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Abstract

Gait as a behavioural biometric is concerned with how people
walk. However, most existing gait representations capture both
motion and appearance information. They are thus sensitive to
changes in various covariate conditions such as carrying and
clothing. In this paper, a novel gait representation termed as
Gait Entropy Image (GEnI) is proposed. Based on computing
entropy, a GEnI encodes in a single image the randomness of
pixel values in the silhouette images over a complete gait cy-
cle. It thus captures mostly motion information and is robust to
covariate condition changes that affect appearance. Extensive
experiments on the USF HumanID dataset, CASIA dataset and
the SOTON dataset have been carried out to demonstrate that
the proposed gait representation outperforms existing methods,
especially when there are significant appearance changes. Our
experiments also show clear advantage of GEnI over the al-
ternatives without the assumption on cooperative subjects, i.e.
both the gallery and the probe sets consist of a mixture of gait
sequences under different and unknown covariate conditions.

1 Introduction

Gait is a biometric which measures the way people walk.
Among various image-based biometrics, face, iris, fingerprint,
and gait are the most widely studied ones. Gait is in general
perceived as a weaker biometric compared to the others. This is
largely because gait as a behavioural biometrics is more likely
to be affected by changes in covariate conditions. Some of
these conditions mainly affect the appearance of people such
as clothing condition, carrying condition and view angle, while
others affect gait itself such as shoes, time and surface. De-
spite of this limitation, gait has it distinctive strength in appli-
cations such as visual surveillance because it does not require
cooperative subjects viewed at a close proximity whilst other
image-based biometrics do.

Based on the way gait is represented the existing gait recog-
nition approaches can be divided into two categories: model
based and model free approaches. Model based approaches
[17, 10, 16, 2] represent gait using the parameters of a model
of the body configuration which are estimated over time. This
process is usually computationally intensive and error prone

and also requires high resolution images as input. Due to these
limitations the current trend on gait representation seems to
favour model free approaches. Model free approaches con-
struct gait descriptors from the silhouettes extracted from the
video sequences. One of the most adopted model free repre-
sentation is Gait Energy Image (GEI) [3], which represents gait
using a single grey scale image obtained by averaging the sil-
houettes extracted over a complete gait cycle. A representation
that is similar to GEI is Motion Silhouette Image (MSI) [6],
where the intensity value of a pixel is computed as a function
of motion of that pixel in the temporal dimension over all sil-
houettes from a gait cycle. Both the GEI and MSI are compact
representation of gait (a gait cycle is represented using a single
image), which are easy to compute and insensitive to noise in
silhouette extraction. However, they are vulnerable to appear-
ance changes of the human silhouette. Although recent stud-
ies suggest that static shape information is more important than
kinematics for most of the silhouette-based gait recognition ap-
proaches [13, 14], including static appearance features in gait
representation is a double edged sword and may not be the
best choice under covariate condition changes. To overcome
this problem, Shape Variation Based (SVB) Frieze Pattern is
proposed in [9, 8]. Frieze pattern represents the information
contained in a gait sequence by horizontal and vertical projec-
tions of the silhouettes. Its extension, SVB Frieze patterns use
key frame subtraction in order to mitigate the affects of appear-
ance changes on the silhouette. Although it has been shown
that SVB Frieze pattern outperforms GEI and MSI when there
are significant appearance changes, its performance is inferior
when no changes are present. In addtion, compared to GEI and
MSI, it requires a non-trivial temporal alignment process for
each gait cycle and is computationally more expensive.

In this paper we propose a new gait representation which
is termed as Gait Entropy Image (GEnI). Based on computing
entropy, a GEnI encodes in a single image the randomness of
pixel values in the silhouette images over a complete gait cycle.
Dynamic body areas which undergo consistent relative motion
during a gait cycle (e.g. leg, arms) will lead to high gait entropy
value, whereas those areas that remain static (e.g. torso) would
give rise to low values. A GEnI thus captures mostly motion
information and is robust to covariate condition changes that
affect the static areas of human body. Compared with exist-
ing model free gait representations, GEnI shares the strength
of GEI and MSI (i.e. compact, easy to compute and robust to
image noise), and the strength of SVB Frieze Pattern (i.e. ro-



bust to covariate condition changes). In the meantime, it avoids
the aforementioned weakness of existing representations.

We demonstrate the effectiveness of our GEnI representa-
tion through extensive experiments on three public benchmark-
ing datesets: the CASIA gait database [15], the HumanID USF
database [11] and the Southampton SOTON database [12]. Our
results suggest that the proposed gait representation outper-
forms existing methods, especially when there are significant
appearance changes. Our experiments also show clear advan-
tage of GEnI over the alternatives without the assumption on
cooperative subjects [1], i.e. both the gallery and the probe
sets consist of a mixture of gait sequences under different and
unknown covariate conditions.

2 Gait Entropy Image

Gait Entropy Image (GEnI) is computed from normalised sil-
houettes. First, silhouettes are extracted using background sub-
traction from each image frame [11]. Second, the height of
the silhouettes are normalised which is followed by the centre
alignment. Gait cycles are then estimated using the maximum
entropy estimation method in the lower half of the image [11].
Fig. 1 shows examples of normalized silhouettes from the USF,
CASIA and SOTON Datasets. The silhouettes from the indoor
CASIA and SOTON datasets are clean, whereas the silhouette
for the outdoor USF dataset is much more noisy as expected.

(a) USF (b) CASIA (c) SOTON

Figure 1. Example normalised silhouettes from USF, CASIA
and SOTON Datasets.

Given a gait cycle of size-normalised and centre-aligned
silhouettes, a GEnI is computed by calculating Shannon en-
tropy for each pixel in the silhouette images. Shannon entropy
measures the uncertainty associated with a random variable.
Considering the intensity value of the silhouettes at a fixed
pixel location as a discrete random variable, the entropy of this
variable over a complete gait cycle can be computed as

H(x, y) = −
K∑

k=1
pk(x, y) log2 pk(x, y), (1)

where x, y are the pixel coordinates and pk(x, y) is the prob-
ability that the pixel takes on the kth value. In our case the
silhouettes are binary images and we thus have K = 2. A Gait
Entropy Image G(x, y) can then be obtained by scaling and
discretising H(x, y) so that its value ranges from 0 to 255 as
follows.

G(x, y) = (H(x, y)−Hmin) ∗ 255
(Hmax −Hmin) , (2)

where Hmin = min(H(x, y)) and Hmax = max(H(x, y)).
Note that since the Gait Entropy Image is computed using the
frames in a complete gait cycle there is no temporal alignment
problem.

(a) Normal (b) Bag (c) Coat

(d) Left View (e) Right View (f) Briefcase

(g) Normal (h) Bag (i) Coat

Figure 2. Examples of Gait Entropy Images from the three
datasets. Top row CASIA, middle USF and SOTON bottom
row

Fig. 2 shows some examples of Gait Entropy Images from
the three gait datasets. It clearly shows that the dynamic area of
human body, including legs and arms which undergo motions
in relation to other body parts, are represented by higher inten-
sity values in the GEnIs. This is because silhouette pixel values
in the dynamic areas are more uncertain and thus more infor-
mative leading to higher entropy values. In contrast, the static
areas such as torso give rise to low intensity values. Impor-
tantly, it can be seen from Fig. 2 that the effect of appearance
related changes caused by the changes in carrying and cloth-
ing condition is significantly reduced and is only shown in the
outer contour of the human body. It can also be seen from the
GEnIs from the outdoor USF dataset (Fig. 2(d)-(f)) that GEnI
is effective in minimising the effects of shadows. In addition,
Fig. 2 shows that the outer contour of the human body which
contains useful information for distinguishing different people
is preserved.

The characteristics of GEnI, in comparison with the exist-
ing model free gait representations, are highlighted in Fig. 3. In
the top row of Fig. 3, four differnt representations of the same
gait cycle, namely the proposed Gait Entropy Image (GEnI),
Motion Silhouette Image (MSI), Gait Energy Image (GEI), and
Shape Variation Based (SVB) Frieze Pattern, are shown. GE-
nIs and the GEIs of the same person depicted in the top row
but under different carrying and clothing conditions are shown
in the bottom row. It can be seen from Fig. 3 that the diff-
ence (error) between the GEIs of the same person under normal
and carrying conditions (see Fig. 3(c) and (f)) is much bigger



(a) GEnI (b) MSI (c) GEI (d) SVB

(e) Bag GEnI (f) Bag GEI (g) Coat GEnI (h) Coat GEI

Figure 3. GEnI in comparison with alternative model free rep-
resentations.

than that of GEnIs (see Fig. 3(a) and (e)). This suggests that
it would be much harder to recognise that the two GEIs are
from the same person. A similar observation can be obtained
in Fig. 3 when the clothing condition changes (people wearing
bulky coat). MSI would suffer from the same problem of being
sensitive to covariate changes as GEI. Those appearance related
covariate conditions have less effect on SVB Frieze Pattern as
the dynamic areas of human body are given high values (see
Fig. 3(d)). However, compared to GEnI, SVB is much harder
to compute and needs to address the non-trivial gait cycle tem-
poral alignment problem through key frame selection for each
gait cycle. In addition, as indicated by results in [8] and our
experiments (see Sec. 4), the performance of SVB is inferior
to other representations when there are no covariate changes.

3 Gait Recognition using GEnI

Once gait sequences are represented as GEnIs, gait recog-
nition can be performed by matching a probe GEnI to the
gallery GEnI that has the minimal distance to the probe GEnI.
We adopt the subspace Component and Discriminant Analy-
sis (CDA). The CDA is based on Principal Component Anal-
ysis (PCA) and Multiple Discriminant Analysis (MDA) which
seeks to project the original features to a subspace of lower
dimensionality so that the best data representation and class
separability can be achieved simultaneously [4].

Suppose we have N d-dimensional gallery GEnI templates
{x1, ...,xn, ...,xN} belonging to c different classes (individu-
als), where each template is a column vector obtained by con-
catenating the rows of the corresponding GEnI which are sub-
jected to PCA. PCA is an orthogonal linear transformation that
transforms the data to a subspace of dimensionality d̃ (with
d̃ < d). The PCA subspace keeps the greatest variances by
any projection of the data so that the reconstruction error de-
fined below is minimised:

Jd̃ =
N∑

n=1

∥∥∥∥∥∥
m +

d̃∑
j=1

anjej

− xn

∥∥∥∥∥∥
2

(3)

where m is the mean of the data, {e1, e2, ..., ed̃} are a set of

orthogonal unit vectors representing the new coordinate system
of the subspace, anj is the projection of the nth data to ej .
Jd̃ is minimised when {e1, e2, ..., ed̃} are the d̃ eigenvectors
of the data covariance matrix with the largest eigenvalues (in
decreasing order). Now the gallery template xn is represented
as a d̃-dimensional feature vector yn and we have

yn = Mpcaxn = [e1, ..., ed̃]T xn. (4)

PCA is followed by MDA which aims to find a subspace
where data from different classes are best separated in a least
square sense. Different from PCA, MDA is a supervised learn-
ing method which requires the gallery data to be labelled into
classes. The MDA transformation matrix, W maximises

J(W ) = |W
TSBW |

|WTSWW |

where SB is the between-class scatter matrix and SW the
within-class scatter matrix of the training (gallery) data in the
PCA subspace {y1, ...,yn, ...,yN}. J(W ) is maximised by
setting the columns of W to the generalised eigenvectors that
correspond to the c− 1 nonzero eigenvalues in

SBwj = λjSW wj

where wj is the jth column ofW and c is the number of classes
in the training data. Denoting these generalised eigenvectors
as {v1,v2, ...,vc−1}, a gallery template is represented in the
MDA subspace as:

zn = Mmdayn = [v1, ...,vc−1]T yn. (5)

Note that the choice of d̃ is affected by the dimensionality of
the MDA subspace, i.e. c − 1. In particular, SW becomes sin-
gular when d̃ < c or d̃ � c. We therefore set d̃ = 2c in this
paper. Now after three steps of dimensionality reduction, both
the gallery and probe GEnI feature vectors are represented in a
c − 1 dimensional subspace and recognition can be performed
by computing the distance of the probe feature vector to the
gallery feature vectors and match the two with minimal dis-
tance.

4 Experiments

We performed comprehensive experiments on the HumanID
USF dataset, the CASIA dataset and the Southampton Human
ID at a distance (SOTON) datasets to thoroughly evaluate the
performance of Gait Entropy Image as gait representation in
both outdoor and indoor environments. These three datasets
are the largest datasets available for benchmarking gait recog-
nition techniques.

4.1 CASIA Dataset

The CASIA Gait Database [15] is an indoor gait dataset and
comprises of 124 subjects. For each subject there are 10
walking sequences consisting of 6 normal walking sequences
where the subject does not carry a bag or wear a bulky coat



(CASIASetA), 2 carrying-bag sequences (CASIASetB) and
2 wearing-coat sequences (CASIASetC). Each sequence con-
tains multiple gait cycles. The original image size of the
database is 320x240. The first 4 of the 6 normal sequences
were used as the gallery set. The probe set included the rest of
the normal sequences (CASIASetA2), CASIASetB and CASI-
ASetC.

Probe Set TM GEI GEnI
CASIASetA2 97.6% 99.4% 98.3%
CASIASetB 52.0% 60.2% 80.1%
CASIASetC 32.7% 30.0% 33.5%

Table 1. Comparing different approaches on the CASIA
dataset.

The performance of our GEnI representation was measured
using recognition rate and compared with GEI with the iden-
tical recognition algorithm (see Sec. 3), and a direct template
matching based method in [15]. The result is given in Table
1. It can be seen from Table 1 that when the covariate condi-
tions are the same for the probe and gallery set (CASIASetA2),
that is without carrying bag and wearing bulking coat, all three
methods yield very high recognition rate. However, when the
covariate conditions are different, the performance of all three
methods are affected. Nevertheless, in this case our GEnI out-
performs the other two methods, especially for CASIASetB
which corresponds to carrying bag sequences. This indicates
that our GEnI gait representation is more robust given changes
in covarite conditions.

4.2 SOTON Dataset

The SOTON database [12] consists of two datasets: a large
dataset (with 116 subjects) and a small dataset (with 11 sub-
jects). The large dataset consist of 6 subset, numbered as Set A
to F. In this experiment, only Set A was used because it is the
most widely used and our result can be compared with those
reported in the literature. In Set A, all subjects were captured
under the normal and fixed covariate conditions. Only one se-
quence was provided for each subject which contains multiple
gait cycles. We used half of the sequences for each subject for
training (gallery) and the other half for testing (probe). The
small dataset, on the other hand, was designed to investigate
the robustness of gait recognition techniques under changing
covariate conditions, including carrying and clothing. In the
small dataset for each subject one normal sequence (SotonS-
mallSetA), four carrying-bag sequences (SotonSmallSetB) and
one wearing-coat sequences (SotonSmallSetC) were used for
testing. The gallery set for the small dataset was the other nor-
mal sequences in the small dataset, referred to as SotonSmall-
SetAN. The original image size for both datasets is 720x576.

The performance of our GEnI was compared with four ex-
isting model-free gait representation approaches, namely MSI
[6], Frieze Patterns [9], SVB Frieze Patterns [8], and GEI [3].
Table 2 suggests that when the covariate condition is normal

MSI Frieze SVB Frieze GEI GEnI
84.8% 96.0% 84.0% 99.1 99.1%

Table 2. Comparing different approaches on the SOTON large
dataset.

Probe Set GEI GEnI
SotonSmallSetA 100% 100%
SotonSmallSetB 86.3% 86.3%
SotonSmallSetC 72.73% 81.82%

Table 3. Comparing GEI and GEnI on the SOTON small
dataset.

for both the gallery and probe sets, GEI and GEnI outperform
the other three approaches. The performance of SVB Frieze
patterns was particularly weak compared with our approach,
which sacrifices discriminative power for the robustness under
covariate condition changes. Since few results are reported in
the literature on the SOTON small dataset, we only compare
out GEnI with GEI. The result is shown in Table 3. Again,
when there is no covariate condition change, both GEnI and
GEI achieve very good recognition rate. However, the strength
of GEnI becomes clear when the probe set has different covari-
ate conditions which cause appearance changes.

4.3 HumanID USF Dataset

The HumanID USF dataset [11] consists of 122 subjects walk-
ing in an elliptical path captured under outdoor conditions.
This is one of the most challenging dataset around with vari-
able covariate conditions including carrying briefcase, surface,
shoe, view and time.

Probe Set Baseline MSCT+SST GEI HMM GEnI
A 73% 80% 89% 89% 89%
B 78% 89% 87% 88% 89%
C 48% 72% 78% 68% 80%
D 32% 14% 36% 35% 30%
E 22% 10% 38% 28% 38%
F 17% 10% 20% 15% 20%
G 17% 13% 28% 21% 22%
H 61% 49% 62% 85% 82%
I 57% 43% 59% 80% 63%
J 36% 30% 59% 58% 66%
K 3% 39% 3% 17% 6%
L 3% 9% 6% 15% 9%

Total 40.9% 38.3% 50.1% 53.5% 53.5%

Table 4. Comparing the baseline [11], MSCT+SST [7], GEI
[3] and HMM [5] and GEnI on the USF dataset.

For benchmarking purposes 12 experiments A-L have been
designed to test the performance of state of the art algorithms.
These experiments can be grouped into sets based upon a com-



mon factor such as A-C where the common factor is view; for
D-G it is surface; briefcase for H-J and time for K-L. The
dataset provides the silhouettes extracted from the video se-
quences, which were used to compute GEnIs.

Table 4 shows the comparative result obtained on the USF
dataset. It can be seen from Table 4 that our approach outper-
forms the three model-free approaches, namely baseline [11],
MSCT+SST [7], and GEI [3], and comparable to a HMM based
approach [5]. More specifically, compared with the alterna-
tive model-free approaches, GEnI yields much improved result
on H-J where subjects carried briefcases. This is consistent
with the results we obtained on the indoor CASIA and SO-
TON datasets. It is also noted that the performance of GEnI is
slightly worse than GEI on D and G where the surface was
different from that in the gallery set. This is because com-
pared to GEI, the information contained in the dynamic areas is
given more weight (see Fig. 3). This characteristic makes GEnI
more robust to appearance related covariate changes which af-
fect mainly the static areas. However, when the covariate con-
dition changes such as surface and shoe affect the way people
walk (i.e. the gait itself) thus the dynamic areas of human body,
our GEnI will also be more sensitive to these changes because
of its emphasis on the dynamic areas.

4.4 Evaluation without assuming subject cooperation

In the experiments described so far, the gallery set consist of
gait sequences of people under similar covariate conditions.
This is essentially to assume that the data was collected in a co-
operative manner so that those conditions are known a priori.
Nevertheless, this assumption is often invalid in a real-world
application where no subject cooperation can be assured. To
test the effectiveness of GEnI in an uncooperative environment
we put to test our representation under the experimental setup
proposed in [1] where the gallery set is composed of a mix-
ture of gait sequences under different unknown covariate con-
ditions. The CASIA and the SOTON small datasets were used
in this experiment. For the CASIA dataset we selected the first
one third of the sequences from CASIASetC, the second one
third from CASIASetB and the last one third from CASIASetA
for the gallery set. The probe sets consist of the rest of the
dataset and are referred to as CASIASetA2, CASIASetB2 and
CASIASetC2. For the SOTON small dataset the mixed gallery
set contains the first one third of the subjects from SotonSmall-
SetAN the second one third from one of the sequences in So-
tonSmallSetB and last one third from one of the sequences in
SotoSmallSetC. The probe set consists of SotonSmallSetA, So-
tonSmallSetB2 (bag sequences excluding those in the gallery
set) and SotonSmallSetC2 (coat sequences excluding those in
the gallery set) respectively. The probe and the gallery sets are
mutually exclusive.

We compared the performance of GEI and GEnI and the
result is shown in Table 5. Comparing Table 5 with Table 1 and
Table 3, it is evident that under this more challenging and real-
istic experimental setup, the performance of both approaches
drop significantly. However, our GEnI’s performance drops
more gracefully and is still superior to that of GEI.

Probe Set GEI GEnI
CASIASetA2 48.1% 48.1%
CASIASetB2 31.9% 44.4%
CASIASetC2 9.7% 16.1%

SotonSmallSetA 45.45% 45.45%
SotonSmallSetB2 31.82% 63.64%
SotonSmallSetC2 36.36% 36.36%

Table 5. Comparing GEI with GEnI without assuming subject
cooperation.

5 Conclusion
In this paper we have proposed a new gait representation
termed Gait Entropy Image (GEnI). GEnI captures mostly
motion information and is thus robust to covariate condition
changes that affect appearance. Extensive experiments on the
USF HumanID dataset, CASIA dataset and the SOTON dataset
have been carried out to demonstrate that the proposed gait
representation outperforms existing methods, especially when
there are significant appearance changes. It has been noted that
the performance of GEnI is affected when the covariate condi-
tions affect gait itself. The ongoing work includes the inves-
tigation of extracting features from GEnI rather than using it
directly as template in order to make it more robust to circum-
stances where gait itself changes e.g. different shoe, surface
and/or time.
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