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Abstract 

Advanced visual surveillance systems not only need to track moving objects but also interpret 
their patterns of behaviour. This means that solving the information integration problem becomes 
very important. We use conceptual knowledge of both the scene and the visual task to provide 
constraints. We also control the system using dynamic attention and selective processing. Bayesian 
belief networks support this and allow us to model dynamic dependencies between parameters 
involved in visual interpretation. We illustrate these arguments using experimental results from 
a traffic surveillance application. In particular, we demonstrate that using expectations of object 
trajectory, size and speed for the particular scene improves robustness and sensitivity in dynamic 
tracking and segmentation. We also demonstrate behavioral evaluation under attentional control 
using a combination of a static BBN TASKNET and dynamic network. The causal structure of 
these networks provides a framework for the design and integration of advanced vision systems. 

1. Problem statement 

Visual surveillance primarily involves the interpretation of image sequences. Advanced 

visual surveillance goes further and automates the detection of predefined alarm events 
in a given context. Whilst the definition of where and how an alarm event may occur is 
required, it is the intelligent dynamic scene and event discrimination which lies at the 

heart of advanced visual surveillance [ 361. Developing a systematic methodology for 
the design, implementation and integration of dynamic vision systems is currently a very 
important research problem [ 3,5,16,39,51]. These methods must take into account the 
fact that vision is a computationally difficult problem as information available in the 
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image does not provide a one-to-one mapping to physical objects in space. In fact, visual 
evidence extracted by machine-based processing is almost always subject to uncertainty 
and incompleteness due to noise, occlusion, and the genera1 ill-posed nature of the 

inverse-perspective projection used to infer the scene from the image data. One way 
of overcoming some of these problems is to build in more knowledge of the scene 
and tasks so the primary intention of our method is to allow the representation of 
conceptual knowledge in a readily accessible form at all levels of visual processing. For 

example, in object detection and tracking in the image, we have demonstrated that it 
is beneficial to bring scene-based knowledge of expected object trajectories, size and 

speed into the interpretation process 121-231. We have also shown that both scene 
and task-based knowledge allows for selective processing under attentional control for 

behavioral evaluation of a set of temporal events at a cluttered traffic scenario [ 24-261. 
However, it remains to achieve all this in a tightly coupled scheme that allows for greater 

computational efficiency in performing multiple visual tasks. 
In addition to this general requirement for integration of information in advanced 

visual surveillance, there are also more specific requirements for the components of the 
system. We have adopted the restriction from the VIEWS project that a fixed, precali- 
brated camera model and precomputed ground-plane geometry will be used to simplify 
the interpretation of the scene data in the on-line system. We also adopt the knowledge- 

based approach in which domain-specific models of the dynamic objects, events and 
behaviour are used to meet the requirement for sensitive and accurate performance. The 
requirements for the camera model are then to support accurate mappings from 2D to 
3D and vice versa, while those for the ground-plane representation are inherited from the 
kind of behavioral analysis we need to support. We require both metrical and topological 
information to be recovered from this ground-plane representation as well as needing 
access to semantic and structural properties that determine the behaviour of the dynamic 
objects. The representation and reasoning for the dynamic objects themselves needs to 
support the recovery of 3D dynamic position, orientation and occupancy in the tracking 
as well as recognition of the object type. The requirements for the event and behaviour 
analysis on the other hand are less easily defined as they depend on the range of tasks 

to be supported. We adopt the assumption that a flexible and extensible set of behavioral 
evaluations and status reports may be requested which require compositional analysis 

in terms of the events observed. This decomposition, in which perceptual processing 
first recovers trajectory-based descriptions of the dynamic objects and is followed by 

conceptual processing, leads to a combinatorial explosion if purely data-driven control 
is used. Therefore, we return to the genera1 requirement for attentional, purposive (or 
task-based) integration and control in advanced surveillance systems. 

2. Introduction 

The classical approach to computer vision (Marr [ 341) has led to the development 
of sophisticated algorithms for individual visual competences. For a single visual task 
such as dynamic object recognition, it is possible to integrate a system using Marr’s 
framework [ 381. However, it is a clumsy approach to building systems that are required 
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to perform multiple tasks. In recent years, Ullman [52] has argued for the importance 
of integration of multiple visual routines. Of more relevance, Ballard has suggested 
an animate vision approach [5] for two reasons: first, vision is better understood in 

the context of the visual behaviours engaging the system without requiring detailed 

internal representations of the scene; and second, it is important to have a system 
framework that integrates visual processing within the task context. These arguments 
are supported by Bajcsy and Allen’s experiments in active vision [4] and the further 
demonstration by Aloimonos et al. [3] that some of the intrinsically ill-conditioned 
processes required for the reconstruction of physical features become stable when vision 
processes are dynamically formulated according to the tasks. Many others have also 
exploited functional integration in building vision systems for a set of tasks or purposes 

(for example, [ lo,51 ] ) . In our work, we have adapted “active vision” techniques to 
surveillance tasks where identifying “what ” “where” and “when” is just as essential for , 
effective and efficient performance [ 23,261. 

In visual surveillance, model-based techniques have been widely adopted for robust- 
ness and accuracy although they can be less generic. The ACRONYM system [9], 
for instance, used symbolic reasoning to analyse static scenes in a cycle of prediction, 
description, and interpretation. This strategy was effective but not sufficiently closely 
coupled to deliver efficient performance required for visual surveillance of dynamic 

scenes. Recent attempts have been made by Binford, Levitt et al. to bring about relia- 
bility and computational tractability in such systems based on applying Bayesian belief 
revision and decision theories [ 8,3 11. However, they did not address the specific com- 
putational difficulties involved in the interpretation of dynamic scenes and consideration 

of the system purpose in the integration of visual competence. For interpretation of dy- 

namic scenes with a wide variety of visual tasks to perform, it is very attractive to adapt 
dynamically the processing performed to the task at hand. Buxton and Walker [ 121 

proposed a scheme for incorporating explicit semantic knowledge into a Query-Based 
Vision System for interpretation of 2D biological image sequences. However, this work 
did not address the question of how knowledge can be mapped onto computation in 

order to deliver more consistent interpretations. 
In advanced visual surveillance, many different kinds of knowledge need to be repre- 

sented as we are not only tracking the moving objects but also interpreting their patterns 
of behaviour. Pioneering work by Nagel [39] and Neumann [40] has emphasised this 
need to deliver conceptual or symbolic descriptions of behaviour from image sequences. 

Dickmanns has also developed a methodology for tightly coupled control of vision sys- 
tems which builds implicit knowledge into the control loops for real-time performance 

to allow fixed behavioral evaluation for surveillance [ 171. More immediate background 
here, however, is the investigation of methods for real-time knowledge-based visual 
surveillance systems in the ESPRIT project VIEWS. System level integration of percep- 
tual processing with conceptual understanding of traffic scenes allowed the development 
of the three working demonstrators in VIEWS: airport stand area surveillance; multi- 

band tracker for airport ground traffic; and incident detection for road traffic scenes [ 141. 
The conceptual processing in these systems was designed to handle missing information 
in the perceptual output as well as coping with behavioral variability for objects in the 
scenes. However, problems remain as only highly constrained feedback of information 
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from the conceptual processing to the perceptual level was implemented in the VIEWS 
demonstrators. This was mainly concentrated on occlusion handling where it was vital 

for the system to consistently relabel emerging vehicles [ 481. 
In what follows, we briefly examine models and techniques for each of the computa- 

tional components in a visual surveillance system. The aim of Section 3 is to identify the 
key competences required for an integrated system and to consider techniques that are 
able to provide partial or complete solutions in the light of requirements for advanced 

surveillance. For system integration using probabilistic models, Geman and Geman’s 

seminal work [20] on image restoration based on stochastic relaxation initiated wide 
interest in addressing uncertainty. Binford et al. used Bayesian belief nets [8] and the 
extended influence diagram [ 3 11 to enable an “ACRONYM style” of model-based object 

recognition to be computationally tractable. Other proposals for applying belief theories 
to vision system integration include the use of Dempster-Shafer theory [ 71. However, 

the computational complexity of such a framework suggests that it is only appropriate 

for conceptual evaluation where massive computation is not required. In Section 4 then, 
we present the theoretical basis of the Bayesian nets and corresponding belief revision 
mechanisms which we use in our implementations. Furthermore, Nicholson and Brady 
recently [41] used dynamic belief networks in addressing the “data-association” prob- 
lem for vehicle monitoring. Rimey and Brown [44] applied Bayesian nets in modelling 

geometric constraints for active control of camera movements whilst Murino et al. [ 371 
exploited Bayesian nets for coherent setting of multiple parameters in active control of 
camera operations. In Section 5, we present our approach to the similar problem of 
“associating” vehicles as consistent entities over time, evaluating their behaviours, and 

considering how to integrate the required visual competences in the context of visual 
surveillance. More specifically, we present some results from our experiments in motion 
segmentation and tracking, and attentional control in behavioral evaluation. In Section 

6, we conclude our work with a summary and suggestions for future development. 

3. Representations and computations in visual surveillance 

In the VIEWS project most of the components required for an effective visual surveil- 

lance system have been identilied. To simplify the run-time system we assume a precal- 
ibrated camera model, precomputed ground-plane map, as well as a set of object, event 
and behaviour models. We can then characterise the perceptual processing in such a 
system as providing track descriptions for the moving objects in the scene together with 
suggested object type using 2D image motion and 3D model-based vision techniques 
which are based on the camera, ground-plane, and object models. The conceptual pro- 
cessing can be characterised as taking these descriptions and then converting them into a 
consistent behavioral description using AI techniques based on the event and behaviour 
models as well as the camera and ground-plane models which define our field of view. 
In the following, we briefly examine five essential aspects of data representation and 
computation in our visual surveillance systems. These are: ( 1) camera models and their 
calibration where we emphasise the design choice for off-line fixed camera surveillance; 
(2) ground-plane representation where we discuss the detailed requirements for support- 
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ing behavioral analysis using a cellular decomposition of space; (3) object recognition 
where we discuss the advantages of volumetric model representations for surveillance 
applications; (4) tracking objects for dynamic scene interpretation where we discuss the 
need to fully integrate the motion analysis in model-based tracking schemes; and (5) be- 
havioral representation and analysis where we again emphasise the need for appropriate 
techniques for on-line analysis and introduce cellular decomposition of time. 

3.1. Camera models and calibration 

The design choices for building systems are fundamentally guided by the requirements 

of the surveillance tasks we have to accomplish. In visual surveillance, two informa- 
tion transformations are essential: ( 1) infer 3D measurements from 2D image features 
through inverse-perspective projection and (2) predict the existence of 2D features for 

3D object hypotheses. Such transformations are determined by calibrated camera param- 
eters. However, decisions about the type of camera calibration must take into account 
the fact that we use a wide-angle lens to capture the activity over a wide-area scene. 

Camera calibration techniques have been established across a range of requirements for 
accuracy and efficiency [ 49,531. However, the nature of a surveillance application based 

on a wide-angle, static camera means that overcoming nonlinear distortion is signifi- 
cant whilst dynamic calibration is less important. An existing linear model [53], which 
does not take into account distortion, can serve as a starting platform for establishing a 
more accurate system based on the radial alignment model [ 49 1. Since these operations 
are computed off-line, and it is only the resulting geometry that is used on-line, the 
modelling can be quite elaborate to allow accurate mappings from 2D to 3D and vice 

versa. 

3.2. Ground-plane representation 

The representation of the ground-plane knowledge in our system needs to be very 
closely bound to the behavioral analysis we need to support for our surveillance system. 
Although there are a wide range of spatial representation and reasoning methods reported 
in the literature that have been developed to support a variety of different purposes, 
we need a representation that is closely tailored to our requirements. In surveillance, 
we require both metrical information such as angles and distances between spatial 

primitives and topological information such as neighbours and enclosure relationships. 
The behavioral analysis can be facilitated by regarding the problem as interpreting the 

motion patterns over time within a framework provided by a static environment. It also 
helps to have semantic as well as structural properties made explicit in our representation 
as these shape the behaviour of our purposively moving objects. For example, in the 
road traffic domain, we need to consider not only the lane boundaries and direction of 
traffic flow but also the “give-way” regions. 

The spatial representation and reasoning in our surveillance system, then, must sup- 
port: ( 1) the description of the static environment in the field of view, (2) the spatial 
occupancy of a moving object relative to this environment including its instantaneous 
position, extent and the region it occupies, (3) the spatial organisation of these ob- 
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Fig. I The image plant, 311 space with dynamic objects. and the ground-plane representation of a traffic 

roundabout. 

jects at a given moment with respect to the environment and each other, and (4) an 
understanding of what the different regions in the environment “mean” in terms of phys- 
ical and semantic constraints. The semantic constraints, such as possible paths through 

the environment, are represented as they are effective in the interpretation of observed 
behaviour in line with our purposive design strategy. We also need to consider that 
interpretations can operate either in the image-plane or on the ground-plane projection 
which provides an overhead view (Fig. 1). Both types of reasoning are essentially 
2D and involve both metrical and topological relationships. However, reasoning on the 
ground-plane will require run-time 3D model-based reasoning together with the camera 

model to get the necessary ground-plane projections of object position, orientation and 
extent. We can then integrate knowledge of the ground-plane in the motion tracking 
using a precomputed projection into the image-plane to provide prior expectations of 

object trajectory, speed and size. 
Representations of space used in intermediate visual processing are concerned with 

supporting the immediate requirements of the task and include geometric and topo- 
logical approaches. In surveillance we are concerned with perception of the moving 
object in the ground-plane context and need a wide-ranging model of space. An im- 
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Fig. 2. Hierarchical decomposition into regions and cells representing a part of the roundabout ground-plane. 

portant development has been Fleck’s cellular topology [ 18,191 which can support 
the representation of digitised spaces for edge detection and stereo matching as well 
as applications in qualitative physics and spatial descriptions in natural language. This 
representation has been extended and tailored to the needs of surveillance by Howarth 

and Buxton [ 251. The cellular decomposition underlying this approach supports both 
the metrical and topological properties we require in the ground-plane framework for 
interpreting the behaviour of moving objects. The cells can be made to conform to the 
ground-plane layout and grouped into a hierarchy of regions supporting the meaningful 
representation of spatial context for the on-line processing of behavioral descriptions 
(Fig. 2). The decomposition is obtained by using a map editor to intersect ( 1) the road 
surface into (2) the entry and exit roads, (3) the turn-right zone, (4) the roundabout, 
(5) the lanes of the entry road, (6) the give-way zone, (7) the turning-zone, (8) the 

give-way-to zone, and (9) the leaf regions. The regular cells subdivide these regions 
to give a metrical position and support the intersection and extrusion processes used 
for ground-plane predictions. Spatially invariant behavioral information such as static 
give-way regions can then be used in the contextual indexing when we need to describe 
what the objects are doing in the scene. This extended cellular representation has been 
used to support the full event and behaviour evaluation in both passive and attentionally 

controlled surveillance systems [ 25,261. 

3.3. Object recognition 

The overall purpose of a visual surveillance system, as we have emphasised, is to 
provide meaningful descriptions of purposively moving objects. This means coherent, 
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effective and sufficient interpretations of dynamic behavioral patterns of 3D objects in a 
known scene. Therefore, the most relevant information required from a 3D object recog- 

nition and tracking system is the 3D dynamic positions, orientations and occupancies, 
i.e. volumes, of all the moving objects and objects that can move. Detailed information 
about the surface shape of individual objects are not of great concern or relevance here. 

This has important implications in determining the type of object representation and 
corresponding image descriptions. 

Object recognition is one of the key visual tasks in the interpretation of dynamic 

activities captured in image sequences. One of the most widely used volumetric model 

representations is the generalised cylinder [9]. The advantages of volumetric object 

models are that their global properties (volumes, positions and orientations) are directly 
represented and easy to obtain and only a small set of values are needed to parameterise 
them. In contrast, surface-based representations are based on piecewise reconstruction 
of object surfaces, planar or curved. The surface reconstruction approach concentrates 
on recovering detailed information about the local geometric shape of an object. This is 
important in recognising objects that are primarily distinguished by their differences in 

shape and essential for object manipulations such as those required in robotics. However, 
this approach is computationally expensive and it is difficult to access global properties 
of objects since they are not represented and need to be inferred from the local shape 
information. A volumetric representation scheme, then, seems to be most appropriate 

for behavioral evaluation in surveillance because conceptual descriptions will need to be 
recovered on-line from the global properties of the objects over time. 

In principle, the choice of model representation will determine the type of symbolic 

image description, i.e. specific extracted image features, so that they can be used to 
match effectively with projected geometric features on object models. The essential 
nature of the matching process is that the mapping between positions of the image 
features and the position and orientation of the models is given by a set of nonlinear 
functions. Although there are many model-matching techniques, it appears to us that the 
techniques developed so far have not adequately resolved the issue of consistent model 

matching in cluttered and fast changing scenes, especially the problem of invoking the 
correct model. We propose to avoid this problem by starting the evolution of a dynamic 
interpretation using the kind of simple generic volume model described above with the 
parameters for spatial extent, position on the ground-plane and motion refined over time 
by the visual evidence. A promising scheme of this kind using the “point distribution 
model” has been tested for tracking human figures in image sequences [6]. 

3.4. Trucking objects for dynamic Scene interpretution 

For reasons of accuracy and robustness, model-based object recognition has been 
adopted as one of the key components in surveillance systems [ 17,28.56]. However, 
it is recognised that the temporal correlations between objects over time have not been 
fully incorporated into the recognition process. In other words, although model-based 
object tracking is generally required in the understanding of a dynamic scene with 
moving objects, most of the proposed schemes only address the problems of matching 
static 2D image descriptions to 3D object models over time. Lowe [33] and Worrall 
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[%I have used direct matching of image descriptions to projected descriptions of object 
shape, position and orientation in every frame. Marslin et al. [ 351 and Koller et al. [ 281 

advance the approach by applying an independent closed form motion model for each 
object and match the detected static image descriptions with the motion model in each 

frame in order to optimise the predicted motion parameters. Schick and Dickmanns [ 451 
further investigated a combined general shape and motion model. 

However, the essence of surveillance is being able to detect and interpret change in 
the scene. Model-based object tracking schemes that ignore the available information 
about temporal changes in the image are likely to complicate the interpretation tasks in 

the later stages of the processing. Measuring image motion not only leads to a more 
compact representation of an image sequence over time, it also distinguishes noise and 
possible objects of interest in the scene. In general, it is well understood that the dense 
image motion (optic flow field) contains valuable information not only about 3D shapes 
of the scene but also motions in the scene. For surveillance in particular, image motion 

alone can be sufficient for providing information for statistical interpretations such as 

measuring traffic density on the roads or passenger population on train platforms. It 
also provides one of the most obvious bootstrapping cues for initialising object model 
matching when necessary. 

The measurement of image motion is the primary source of detecting movement 
in the early stages of the interpretation process and has to be computed for effective 

interpretation of dynamic scenes. There have been many approaches to interpreting image 
motion, for example Buxton and Murray [ 111, Longuet-Higgins and F’razdny [ 321, but 
there has been little attempt to map dynamic image descriptions such as the optic 
flow field to any global 3D descriptions of objects in a model-based object recognition 
scheme. Only the highly computationally expensive option of detailed reconstruction of 

3D surface and edges and subsequent detailed geometrical matching has been explored 

[381. 
Most model-based object tracking techniques have adopted a simplified motion model 

based on the Extended Kalman Filter (EKF) in updating an object’s 3D motion param- 
eters. However, the difficulties in getting a good initial estimation of motion, which is 
essential to allow meaningful predictions, have again been mostly overlooked. A new 
probabilistic relaxation framework that reflects some of the Bayesian belief revision 
principles has been proposed by Kittler [27] and illustrated for matching relational 
structures with minimal iterations. This works by mapping evidence to expectations 

between different representation domains such that the most likely interpretations are 

obtained. This reinforces our idea that in order to overcome the limitation of the closed 
form EKE approach in motion estimation, a distributed belief revision approach that 
incorporates probability evaluations with nonlinear constraint satisfaction networks is 
required. It would be more appropriate for this matching problem since much weaker 
constraints between the evidence and expectation are imposed. 

3.5. Behavioural representation and analysis 

When we described spatial representation and reasoning we set up the framework for 
the interpretation of behaviour. It is also necessary to consider how to represent and 
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reason about dynamic properties of moving objects as captured by the intermediate 2D 
and 3D tracking processes above. In general, we should note that, while there is a large 
area of AI and logic devoted to temporal reasoning, here we need a simple notion of 
time and events so we can compute the behavioral descriptions under some kind of 

real-time constraint. Some researchers, for example [lo], have even suggested that we 
can dispense with internal representations and allow the world to be its own model in 
a “situated” action approach to modelling intelligent activity. However, we believe that 

we can only go part way towards this approach and do indeed need to represent the 
properties that are relevant for surveillance tasks. These properties will enable us to 
identify when a change occurs in a meaningful context, that is, here the representation 

of our ground-plane (scene) knowledge and other current purposively moving objects. 
Moving objects have trajectories in 3D space and time, 4D in general, but only 2D space 
and time when movement is restricted to the ground-plane. These trajectories need to be 
treated symbolically in order to reason about multiple object behaviour and interactions 
using compositional models. Differential equations [ 171 could be used under strict real- 
time requirements for surveillance but this approach makes it difficult to provide flexible 
and extensible conceptual descriptions of behaviour. Alternatively, we could use hidden 
Markov models which better capture the probabilistic nature of the visual evidence when 

we have a fixed, predetermined set of behaviours [ 2 1,221. More flexible alternatives 
have a linguistic base with some kind of grammar based on primitive, more or less 

instantaneous, events and “verbs” which can be more extended relationships between 
objects and their environment or each other [ 15,29,39,40]. 

Surveillance is primarily about monitoring change in a local time frame sufficient to 

allow behaviour such as overtaking or giving way, for example, to be accomplished. This 

does seem to require generic, compositional analysis in terms of the state-changes or 
events that underlie our common sense notions of the computed conceptual descriptions. 
However, we propose the behavioral evaluation should be integrated into our Bayesian 
belief networks to reflect the probabilistic nature of evolving interpretations and provide 
attentional focus. Early work by Tsotsos [50] used semantic networks in the ALVEN 
system to integrate bottom-up, top-down and model-based processing although this can- 

not easily support real-time updating for dynamic vision. Nagel [ 391 reviewed the few 
projects which have tackled the problem of delivering conceptual descriptions in the 
road traffic domain. These include NAOS 1401 and CITYTOUR [43] which allow 
question-answering as an off-line query process. These descriptions require composition 
by grammar and the underlying visual processing is also compositional in terms of a set 
of spatial primitives. Nagel considers the problem of on-line generation of such descrip- 
tions as we require in advanced visual surveillance. His approach goes some way towards 
the goal of specifying simpler (but not full natural language) conceptual descriptions 
in terms of motion verbs that could be effectively computed. However, we think a more 
situated approach has advantages for real-time performance in visual surveillance using 
a perceiver-centred or “deictic” frame of reference. For example, spatial deixis uses 
“here” and “there” and temporal deixis uses “now”. Deictic reference [43] depends on 
knowledge of the context but can decompose and simplify the reasoning that needs to be 
done compared to the global “state-based” approach of traditional AI. A formalism has 
been developed to support reasoning from a local viewpoint and used, when required, 
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to construct the global behavioral descriptions which are essential in visual surveillance 
[26]. Here we need to understand the behaviour of individual “agents” each with their 
own reference frame with respect to the arbitrary global viewpoint of the camera. 

We introduced the idea above that we require a more local time frame than that 
required to support full cognitive planning or coordinating actions as we are only ob- 
serving the activity of the moving objects here. Formal approaches using well-defined 
languages with clear meaning for time, events, and causality, for example [2,46], as 
well as implementations of relational approaches to building time-maps and histories of 

object interactions are useful for validating and prototyping new approaches to behav- 
ioral analysis. They are not usually directly suitable for fast visual processing although 

Lansky’s GEM (Group-Element-Model) formalism [ 301 can be supported by network 

implementations for real-time incident detection in visual surveillance as demonstrated 
in VIEWS. However, if we need to mix both qualitative and quantitative descriptions 
of time for a wider set of visual tasks, we will need new formalisms such as Fleck’s 

cellular model of time [ 191 which discretises real-time in much the same way as the 
cellular decomposition approach for space. In cellwise-time, as developed by Fleck, each 
cell is a state and we can classify change as either: “state-changes”, which involve sharp 
change; “activities”, where continuous change occurs; or “accomplishments”, which are 

composites of activity and state-change. “Episodes” are seen as composed of a start- 
ing state-change, an activity, and an end state-change in this framework. This kind of 
representation can be called “analogical” and has been further developed in both space 

and time for the representation of events and behaviour and incorporated into an ex- 
perimental Bayesian network task-based control framework for surveillance by Howatth 

and Buxton [ 25,261. 

4. Bayesian belief networks 

We use the Bayesian network approach which is conceptually attractive and compu- 
tationally feasible for this work. Modelling and updating the dependent relationships 

and their probability distributions in belief nets in such a constrained environment is 
relatively easy both off-line or on-line. Conceptually, we are addressing the issue of 

modelling a “weak” (uncertain and incomplete) constrained information retrieval pro- 
cess that purposively collects evidence in the image to support interpretations of dynamic 
behaviours in the scene. The ambiguity in interpretation means that context-dependent 

information integration is required to obtain more coherent descriptions of the visual 
evidence. Recent developments in probabilistic relaxation, belief and decision theory 
have provided us with a sound computational base [42]. 

Bayesian belief networks are Directed Acyclic Graphs (DAGs) in which each node 
represents an uncertain quantity using variables with multi-possible values. The arcs 
connecting the nodes signify the direct causal influences between the linked variables 
with the strengths of such influences quantified by associated conditional probabilities. 
If we assume a variable in the network is Xi, and a selection of variables nx, are the 
direct causes of Xi, the strengths of these direct influences are quantified by assigning 
the variable Xi a link matrix P(xi 1 IT,), given any combination of instantiations of 
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the parent set n,. The conjunction of all the local link matrices of variables Xi in 
the network (for 1 < i < II where n is the total number of the variables) specifies a 

complete and consistent global model which provides answers to all the probabilistic 
queries. Such a conjunction is given by the overall joint distribution function over the 

variables XI,. . , X,,: P (.x1. .I-:, . x,, ) = J& P (x; 1 I7,), where lower case symbols 

stand for a particular instantiation of the corresponding variables. ’ Then, if the behaviour 
of a visual process is partially defined by its processing parameters, the evaluation of 
these parameters will be consistent with the visual task at hand such that the task is 

accomplished by associating the parameters with given beliefs. 
In a belief network, if we quantify the degree of coherence between the expectations 

(X) and the evidence (e) by a measure of local belief* &FL(x) = P(x 1 e), and define 
belief commitments as the tentative acceptance of a subset of hypotheses that together 
constitute a most satisfactory explanation of the evidence at hand, then, Bayesian belief 
revision amounts to the updating of belief commitments by distributed local message 

passing operations. Instead of associating a belief measure with each individual hypoth- 
esis locally, belief revision identifies a composite set of hypotheses that best explains the 
evidence. We call such a set the Most-Probable-Explanation (MPE). In computational 
terms. this means finding the most probable instantiations of all hypothetical variables 
given the observation. Let W stand for all the variables concerned, inclusive of those in 

e. Any particular instantiation of variables in W that is also consistent with e will be 

regarded as an extension or explanation of e. The problem then is to find an extension 
w* that maximises the conditional probability P(w 1 e). In other words, W = w* is 
the MPE of the evidence if P(w* 1 e) = max, P( w 1 e). Here, w* is obtained by 
first locally computing the belief function for each variable X mentioned above, i.e.’ 
BEL* (.\-) = max,; P( x, w; j e) where Wi = W - X and second, propagating local 

messages. The local messages arc defined as: if X has n parents (It, U2,. . , U, and 
rn children Ut , &, . , x,,. then node X receives messages $,(ui), i = 1,. . , n, from its 
parents and tt (x) , j = I, . , m, from its children given by 

l rTTTy(td,) is the probability of the most probable tail-extension of the hypothetical 
value U, = u; relative to the link U, - X and is known as an explanation, 

l A;,(x) is the conditional probability of the most probable head-extension of the 
hypothetical value X = x relative to the link X + q, known as aforecust. 

More precisely, given the fixed local probability P(x 1 ~1,. . . , u,) and the best value of 
X as x*, the propagation involves: 

l Updating BEL*: for 

,,, II 

F(.G~4l....? I(,,) =pj,(x)P(x 111 I,..., u,)r-pr;(ui), 

/=I i=l 

’ In the rest of this article, variables will always be denoted by upper case symbols and specific instantiations 
of the variables will be denoted by lower case symbols. 

’ In this article, all the incoming evidence will be denoted by e and be regarded as a set of instantiated 

variables E. Symbol a will be used to denote a normalising constant and /3 will be used for an arbitrary 

constant. 

’ This B/X* (x) represents the probability of the most probable extension of e that is also consistent with 

the hypothetical assignment X = r. 
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&5!,*(x) = /?maxF(x,ut,. . . ,u,), l<k<n; 

x* = argmaxx&L*(x). 

l Parent-bound n messages to UI , . . . , U,,: 
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A;(ui) = max 
F(x, Ul,. . . , u,) 

i= ,...,a 1 
X,UL: k+i Tit&> ’ 

l Child-bound m messages to Yl, . . . , Y,,: 

$W =P 
BEL*(x) . 

hq*(x) 5 J = I,..., m. 

l Boundary conditions: Three types of nodes set up the boundary conditions: 

(1) 

(2) 

(3) 

Anticipatory nodes: uninstantiated variables with no children. For X, Ai (x) = 
[l,...,l]. 
Evidence nodes: instantiated variables. For variable X = x’, it is regarded as 

X being connected with a dummy child Z such that 

A>(x) = 
1, ifX=x’, 

0, otherwise, 

and other real children of X, Yi, Y2,. . . , Ynl, receives the same message + = 
A> (x) from X. 
Root nodes: variables with no parents. Similarly, for each root variable, a 
dummy parent U with permanent 1 instantiation is introduced and P (x 1 u) = 
P(x) =5-*(x). 

It is important to understand the conceptual essence of this propagation mechanism. 
For each hypothetical value of a single variable X, there exists a best extension of 
the complementary variables Wk. The problem of finding the best extension of X = 
x can be decomposed into finding the best complementary extension to each of the 

neighbouring variables according to the conditional independence between X and the 
rest. This information can then be used to decide the best instantiation of X. The 

very process of this decomposition resembles the principle of optimality in dynamic 
programming in that it is applied recursively until it reaches the network’s boundary 
where evidence variables have predetermined values. 

5. Methods for integrated surveillance 

In this section, we use a few specific examples to illustrate how a unified Bayesian 
approach can be used to overcome the problem of uncertainty and incompleteness in 
the visual interpretation of surveillance data by bringing task-based and scene-based 
knowledge into the process. 
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Fig. 3. Selecting which pairs of vehicles are involved rn following and overtaking behaviour in an image 

sequence. For example, markers 0 and I in frame I2 are highlighted as they are close but are later ignored. 

5.1. Behavioural evaluatiotz 

If dynamic scene interpretation in surveillance is to provide a “gestalt”, the processing 

requires both top-down modelling of what one is looking for and bottom-up evidence 
for what could be appearing. The prior probabilities can be used to initialise the network 
and then the evidence is dynamically interpreted under the current expectations using 
both parent-to-child (top-down) and child-to-parent (bottom-up) updating of values in 
the network. We have effectively used such Bayesian networks together with a deictic 
representation both to create a dynamic structure to reflect the spatial organisation 
of the data and to measure task relatedness [26]. Howarth and Buxton integrate the 
behavioral evaluation and interpretation by giving a combined attentional focus for the 
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road traffic examplar where the behaviours of interest were “overtaking”, “following”, 
“queuing” and “unknown”. For example, in Fig. 3, a simple proximity cue invokes the 
behavioral analysis of overtaking. A task-based Bayesian network (adapted from Rimey 
and Brown [44]) is used in modelling spatial and temporal relationships in order to 
direct the evidence collection in the image sequence. 

We use a separation of preattentive (peripheral-system) and attentional (central-sys- 
tem) processing in our behavioral evaluation system. The set of simple low-level periph- 
eral operators are velocity, orientation, occupied-regions, velocity-change, orientation- 
change, speed-difference, heading-difference, and proximity on the ground-plane. The 
values of these operators in effect act as cues for the more complex attentional operations 
such as path prediction and computing deictic spatial relationships which are used in the 
full evaluation. A central attentional mechanism guides the application of appropriate 
complex evaluation in a particular dynamic context. This attentional mechanism uses an 
agent-based formalism implemented by Bayesian network updating. It, first, allocates 
agents with unique markers to objects of interest, second, it runs the agents for the 
current behavioral task, and third, it collects all the results of these local agents and 
combines them into a global “official observer” interpretation. To understand the role of 
the “official observer” we can make an analogy with a sports event where the athletes 
are like the agents with their own individual views while a chosen spectator may have 
a global view. However, the “official observer” is more than this in that it both observes 
and directs processing so it can provide a framework for the combination of results. 

The objects in our scenes have an “intrinsic front” which defines each object’s frame 
of reference in the deictic representation. We have developed “typical-object-models” for 
the interpretation of behaviour using time-ordered combinations of deictic relationships 
between objects of interest in particular ground-plane contexts. The deictic relationships 
may be simply “behind’‘-“before”, “behind and beside”-“now”, and “in front”-“next”. 
The simple peripheral operators are applied to all our segmented, tracked objects and the 
typical-object-model determines the specific attentional operations to be performed. It 
also determines which values should be saved and the set of operations to be performed 
on the next clock tick. The results are fed back to the appropriate agent to give task- 
related features for future selection. The approach here is related to that of Agre and 
Chapman [ l] but extended to deal with many local deictic viewpoints. In this way 
an agent need not describe every object in the domain but only those relevant to its 
particular task. 

5.1. I. Experimental setup 
To combine the information that develops over time we use a dynamic form of 

Bayesian network (DBN) which captures the changing relationships between scene ob- 
jects. The DBN is composed of temporally separated subgraphs that are interconnected 
using reconfigurable links (see Fig. 4). The DBN cannot model continuous time be- 
cause of the graph extension process is necessarily discrete with the structure changing 
to reflect the temporally evolving behavioral features. This Network Expansion and In- 
ference (NEI) algorithm consists of three steps: ( 1) run update-graph-structure, (2) 
update values of root nodes and supply evidence node values, and (3) run inference 
algorithm to update beliefs. If the graph structure is constant over time, it is better to 
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Fig. 3. Proximity relationships between vehicles A and B represented in a graph linking structure using 

analogical spatial reasoning. NA represents a vehicle node and NE a neighbouring vehicle node linked by the 

coefficient matrix RCA,8) which relates the attention given for particular event operators. 

use the standard static algorithm 1421 as the DBN update-graph-structure involves a 
more complex process of node building and node linking to return a singly connected 
tree. The inputs to the DBN are the Basic-Aspects which are the results delivered by 
the simple low-level peripheral operators that are relevant to the tasks at hand. The 
relevance is determined by a matrix of conditional values (i.e. ignore, watch) linking 

the behaviours to the operators to be used in a static BBN called the TASKNET. For 
example, the overtaking and following behavioral tasks have a watch value associated 

with the proximity operator. 
The TASKNET guides the composition of the local deictic viewpoints of the selected 

agents to provide the official observer interpretation of the relationship. It uses a selective 

mechanism to ensure fast updates in the static tree structure. The input nodes represent 
key features relevant to the task for which it has been constructed. The output node 
represents the overall belief, based on the evidence collected so far, for the set of 
candidates consisting of the selected behavioral task, related tasks, and the default 
unknown. 

Allocating an attentional process involves three stages: ( 1) the focus of attention 
stage ensures the TASKNET is initialized and collects evidence relevant to the selected 
pair of objects as well as ensuring that an agent is running on both objects; (2) the 

selective attention stage updates the root nodes and runs the inference algorithm; and 
(3) the terminate attention stage recognises when an uninteresting situation occurs and 
propagates a high ignore value through time which causes the allocated agents and 

TASKNET to terminate. Using this method, once a relationship is identified, it can then 
be ignored. We can only attend to a limited number of objects so a measure of the 
“interestingness” and the cost of performing the attentional processing is combined to 
provide an utility value. This value determines which object will be selected to “be 
watched” by the attentional processing. 

The DBN and TASKNET mechanisms take one system cycle to perform and are 
temporally overlapped to take advantage of the current low-level peripheral operator 
outputs. The connection rules in the DBN (details in [24] ) are the main mechanism 
for defining selective behaviours while the TASKNET can fine-tune the attentional 

mechanism to differentiate between similar surveillance tasks. The overall effect is the 
formation of behavioral descriptions that evolve over time to capture what is happening 
in the scene rather than being dependent on observing the whole episode before anything 
can be said to have happened. 
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5.1.2. Experimental results 
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As an illustration of the approach, the results for the overtaking example in Fig. 3 
begin at frame 12 with two vehicles (0, 1) selected as being near each other and 
another vehicle (2) ignored as not interesting. At frame 24, these two vehicles are 
identified as involved in “following” and subsequently ignored since the behavioral task 
is “overtaking”. In frames 36-72, two vehicles (2, 3) are selected but it is not clear 
from the evidence if “overtaking” or just the related “following” is taking place. It is 

only at frame 84 that possible “overtaking” is identified as the preferred interpretation 

for these two vehicles. The confirmation of the behaviour is delayed by occlusion (3 
is not seen) in frames 96-108 and the re-emerging vehicle (3) is at first ignored in 

frame 120. The overtaking is finally confirmed to an acceptable degree of confidence 
at frame 132. The combination of task-related evaluation with dynamic propagation 
networks described above was developed in response to the requirement to deliver real- 
time dynamic interpretation in the behavioral analysis. Such an approach works well for 
relatively simple tasks like monitoring overtaking and give-way behaviour involving just 
two vehicles. It is also capable of multi-task evaluation and control, although it is not 

clear how well it would scale if the tasks involved complex multiple object interactions 

or plan-like behaviour. 

5.2. Motion segmentation and tracking 

In VIEWS, one of the key objectives is to segment the detected optic flow field into 
dynamic regions corresponding to possible moving objects and to track these regions 
effectively and consistently over time. Wenz [54] applied a scheme based on estimated 
frame displacements of the extremal loci of a bandpass filter. Similar displacement vec- 

tors are grouped into different moving regions (bounding boxes) in each frame and the 
similarity is defined by four parameters: ( 1) neighbourhood range, (2) neighbourhood 
displacement magnitude ratio, (3) neighbourhood orientation difference and (4) neigh- 
bourhood vector numbers. In this direct approach, these similarity parameters are set as 
independent constants across the entire image for computational simplicity. However, it 
is unable to deliver consistent interpretations in images of crowded scenes such as the 
traffic roundabout shown in the left picture of Fig. 5. The example frames in Figs. 9, 
10 and 11 illustrate some typical defects in the sensitivity and consistency of the direct 
approach. We propose that scene-oriented contextual knowledge should be incorporated 
into the control of parameter values for more effective computation. 

VIEWS uses a fixed camera for collecting visual input in each scenario. Under such 
static camera configurations, the three-dimensional scene layout imposes indirect, but 
nevertheless invariant, constraints on both possible loci of appearances, sizes, speeds of 
bounding boxes and the overall traffic flow. The right-hand picture of Fig. 5 illustrates 

the recorded motion patterns of vehicles on the roundabout over 450 frames. The a 

priori constraints on object size, speed and relationships between the parameters in the 
interpretation can be analysed and used to initialise the probabilities in a Bayesian net. 
The following correlated measures (with respect to image coordinates) are constrained 
probabilistically in the parameter net: ( 1) between object orientation and optic flow 

vector orientation; (2) between object size and flow vector neighbouring speed ratio, (3) 
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Fig. 5. Left: a traffic roundabout scenario and its traffic How. Right: correlated spatio-temporal constraints on 

the movements of individual objects are imposed implicitly by this scene layout. 

Fig. 6. A belief network that captures the dependent relationships between the scene layout and relevant 
measures in motion segmentation and tracking. 

between neighbouring orientation difference, object dx, object dy and object bounding 

box width or height. Such probabilistic constraints on the bounding boxes set up a 
compound network of coherent hypotheses (Fig. 6) that is modelled by a Bayesian 
belief network with dynamic belief revision propagation. With this approach, we regard 
segmenting similar flow vectors into possible moving regions in the image and tracking 
them down in time as providing a coherent, Most-Probable-Explanation of the detected 
flow fields by actively revising the distributed beliefs according to the dependent causal 
constraints. 

5.2.1. Experimental setup 

The belief network in Fig. 6 has a tree structure, a special type of “singly connected” 
network, in order to guarantee the propagation of message passing in belief revision is 
tractable [ 421. The image (5 12 x 5 12) is divided into grids and the root node of the 
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tree IGP (Image Grid Position) represents the probabilistic expectation of occurrence 
for objects in each image grid position. Nodes OSS and OOR represent respectively 
the probabilistic expectations in the square size and orientation of bounding boxes in 
image grids. The six leaf nodes at the bottom level of the tree represent, respectively, 
the expectations in flow vector orientation (FVO), neighbouring vector speed ratio 

(NSR), orientation difference (NOD), x-component in object bounding box’s displace- 
ment (ODX), y-component in bounding box displacement, and the width of a bounding 
box (OWD). 4 It is important to point out that first, leaf nodes are the evidence nodes 

and it is desirable to relate them to qualitative measures by representing relative mea- 
sures between flow vectors. This is designed to overcome the instability of individual 

vectors in optic flow fields. Second, great effort was made to reduce the number of 
causal connections and the number of hypothetical variables to the minimum at the 
expense of approximations in the representation of certain variable nodes. This is be- 
cause the computational load increases by an order of 2” - 1 where n is the number 
of variable nodes in a network [ 131. Third, in order to have efficient computation, it 

is computationally attractive to approximate any continuous variable with a set of few 
discrete values. Fourth, the conditional probability distribution matrices between any two 
nodes are usually subject to probabilistic estimation based on extensive test examples. 

Statistical studies in the past [ 131 suggest that if a well controlled number of variables 
are built into a Bayesian network, the estimated distribution matrices capture the general 

characteristics of the problem. Accurate estimation of these parameters remains one of 
the important factors for the computational success of a belief network. Recent studies 
by Spiegelhalter [47] have shown techniques for updating and learning the distribution 
matrices dynamically in order to provide more accuracy in their estimation. 

The algorithmic steps of our approach for the segmentation and tracking of object 
bounding boxes from optic flow fields are: ( 1) Set the maximum expected number 
of object in a scene and initialise such a number of belief nets. (2) Set Ai (xi) = 

[ 1,. . . , l] where Xi = [FVO, NSR, NOD,ODX, ODY, OWD] and P(x 1 u) = P(x) = 
T*(X) where X = [IGP], then initial equilibrium of a belief tree is obtained by (a) 
propagating all the A messages upwards, (b) propagate all the r messages downwards, 
(c) estimate the local beliefs throughout the tree, and (d) obtain a composite set of 
local instantiations of each variable that together is the best interpretation of the initial, 
“no evidence”, condition. (3) For the first image frame, vectors are grouped according 
to the best value assignments associated with beliefs corresponding to their image grid 

position. For successive frames in the sequence, vectors are grouped according to best 
values, either to beliefs associated with previous tracked bounding boxes, or to beliefs 
associated with image grid positions. (4) For each calculated measure in the similarity 
test procedure, the value instantiates the associated node and revises local belief as well 
as other nodes’ beliefs by propagation until the tree reaches equilibrium. 5 (5) Revise 
locally every node’s best value assignment so that the bounding box will set the most 

4 The n, y and width are measures in image coordinates. With a pre-calibrated camera and the geometry of 

perspective projection, they give corresponding three-dimensional measures. 

5 Since the tree is singly connected, step (4) simply means non-iterative propagation to the net boundary 

nodes. 
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Fig. 7. Top: the false alarm rate. Bottom: the “ground truth” and detected number of objects and their duration 

in the scene. 

probable similarity threshold values for grouping vectors that are near to its expected 
location in the next image frame. Repeat steps (3)-( 5). 

5.2.2. Experimental results 

The current design of the belief network has been tested extensively on image se- 
quences from the traffic roundabout scenario. In assessing performance, we first show the 
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sensitivity of the two techniques by measuring their “false alarm rate” before we mea- 
sure the consistency of tracking objects over time. The false alarm rate was taken over 
an image sequence of 400 frames using a strict criterion of matched “true” (identified 

by human visual analysis on a frame-by-frame basis) and the automatically computed 
bounding boxes. The top graph in Fig. 7 shows the false alarm rate on both techniques 
over time. It gives a good indication that the belief revision approach increases true 
identifications significantly without introducing excessive false alarms. Throughout the 

whole sequence, the maximum false alarm rate from the belief revision approach is 
about 16%, which is below the minimum rate from the direct approach. The maximum 
false alarm rate of the direct approach, on the other hand, reaches 60% and its average 
rate is nearly 50%. 

To obtain the consistency measures, we compiled the histories of tracked objects 
from both techniques and compare them with the “ground truth” from a 170-frame 

image sequence. In the bottom graph of Fig. 7, the diamond line shows the ground 
truth of the number of objects against their durations in the scene. For example, 1 
object that has stayed for the entire 170 frames, 13 objects that have lasted for 14 

frames, etc. The solid line shows that the direct approach has taken fragments of objects 
with long durations and tracked them as a large number of objects with very short 
histories. There is no object tracked for more than 50 frames, which is the basis of 

the poor consistency of the direct approach. In contrast, the dotted line shows that the 
belief revision approach provides us with more accurate measures of both the number 
of objects and their durations. 

To estimate the computational cost, we first measure the absolute time consumption 
(in seconds) of both schemes over the 400-frame sequence, as seen in the two near- 

linear increasing lines in the top graph of Fig. 8. Although the divergence between the 
two lines appears to show a continuous increase of processing time in the belief revision 

scheme, this is due to the accumulated cost of bootstrapping belief networks over time. 
The frame-by-frame computational cost is more realistically given by the first-order 
derivative over time for those two lines, which are shown by the two step lines. This 

can be seen more clearly by measuring the percentage of the increased time consumption 
in the belief revision approach from the direct approach as seen in the bottom graph 
in Fig. 8. The frame-by-frame computational overhead throughout the whole sequence 
is below 13%, and it is worth pointing out that providing more accurate segmentation 
and tracking of objects instead of missing identifications will always require “extra” 

computational cost. 
The quantitative measures presented here illustrate that: with very limited cost in 

computational efficiency, significant gains are obtained in effectiveness and consistency 
by using the belief revision technique. A more visual comparison between the two 
approaches can be seen in Figs. 9, 10 and 11. Three successive frames from our test 
sequence are shown with the results from the direct approach on the left and from 
the belief revision approach on the right. It is worth noticing that: first, the belief 
revision approach is very robust against incomplete evidence (see the tracked cyclist 
behind a sign post to the left-hand side of frames 145 and 1.50). Second, it is capable 
of segmenting very close moving objects (see the cyclist and the two cars close to 
its right). Third, in these examples, it consistently identifies all the moving objects. 
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Fig. 8. Top: time in seconds for the belief revision and the direct approaches respectively, and their first-order 

derivatives over time. Bottom: percentage increase in the belief revision approach. 

Note that these are quite cluttered traffic scenes and it is typical of these techniques 
to show more sensitive and robust performance on “difficult” scenes. For simple cases, 
direct methods can work well but have clear limitations for the full set of cases met in 
real-world video sequences. 
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Fig. 9. Frame 140. Top: direct approach fragments object bounding boxes (compare with next two frames). 
Bottom: belief revision approach captures most moving objects consistently in successive frames. 
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Fig. IO. Results on frame 145. Top: by the direct approach. Bottom: by the belief revision approach. 
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Fig. 11. Results on frame 150. Top: by the direct approach. Bottom: by the belief revision approach 
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6. Conclusion 

To summarise the arguments in the earlier sections, we are suggesting that advanced 

visual surveillance can benefit from taking a purposive approach to vision system design. 
This means using representations that are closely tailored to the surveillance tasks. We 
also suggest using a purposive approach in the system framework so that task-dependent 
processing under an active focus of attention can selectively gather evidence under the 
current set of expectations. In the design of a surveillance system, we point out that 
off-line processing, such as camera calibration or setting up of the ground-plane repre- 

sentation, can afford elaborate models to provide the required accuracy and functionality. 
However, we argue that there is also the need to find the simplest possible models of 

object structure and behaviour for on-line processing to accommodate the requirement 
for both fast interpretation and robustness with generality. For visual surveillance, we 
argue that the basis for the initial detection of moving objects and cues for object po- 

sition and velocity should be simple visual motion measures. We also argue that the 
high-level interpretation, in general, requires behavioral models that are decomposable 
into simple primitives that can be detected in real-time and that the evolving behavioral 
descriptions should be computed under context-based expectations. The intermediate 

processing, however, poses more problems as existing model-based tracking techniques 
are designed for a small set of detailed models with limited dynamic updating. For 
more demanding surveillance tasks in which dynamic scene and event discrimination 
is the key [36], we propose the formulation of a new scheme within the Bayesian 
belief network framework as we have argued that this will provide the kind of “weak” 
combination of constraints appropriate for incremental shape and motion recovery in the 
face of uncertain and incomplete visual evidence. The experiments described in Section 
5 illustrate the feasibility and computational tractability of this approach. 

In Section 3, we analysed the components required in our advanced surveillance sys- 
tems. We briefly reviewed progress so far and recommended the particular models and 
associated processing schemes that show the most promise. For example, we suggested a 

full radial alignment model for a fixed wide-angle surveillance camera in off-line calibra- 
tion. However, if we require on-line dynamic surveillance, we would suggest simplifying 

the model and extending the Bayesian networks to provide a coherent model right down 
to the level of camera control. In the spatial and behavioral representations, we pro- 
posed cellular models as they support both qualitative and quantitative aspects of the 

processing as required. These models provide fast contextual indexing of computational 
constraints in the behavioral analysis. They have been integrated into the Bayesian be- 
lief networks to provide a framework in which interpretation evolves dynamically with a 

task-dependent focus of attention. In the image and object representations, we suggested 
using simple, reliable measures of visual motion together with volumetric models that 
give immediate access to the global properties of position, orientation and ground-plane 
motion which are required for the behavioral analysis of the moving objects. These 
competences, then, were all derived from a purposive strategy in visual system design. 

In Section 4, we outlined the theoretical basis of Bayesian belief networks. These 
provide a means of performing both bottom-up, data-driven processing and top-down, 
expectation-driven processing in the on-line computations. Bayesian nets allow the com- 
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putation of the Most-Probable-Explanation of visual evidence under the expectations at 
all levels of abstraction in a vision system. The nodes in the parameter network are ab- 
stract entities that can be associated, for example, with simple low-level interpretations 

of the position and speed of bounding boxes associated with possible moving objects 

in the image-plane. They can equally well be associated with high-level interpretations 
of the kind of behaviour in which a particular object is engaged. The network updat- 
ing techniques implement a fast non-recurrent solution using the current values of the 
nodes. The updating rules were derived from Bayesian theory which makes them very 
well suited to the analysis of essential visual changes in surveillance where there is 
always a great deal of uncertainty and incompleteness in the data. It is also important to 

note that the Bayesian networks allow for task-based control which is required to make 
the processing performed by the system selective and avoid the combinatorial explosion 
entailed in passive analysis. It is still important, however, to keep the networks as simple 
as possible and model only the essential dynamic dependencies; those that allow a rapid 
evaluation of the evolving spatio-temporal patterns of behaviour. 

In Section 5, another aspect of the Bayesian networks becomes apparent, the ability to 
encode knowledge by modelling dynamic dependencies amongst the visual parameters 
through examples and prior probabilities of classes of interpretation. This is possible 
by analysis of the problem where there are obvious scene-based constraints such as 

traffic flow direction in certain lanes of a roundabout. It is also possible to learn these 
constraints and dependencies using appropriate techniques [47,55 1. This can be a time 
consuming process but is typically computed off-line with only limited adaptive refine- 
ment on-line. The requirement to turn conceptual scene-based or task-based knowledge 
into a readily accessible form for real-time processing has been recognised in the past. 
Many hybrid schemes using both knowledge-based and numerical techniques have been 

proposed but would not easily support real-time systems. On the other hand, however, 
the kind of constraints that can be imposed using numerical techniques are rather inflex- 

ible for advanced visual surveillance where we have a lot of domain-specific knowledge. 
We would also argue that neural network approaches would be very difficult to develop 
for this class of applications. Nor do we think it possible to “evolve” solutions to such 

complex problems using genetic algorithms. It thus seems to us that the most promising 
unified framework is provided by Bayesian belief networks as we have successfully 
demonstrated for a set of typical advanced surveillance tasks. 
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