STIP) Slow moving, Crowd, Bright outdoors
Audio (MFCC) Laughter, Singing, Instrumental music
Static+Motion Hold microphone, Birthday caps, Crowd
Static+Audio Singing, People in a row, Fast moving
Audio+Static Formal speech, Crowds, Dining room

Table 4
Top-3 attributes most strongly associated with modalities.

appears in. This can be computed from the relative
proportion of words assigned by the model to static
appearance, motion or auditory modalities when ex-
plaining a given topic/attribute. That is, comparing
modalities m in

∑
i γikm for each attribute k. To illustrate

this, Table 4 reports the top-3 attributes most strongly
associated with each modality and each modality pair
(as assessed by geometric mean). Clearly most attributes
have associations with intuitive modalities.

M2LATM can detect semantically surprising mul-
timedia content. As a final example of attribute un-
derstanding, we illustrate some examples of surprising
semantics discovered by our framework – based on
the correlations encoded in the class-attribute relation-
ships (Section 4.3.5). Fig. 7(A) is correctly classified as a
birthday party. However, both the “instrumental music”
(auditory) and “musical instruments” (static appearance)
attributes are detected (a person sings “happy birthday”
using a guitar), which are unusual in birthday party
settings. Fig. 7(B) is a music performance video, which
unexpectedly has the “costume” attribute, as there are
also costumed actors on stage. A wedding ceremony is
shown in Fig. 7(C), where guests are unusually drinking
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(A) (B)

(C) (D)

Figure 7. Examples of surprising videos: (A) birthday party with
instrumental music, (B) music performance with costumes, (C)
wedding ceremony with drinking glasses, (D) an indoor parade.
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Figure 8. Robustness to attribute label-noise in multi-task
classification and zero/N-shot learning.

during the ceremony (“drinking glass” attribute). Fig. 7(D)
illustrates an example of expected attributes which are
surprisingly absent. In this case the video is correctly
classified as a parade, however the expected attributes
“bright outdoor scene” and “parade float” are absent
because it is, unusually, an indoor parade.

5.6 Further Evaluations

M2LATM improves robustness to label noise. An impor-
tant challenge for learning from real-world user data,
or AMT annotations, is dealing with label-noise. We
expect our model to deal better with label noise in
the user-defined attributes, because it can additionally
leverage automatically discovered latent attributes for
a more robust overall representation. To simulate this,
we repeated the previous multi-task and zero/N-shot
learning experiments, but randomly flipped 50% of at-
tribute bits on 50% of the training videos (so 25% wrong
annotations). M2LATM is more robust than SVM-UD
(Fig. 8 red vs blue), sometimes dramatically so. For
example, when subject to label noise, multi-task classi-
fication performance of SVM-UD drops 8% (vs only 3%
for M2LATM) and actually performs worse than Direct.
User-defined and latent attributes should be learned
jointly. M2LATM model has three complementary types
of topics that define the semi-latent attribute space. An

1-shot 5-shot 10-shot
Ind. Joint Ind. Joint Ind. Joint

R/7 35.0 38.8 42.0 48.0 48.0 52.2
A/69 38.8 38.6 49.4 52.1 54.6 56.1

Table 5
Independent vs joint learning of semi-latent attributes. N-shot

transfer. (4v4 classes, chance = 25%) .

advantage of our model is to learn these jointly. To
quantify this, we also learn them separately by training
a batch of SVM classifiers (for UD topics), a constrained
topic model (just CC topics), and an unsupervised topic
model (GF topics). We compare performance using the
concatenated output of the individual models vs the out-
put of the jointly model in N-shot transfer learning. The
results (Table 5) show that joint learning is always similar
or significantly better than independent learning, so joint
learning of latent attributes is indeed important to ensure
they learn complementary aspects to UD attributes.

Significance of using SVM posteriors as user-defined
attributes. We use M2LATM to jointly learn UD, CC and
GF attributes in a single generative model, with the aim
of ensuring that latent attributes are complementary to
user-defined attributes. However, as discussed in Section
5.2, we ultimately use the SVM posteriors in place of the
UD topics because, being discriminatively trained strong
classifiers, they perform slightly better. However, this
is not a significant factor in our model’s performance:
across all the experiments, the margin of using SVM
attribute classifiers over topic posteriors is [−3% ∼ 4%].

5.7 Analysis of Discovered Latent Attributes
Latent attributes can discover user-defined attributes
from a withheld ontology, as well as novel attributes
outside the full ontology. In this section we investigate
what is learned by latent attributes: can they discover
UD attributes not provided in the ontology, and do
they discover anything outside of the full UD ontology?
Firstly, we define the distance between learned attributes
i and j as the normalized correlation between their
multinominal parameters D(i, j) = βT

i βj/(‖βi‖ ‖βj‖).
Fig. 9 shows the sorted similarity matrix between at-
tributes for M2LATM learned in a conventional A/69
and semi-latent R/7 attribute setting. The diagonal struc-
ture shows that latent attributes have largely discovered
many of the semantic UD attributes of interest to users.
The uncorrelated strip to the right represents latent at-
tributes in the R/7 model which have discovered aspects
of the data not covered by the UD attributes.

To visualize an attribute, we select its top-N most
likely words (from β), and then plot occurrences of
these words on videos with high probability for this
attribute (γ). Fig. 10 (top row) shows an example of
static appearance (SIFT) attributes bride and cake. The
high degree of overlapping between red circles and red
crosses indicates that the re-discovered latent attributes
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Figure 9. Similarity between user-defined and latent attributes.

match the withheld UD attributes well. Examples of
STIP attributes blow candle, and dancing are shown in
Fig. 10 (second row). For auditory attributes, we show
birthday song and speech in Fig. 10 (third row). In this
case, we plot the time-series of the attribute weight for
the corresponding UD attribute and the latent attribute
which rediscovered it along with ground-truth for when
the particular sound was audible. All of these latent-
attributes were GF type, except birthday song, which was
CC – being uniquely selective for birthday-party class.

Finally, to further illustrate the value of latent at-
tributes, we visualized some latent attributes with no
similarity to any existing UD attribute (i.e., those on the
right strip of Fig. 9). This revealed new attributes which
we had not included in our ontology despite intending it
to be exhaustive. Fig. 10 (bottom row) shows two exam-
ples: (i) a horizontal line attribute, which the model learns
is informative for classes with stages and fences such as
concerts and performances; and (ii) a tree attribute, which
the model learns is informative for typically outdoor
or situations such as wedding receptions and parades.
These results support our motivating point that manual
ontologies are almost certainly incomplete, and benefit
from being complemented with a set of latent attributes.

5.8 Computational Scalability

In Section 4.5, we introduced a new sparse vocabulary-
domain representation of our inference algorithm. To
contrast the improved scalability of this representation
(Eq. (9)) vs. the standard word-domain approach (Eq. (4),
also used by [43], [39], [29], [11]), we recorded the matlab
computation time for 10 instance multi-task learning on
the USAA data. Our model required 30 minutes versus
to 5 hours for the conventional approach. This margin
grows with the video length and density of features, so
this is an important contribution for scalability.

5.9 Experiments on Animals with Attributes (AwA)

Our model is not specific to videos/social activities. We
also study the well known AwA dataset, (see [22] for
full details). AwA dataset defines 50 classes of animals,
and 85 associated attributes (such as furry, and has claws).

Figure 10. Visualization of user-defined (circles) and corre-
sponding latent attributes (crosses). Red circles illustrate rep-
resentative words from the UD attribute (A/69); red crosses
illustrate the words from the corresponding latent attribute which
discovered these concepts when withheld (R/7). Blue dots illus-
trate interest-points not related to attributes concerned.

There are 30475 images with at least 92 examples of each
class. We use the same six BoW features from [22]. In
contrast to USAA dataset, each class has a distinct deter-
ministic definition in terms of attributes. For M2LATM,
we keep the complexity fixed at 150 topics: with 1CC
attribute per class, up to 85 user-defined attributes, and
the others are GF latent attributes. There are six different
kind of features extracted to describe the AwA images.

Table 6 shows N-shot learning results for AwA, with
the attributes learned from all instances of 40 classes, and
the target task learned from 1− 10 instances of the held
out ten classes (same condition as [22]). The same general
results hold: M2LATM performs comparably or better
than the others in most cases. Notably, although SVM-
UD slightly outperforms M2LATM with the exhaustive
A/85 condition (due to M2LATM’s larger number of di-
mensions over fitting slightly), the use of latent attributes
enables M2LATM to outperform SVM-UD in the most
relevant and challenging cases of few UD attributes.

The ZSL results are shown in Table 7. Here, because
the AwA attributes are deterministic, we were able to
implement and apply DAP zero-shot learning precisely
as described in [22]. Different from [22], we found that
attribute priors provided a noticeable improvement in
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1-shot 5-shot 10-shot
Condition Direct SVM-UD M2LATM Direct SVM-UD M2LATM Direct SVM-UD M2LATM

N/0 16.4 - 19.2 21.5 - 30.5 23.6 - 35.9
R/9 16.4 25.1 27.1 21.5 32.6 35.6 23.6 36.4 39.0
R/42 16.4 30.7 28.3 21.5 42.5 42.5 23.6 45.0 45.7
A/85 16.4 31.9 28.5 21.5 43.4 38.0 23.6 46.8 43.0

Table 6
N-shot classification performance for AwA dataset (40v10 classes, chance = 10%).

No Attrib Prior Attrib Prior
[43]/[26]/[20] DAP M2LATM DAP M2LATM

R/9 - 26.3 26.9 27.8 29.2
R/42 - 34.4 38.2 36.0 39.7
A/85 33.0/33.0/32.7 37.0 39.2 39.2 41.3

Table 7
Zero-shot classification performance (%) for AwA (40v10

classes, chance = 10%).

performance, so we show results with and without
priors. In general, M2LATM outperforms DAP across
the range of ontology completeness. For context, we also
show the ≈ 33% figure reported by several recent ZSL
studies [43], [26] and [20], although these conditions may
not be exactly comparable to ours. This highlights the
fact that our approach outperforms very recent methods
with as few as half of the available attributes (R/42).

6 CONCLUSION
6.1 Summary
In this paper we developed a new framework for multi-
media understanding focused on bridging the semantic
and cross-modal gaps via an attribute-learning approach.
We address the limitations of previous studies including
reliance on an exhaustive manual specification of the
attribute-space, ignoring or simplistically dealing with
multi-modal content, and the unrealistic requirement of
noiseless annotation of attributes. In particular, we are
able to: (i) flexibly learn a full semantic-attribute space
whether exhaustively defined, completely unavailable,
available in a small subspace (i.e., present but sparse),
or available but with noisy examples; (ii) improve multi-
task and N-shot learning by leveraging latent attributes;
(iii) go beyond existing zero-shot learning approaches
(which only use user-defined attributes) by also exploit-
ing latent attributes; (iv) explicitly leverage attributes
in conjunction with multi-modal data to improve cross-
media understanding, enabling new tasks such as ex-
plicitly learning which modalities particular attributes
appear in; and (v) make our topic model applicable to
large multimedia data by expressing it in a significantly
more scalable way than previous studies – invariant to
the length of the input video and density of the features.

6.2 Future Work
There remain a number of important open questions to
be addressed. Thus far, our attribute-learner does not

consider inter-attribute correlation explicitly [32], [36],
though this limitation is shared by most other attribute
learners with the exception of [24]. For our task, this
can be addressed straightforwardly by generalizing the
correlated topic model (CTM) [5] instead of the conven-
tional LDA [7], which should produce commensurate
gains in performance to those observed elsewhere [24].

The complexity of our model in terms of the size of
the attribute/topic-space was fixed to a reasonable value
throughout, and we focused on learning with attribute-
constraints on the topics. A more desirable solution
would be a non-parametric framework which could infer
the appropriate dimension of the latent attribute-space
automatically given available UD attributes.
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