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ABSTRACT
There is a natural intuitive match between anonymity and
information theory. In particular, the maximal anonymity
loss in anonymity protocols can be matched to the informa-
tion theoretical notion of channel capacity.

However, there is also a significant mismatch between the
theories and reality: current theories can only characterize
channel capacity based upon certain assumptions of symme-
try, which are rarely satisfied in the real world.

This paper aims to resolve this mismatch by appealing to
powerful mathematical techniques. A generic methodology
using Lagrange multiplier method is proposed to character-
ize channel capacity in anonymity protocols.

This Lagrangian approach is proved to be able to gen-
eralize previous work on the channel capacity of protocols.
Further, we present analyses on three well known protocols,
namely Dining Cryptographers, Crowds and Onion Routing
to demonstrate the application of our methodology.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol verification; G.1.6
[Optimization]: Constrained optimization; H.1.1 [Systems
and Information Theory]: Information theory

General Terms
Security

Keywords
Anonymity, Lagrange multipliers, quantitative analysis

1. INTRODUCTION
Anonymity protocols are playing an increasingly impor-

tant role in many key fields, such as electronic communica-
tion, auction, payment and voting. They are designed to
enhance the information privacy of legitimate users while
performing certain activities. For example, electronic vot-
ing protocols try to protect the confidentiality of individual
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votes, while anonymous routing protocols (e.g. Onion Rout-
ing [24] and Crowds[25]) try to hide the information of “who
is communicating with who” when users carry out web ac-
tivities.

However, these protocols can not completely prevent the
loss of anonymity, but instead try to reduce them. For ex-
ample, if there are a number of adversaries within the onion
routing network then a substantial chance exists that the
attacker can infer something about the sender. Therefore
it is important not only to realize such information leakage,
but also to quantify the loss of anonymity.

In this paper, we analyze the anonymity loss over a covert
channel, whose input is the “anonymous” events and out-
put is the “observable” events. Then the channel capacity
represents exactly the maximal anonymity loss.

An important recent work [4] characterizes maximal loss
of anonymity using information theoretical results on binary
channels, however its applicability is limited to protocols
satisfying certain symmetry properties. Indeed, and this is
the main motivation of this paper, real world cases rarely
satisfy such properties. For example, for anonymity rout-
ing protocols the symmetry assumptions will amount to “all
nodes having the same probability of being the originator of
a message”, which is totally inaccurate.

In contrast, we present a methodology using Lagrange
multiplier method to solve the channel capacity by maximiz-
ing the anonymity loss function. This Lagrangian method-
ology introduces a generic solution which does not require
the symmetry assumptions. It also enables to reflect some
interesting relationships in an anonymity system, for ex-
ample, “Google is 100 times more likely to send a message
than server X, Y and 1000 times more likely than any other
server”. These kind of relationships can be easily represented
by constraints when solving the Lagrangian equations.

The rest of the paper is organized as follows: Section 2
briefly reviews the Lagrange multiplier method. Section 3
defines the quantification of anonymity loss in protocols.
Section 4 introduces our methodology, applying Lagrange
method to the channel capacity problem; in Subsection 4.2
we prove that the characterization of channel capacity of
symmetric protocols in [4] is a special case of our method.
Section 5 and 6 apply the theory to the Dining Cryptog-
raphers and Crowds protocols respectively and present the
solution to their channel capacity in the asymmetric set-
ting. Section 7 presents a use-case study of Onion Routing,
where quantitative measurement is coupled with studies of
the impact of the connectivity and path-length settings in
the anonymous routing protocol. Section 8 concludes the



paper and outlines our future work.

1.1 Contributions
This paper introduces a methodology for quantifying max-

imal loss of anonymity in anonymity protocols.
The idea is straightforward but not trivial. We use the

classical Lagrange multiplier method to solve a maximiza-
tion problem that obtains the channel capacity by maximiz-
ing the anonymity loss function. With this methodology we
preliminarily solved a difficult problem in information the-
ory (pg. 191 from [6]): the channel capacity of asymmetric
channels.

Moreover, our approach is both generic and practical. It
works for almost any anonymity protocol to enable charac-
terization of the channel capacity between anonymous events
and public observations. Especially, in contrast to previous
studies it elegantly deals with asymmetric anonymity proto-
cols. Such asymmetric cases are, as argued above, of great
practical significance.

Hence the techniques introduced in this paper are also an
important contribution to the field: they are not incremen-
tal to any previous work in this area and, to the best of
our knowledge, this is the first-ever application of this kind
of mathematical techniques to the quantitative analysis of
protocols.

Further, although the paper focuses on the general method-
ology, our case studies show insight into the solution of in-
teresting problems in the network security community, e.g.
how to optimize protocol parameters (like path length) to
enhance the anonymity in an onion routing network.

1.2 Related Works
The mainstream approach to analysis of anonymity pro-

tocols is probabilistic, as proposed by M. Reed, P. Syverson
and D. Goldschlag [24]. There are many existing works in
this topic: Guan et al. [17] measured the probability of
a sender being discovered in an anonymous communication
system, and quantified the impact from path length, path
topology and the number of compromised nodes. Shmatikov
and Wang described anonymity in protocols with entropy,
and applied Zipfian distributions to estimate the average
entropy in a somehow more realistic model [29]. Wright,
Adler, Levine and Shields [28] quantitatively analyzed and
cross-compared several anonymity protocols according to
certain attacks. Recently, J.Feigenmbaum, A. Johnson and
P. Syverson in [14] proposed a probabilistic analysis of the
anonymity in Onion Routing using a black-box model. There
also have been increasing interest on the problem of sta-
tistical attacks. Danezis, Diaz and Troncoso [10] analyze
a two-sided statistical disclosure attack considering peering
and timing information of both initial messages and replies.
Pashalidis and Meyer [23] show an attack that links trans-
action history with pseudonym in pseudonym systems.

Theoretically, a probabilistic approach would be able to
work out an expectation of anonymity in certain models; in
comparison, this paper is toward finding a general method-
ology to quantify the maximal loss that may occur, which
is an even more important problem but has not yet been
satisfactorily solved.

The closest work to ours is by Chatzikokolakis, Palamidessi
and Panangaden [4]. Although the work is inspiring and
shares the same background with this paper, their method-
ology only works for “symmetric protocols” and in this sense

is a particular case of our work. Further discussions com-
paring this work with ours will be presented in Subsection
3.3 and 4.2.

Other recent information theoretical approaches to anony-
mity analysis include [12] and [27]. Also, Shmatikov applied
a probabilistic model checking tool Prism to quantitatively
analyze anonymity systems [29]. Another interesting work
is the one by Franz, Meyer and Pashalidis [15] who analyze
anonymity leakage cause by particular “hints” that an ad-
versary may obtain from the context. However, this work
is not general and again assumes a uniform distribution on
the anonymous events.

The use of conditional mutual information in the context
of information leakage has been pioneered by Gray, Denning,
McLean and Millen [16, 11, 9, 19, 20]. More recent works
using conditional mutual information to measure informa-
tion leakage have been by Clark, Hunt, Malacaria, Boreale
and Chen [7, 8, 22, 2]. These works support this paper from
the theory aspect.

In previous literature there was also a general method for
solving the problem of channel capacity, namely the Blahut-
Arimoto iterative method [6]. While our technique provides
a solution via a system of equations, the Blahut-Arimoto
method iteratively searches for an approximate solution.

Lagrange multipliers are used by Malacaria and Chen [21]
to compute the maximum leakage of deterministic programs.
Although sharing similar techniques in between, there is also
a significant technical novelty in this paper to cope with the
nondeterministic nature of anonymity protocols.

2. LAGRANGE METHOD
We will illustrate the use of the Lagrange method by a

simple example below. For formal definitions and a tutorial,
we refer the reader to the literature [6, 18].

2.1 A simple example
Suppose we want to maximize the following function:

10− (x− 5)2 − (y − 3)2

It is easy to see that the maximum is achieved by x = 5, y =
3.

Now a constraint x+y = 1 is added to the above problem.
Then the above solution is no longer correct. The Lagrange
multiplier method combines the original function with the
constraint together in a new function F

10− (x− 5)2 − (y − 3)2 + λ(x + y − 1)

where λ is a number which indicates the weight associated
with the constraint, for example ignoring the constraint is
equivalent to setting λ = 0.

The term λ is the Lagrange multiplier and the Lagrange
technique consists in finding the maximum of the function
F by differentiating on x, y and λ.

In this example the derivatives generate the equations:

−2x + 10 + λ = 0, −2y + 6 + λ = 0, x + y − 1 = 0

The first two equations imply x = y + 2 and by replacing
this in the last equation we get

y + 2 + y = 1, i.e. y = −1

2



It is then easy to derive the values for the other variables
i.e.

x =
3

2
, λ = −7

Now the values x = 3
2
, y = − 1

2
do satisfy the constraint.

They are also the values that maximize the original function

10− (x− 5)2 − (y − 3)2

for all values satisfying the constraint. The function evalu-
ated on this point has value -14.5. If we take other values
satisfying x+y = 1 we can only get lower results, e.g. 0.5, 0.5
results in -16.5 and 1, 0 results in −15.

2.2 Lagrange Theorem
In a general setting let L(x, λ) be the Lagrangian of a

function f subject to a family of constraints C1≤i≤m (where
Ci ≡ gi(x) = bi), i.e.

L(x, λ) = f(x) +
X

1≤i≤n

λi(gi(x)− bi)

The basic result justifying Lagrange multipliers is the fol-
lowing theorem:

Theorem 2.1. Assume the vector x∗ = (x∗1, . . . , x
∗
n) max-

imizes (or minimizes) the function f(x) subject to the con-
straints (gi(x) = bi)1≤i≤m. Then either

1. the vectors (∇gi(x
∗))1≤i≤m are linearly dependent, or

2. there exists a vector λ∗ = (λ∗1, . . . , λ
∗
m) such that

∇L(λ∗, x∗) = 0 i.e.

(
δL

δxi
(x∗, λ∗) = 0)1≤i≤n, (

δL

δλi
(x∗, λ∗) = 0)1≤i≤m,

where ∇ is the gradient.

The reverse implication of the theorem is valid when some
properties are satisfied. Roughly speaking a maximum is ob-
tained when f is concave and a minimum when f is convex.

The previous example is obtained by the following instan-
tiations:

f(x1, x2) = 10− (x1 − 5)2 − (x2 − 3)2, C ≡ x1 + x2 = 1

In this paper we will assume that the constraints Ci are
“statistics” or expectations , i.e. linear expressions in the
form of X

j

xjfj,i = Fi

More generally, non-linear constraints need to satisfy addi-
tional properties of concavity (convexity) for the theory to
work.

3. ANONYMITY PROTOCOLS

3.1 Modeling Anonymity Protocol
As presented in [4], anonymity protocols can usually be

modeled in a probabilistic setting. We consider an anony-
mity protocol as a triple

〈A,O, φ〉

whereA is a set of anonymous events, andO is a set of obser-
vations. To introduce probabilities we associate the random

o1 o2 . . . on

h1 φ1,1 φ2,1 . . . φn,1

h2 φ1,2 φ2,2 . . . φn,2

... . . . . . . . . . . . .
hm φ1,m φ2,m . . . φn,m

Table 1: Protocol matrix

variables h for A and O for O respectively. Then, φ ex-
presses the conditional probability between the two random
variables.

The “secret” in this model is the information of which
event in A (i.e. which input) caused the observed observa-
tion in O. We denote members of A as hi ∈ A.

The above triple can be represented by the protocol ma-
trix shown in Table 1. Rows describe elements of A, columns
describe elements of O and the value at position (hi, ok) is
the conditional probability φk,i. This is the chance of ob-
serving ok given hi as input.

3.2 Channel Capacity
The loss of anonymity of a protocol can be defined as the

difference in anonymity before and after the observations,
i.e. in information theoretical terms this amount to the mu-
tual information1 between h and O. Formally, it is defined
by the well known information theoretical equation:

Definition 3.1. The anonymity loss of a protocol
〈A,O, φ〉 is defined as

I(h; O) = H(h)−H(h|O)

where H(h) is the uncertainty of anonymous events in A
and H(h|O) is the remaining uncertainty after observing O.

Consider the following simple example: n voters vote for
Clinton or Obama.

• Observations: n ballots which are split in c votes for
Clinton and o votes for Obama.

• Anonymity loss: how much information about the iden-
tity of a voter for Clinton (or for Obama) is revealed
by the observations c and o.

If O is considered as an output set, the triple 〈A,O, φ〉
can be regarded as a probabilistic channel. Different distri-
butions on h will result in different anonymity losses I(h; O).
What people are interested in is the worst case that can hap-
pen in the protocol: what is the maximum value of I(h; O)?
We use the definition for channel capacity to describe it.

Definition 3.2. The channel capacity of a protocol
〈A,O, φ〉 is defined as

C = max I(h; O)

Up until now we assumed that we know nothing about
the anonymous events A. However as pointed out in [4] in
most cases some information about the anonymous events
is allowed to be revealed by the design of the protocol. In
this case there is some knowledge R about the anonymous

1For information theory background and notation we refer
the reader to [6] or for short summary to [22, 21]



events A, for example in a voting protocol that could be the
number of votes for a candidate. This observation leads to
an extension of the two previous definitions.

Definition 3.3. The conditional loss of anonymity of a
protocol 〈A,O, φ〉 with given knowledge R is defined as

I(h; O|R) = H(h|R)−H(h|O, R)

Definition 3.4. The channel capacity of a protocol
〈A,O, φ〉 with given knowledge R is defined as

C = max I(h; O|R)

In the special case when R is a function of both h and O,
conditional loss of anonymity can somehow be simplified to
definitions 3.1 and 3.2.

3.3 Previous Result
It has been shown in previous works that matrices with

some sort of symmetry allow a nice characterization of chan-
nel capacity [4].

A matrix is symmetric if all rows are permutations of each
other and all columns are also permutations of each other.
A matrix is weakly symmetric if all rows are permutations
of each other and the column sums are equal.

A matrix is partially symmetric (or weakly partially sym-
metric) if some columns are constant (possibly with different
values in each column) and the rest of the matrix is sym-
metric (or weakly symmetric).

The theorem below has been derived for weakly symmetric
matrices [4]:

Theorem 3.5. Chatzikokolakis, Palamidessi and
Panangaden Theorem: Given a protocol described by a
weakly symmetric matrix, its channel capacity is given by

C = ps log
|Os|
ps

−H(rs)

where Os is the set of symmetric output values, rs the sym-
metric part of a row of the matrix and ps is the sum of rs

This bound is achieved by choosing the uniform input dis-
tribution which is hence the channel distribution.

In Subsection 4.2 we will show that Theorem 3.5 can be
derived from Proposition 4.1.

4. CHANNEL CAPACITY USING LAGR-
ANGE MULTIPLIERS

We are interested in computing the channel capacity as
defined in Definition 3.2 and Definition 3.4. In the following
subsections, the Lagrange method will be applied to derive
the channel capacity as the solution to the maximization
problems.

4.1 Channel Capacity for Anonymity Proto-
cols

Firstly, we are going to apply the Lagrange theorem on
anonymity loss of protocols 〈A,O, φ〉 without given knowl-
edge R. We are hence interested in channel capacity:

max I(h; O)

Formally, we want to maximize the function

f(h) = I(h; O)

Convention:
Each anonymous event hi ∈ A is associated to an observa-

tion with a given probability µ(hi). To ease the exposition
we will use hi both for the event hi and for its probability
µ(hi), similarly for ok. The context will disambiguate what

meaning is intended. Ôi will denote the sets of observations
associated to hi, i.e.

Ôi = {os|φs,i 6= 0}

We will use the following properties of φk,iX
i

hiφk,i = ok;
X

k

φk,i = 1

Notice thatX
k

ok =
X

k

(
X

i

hiφk,i) =
X

i

hi(
X

k

φk,i) =
X

i

hi = 1

Constraints present the settings of anonymous events A
in protocols. Here we use C as a set of constraints. Since
we are considering a probability distribution a constraint al-
ways assumed to be present is C0 ≡

P
hi = 1. In the real

world, this constraint is not always sufficient. For instance,
in the voting example, the people from some voting area
might have a higher probability to vote for Clinton than
others. Additional constraints can be introduced to spec-
ify these conditions, represented by relationship among his.
Formally, as presented in the last paragraph of Section 2, a
constraint (Ck)k∈K associated to hi can be decribed asX

k

fi,khi − Fk = 0

As described in Section 2.2, the Lagrange method is used
to solve this optimization problems with constraints. Fol-
lowing Theorem 2.2, the theorem below solves the distribu-
tion of A which will achieve the channel capacity with the
constraints. All computations and proofs in this section are
omitted because of space limitation.

Theorem 4.1. The probabilities hi maximizing I(h; O)
subject to the family of constraint (Ck)k∈K are given by solv-
ing in hi the equationsX

os∈Ôi

φs,i ln(
φs,i

os
)− 1 +

X
k

λkfi,k = 0

and the constraints (Ck)k∈K .

Using this result the channel capacity in this probabilistic
channel can be computed.

Proposition 4.2. The channel capacity is given byX
i

hi(1−
X

k

λkfi,k)d

where the hi’s are given by theorem 4.1. Moreover, in the
case of the single constraint

P
i hi = 1 the above can be

simplified to

d(1− λ0)

where d = 1
ln 2

.

The Theorem 4.1 and Proposition 4.2 can not only be ap-
plied in the protocols but also in general probabilistic chan-
nels. The following example applies them to the solution of
a classical channel capacity problem.



Example: binary symmetric channel
Consider the classic binary symmetric channel (p. 186

[6]) where there are two values for the secret 0,1 and two
possible observations 0,1; the probability of the secret being
equal to the observation is 1− p while the probability of the
secret being different from the value observed is p:

φ0,0 = φ1,1 = 1− p

φ0,1 = φ1,0 = p

Using
P

i hiφk,i = ok we can get

o0 = (1− p)h0 + ph1 o1 = ph0 + (1− p)h1

Then using Theorem 4.1 we have the equation system:

−(1− p) ln(
o0

1− p
)− p ln(

o1

p
)− 1 + λ0 = 0

−p ln(
o0

p
)− (1− p) ln(

o1

1− p
)− 1 + λ0 = 0

By solving it we end up with

h0 = h1 =
1

2
λ0 = ln(

1

2
)− p ln(p)− (1− p) ln(1− p) + 1

The channel capacity is then

d(1− λ0) = 1−H(p)

which coincide with the classical results on binary symmet-
ric channels [6].

Further, when there is some given knowledge R, then the
channel capacity becomes:

max I(h; O|R)

To solve it, we start by extending φk,i to φk,i,j to describe
the conditional probability of observing ok given hi and Rj .
Formally,

(hi, Rj , ok) = (hi, Rj)φk,i,j

From the equation above we have

X
i,j

(hi, Rj)φk,i,j = ok;
X

k

φk,i,j = 1

Notice thatX
k

ok =
X

k

(
X
i,j

(hi, Rj)φk,i,j)

=
X
i,j

(hi, Rj)(
X

k

φk,i,j)

=
X
i,j

(hi, Rj)

= 1

Then we use the Lagrange method to figure out the maxi-
mum value for I(h; O|R) with the set of constraints C. Here
a constraint (Ck)k∈K associated to (hi, Rj) can be formally
expressed as X

k

fi,j,k(hi, Rj)− Fk = 0

The Lagrange function becomes:

L((hi, Rj)) = I(h; O|R) + λk(
X

k

fi,j,k(hi, Rj)− Fk)

The difference to the previous computation is that when
we do derivations, we are doing them on the pair (hi, Rj)
instead of the single variable hi. This is because O is as-
sociated with h and R. The concluding theorem is shown
below.

Theorem 4.3. The probabilities (hi, Rj) resulting in max-
imum value of I(h; O|R) subject to the family of constraint
(Ck)k∈K are given by solving in (hi, Rj) the equationsX

os∈Ôi,j

φs,i,j ln(
φs,i,j

(os|Rj)
)− 1 +

X
k

λkfi,j,k = 0

Then using the probabilities (hi, Rj) we can work out the
channel capacity.

Proposition 4.4. The channel capacity is given byX
i,j,k

(hi, Rj)(1−
X

k

λkfi,j,k)d

where (hi, Rj)’s are given by theorem 4.3.

4.2 Deriving Theorem 3.5
In this section we are going to show that Theorem 3.5

from [4] is a special case of our Theorem 4.1.
By Proposition 4.1 the probabilities are given by solving

hi in the equations

X
os∈Ôi

φs,i ln(
φs,i

os
)− 1 +

X
k

λkfi,k = 0 (1)

In our setting, a weakly symmetric matrix means that
there exists a subset of indices K such that given any k ∈ K,
for all i, j, φk,i = φk,j . This set is denoted by On in [4]. For
all other indices s 6∈ K we have for all i, j, (φs,i)s 6∈K is a
permutation (with no 0 element) of (φs,j)s 6∈K : these are the
“symmetric output value”. To use the same notations as [4],
we write rs for (φs,i)s 6∈K and ps for

P
s 6∈K φs,i. Also the

above conditions imply that for all i, j Ôi = Ôj . We denote

this (unique) set as Ô.
As in [4], assuming that there are not additional con-

straints apart from
P

i hi = 1 then equation (1) becomesX
os∈Ô

φs,i ln(
φs,i

os
)− 1 + λ0 = 0 (2)

Using the fact that

s ∈ K ⇒ φs,i = (os|hi) = os

It is easy to show thatX
os∈Ô

φs,i ln(
φs,i

os
)− 1 + λ0

= −
X
s 6∈K

φs,i ln(os)− ln(2)H(rs)− 1 + λ0



where ln(2) converts log in the entropy formula into the nat-
ural logarithm ln. We hence derive the system of equations

(
X
s 6∈K

φs,i ln(os) = ln(2)H(rs) + 1− λ0)i∈N

Noticing that the right-hand-side is a constant and that
for all i, j, (φs,i)s 6∈K is a permutation of (φs,j)s 6∈K we deduce
that

∀i, j 6∈ K, oi = oj

and since ps =
P

s 6∈K φs,j we derive

∀i 6∈ K, oi =
ps

k
, k = |{i 6∈ K}|

We have hence the equationX
s 6∈K

φs,i ln(
k

ps
) = ln(2)H(rs) + 1− λ0

i.e.

ps ln(
k

ps
)− ln(2)H(rs) = 1− λ0 (3)

Using Proposition 4.2, replacing λ0 in d(1− λ0) with the
left hand side of equation (3) we finally arrive at

1

ln(2)
(ps ln(

k

ps
)− ln(2)H(rs)) = ps log(

k

ps
)−H(rs)

which is Theorem 3.5.
However, if we consider protocols which can be repre-

sented by weakly symmetric matrices but the inputs of the
protocol has some constraints in addition to

P
i hi = 1 then

Theorem 3.5 is no longer valid.
Recall that when we derive the system of equations

(
X
s 6∈K

φs,i ln(os) = ln(2)H(rs) + 1−
X

k

λkfk,i)i∈N

The right hand side of the equation is not a constant any
more; in particular we cannot derive that

∀i, j 6∈ K, oi = oj

Therefore Theorem 3.5 is no longer valid.
In the following three sections we will study three well

known anonymity protocols, namely Dining Cryptographers
[3], Crowds [25] and Onion Routing [24]. Our methodology
will be applied to both symmetric and asymmetric versions
of these protocols, in which the results of the symmetric
versions are in common with [4]. Furthermore, our method-
ology also provides accurate results when the symmetry as-
sumption is not satisfied. We will show how the solutions
are derived, as well as what this implies to improve the ano-
nymity of these protocols.

5. DINING CRYPTOGRAPHERS

5.1 Protocol description
Three cryptographers are dining on a round table. After

the dinner, the master decides who will pay (he or one of the
cryptographers), and informs each cryptographer individu-
ally about whether he will pay or not. The cryptographers
wish to know whether the dinner is payed by one of them or

h Coin O P
100 000, 111 NYY p3 + (1− p)3

(h1) 001, 110 YYN p2(1− p) + (1− p)2p
010, 101 NNN p2(1− p) + (1− p)2p
011, 100 YNY p2(1− p) + (1− p)2p

010 000, 111 NYY p2(1− p) + (1− p)2p
(h2) 001, 110 YYN p2(1− p) + (1− p)2p

010, 101 NNN p2(1− p) + (1− p)2p
011, 100 YNY p3 + (1− p)3

001 000, 111 NYY p2(1− p) + (1− p)2p
(h3) 001, 110 YYN p3 + (1− p)3

010, 101 NNN p2(1− p) + (1− p)2p
011, 100 YNY p2(1− p) + (1− p)2p

000 000, 111 YYY p3 + (1− p)3

(Master) 001, 110 NYN p2(1− p) + (1− p)2p
010, 101 YNN p2(1− p) + (1− p)2p
011, 100 NNY p2(1− p) + (1− p)2p

Table 2: The Dining Cryptographers protocol

the master, but they also wish to keep the anonymity if one
of them is the payer.

Chaum’s solution is the following: each cryptographer
flips a coin privately and tells the result to the cryptographer
on his right. Then each of them compares the coin to his
left and his own coin. Each cryptographer will announce N
(meaning “disagree”) if the two coins are different (head and
tail) or Y (meaning “agree”) if the two coins are the same
(head and head or tail and tail). However, if one of the
cryptographers is the payer, he will announce the opposite.
If there is an even number of “disagree”s then the Master
has paid. Otherwise, the bill has been paid by one of the
cryptographer, but the identity of the payer is not revealed
to any external observer or the other cryptographers.

5.2 Anonymity: symmetric case
We denote the three cryptographers sitting around the

table as A, B, C. Then the table can be regarded as a ring:
A→ B → C → A
The coin takes value from {0, 1}; we write p for the prob-

ability of the coin being 0 and 1−p for 1. Then the protocol
is summarized in Table 2.

The first column represents the master’s choice. “000”
method the master pays the bill while “100, 010, 001” means
one of the cryptographer pays. The position of “1” repre-
sents the cryptographer who pays the bill. It can be seen
from the table that the output set for “{100, 010, 001}” ( i.e.
one of the cryptographers pays the bill ) is “{NNN, YNY,
NYY, YYN}”. The output set for “000” (i.e. master pays
the bill) is “{YYY, NYN, YNN, NNY}”. By observing the
outputs one can infer whether the master or the cryptog-
rapher pays the bill because the number of “N” is even in
the master’s output set. Furthermore we define the secret
as “which cryptographer pays the bill”, i.e. {100, 010, 001}
and denote it as h1, h2, h3.

5.2.1 Lagrange method
The conditional probabilities φ can be written as the weakly

symmetric matrix shown in table 3, where

a = p3 + (1− p)3, b = p2(1− p) + (1− p)2p

All anonymous events may generate the same observa-



oNYY oYYN oNNN oYNY

h1 a b b b
h2 b b b a
h3 b a b b

Table 3: Probabilities for Dining Cryptographers

tions, i.e.

Ô1 = Ô2 = Ô3 = {NYY, YYN, NNN, YNY}

This implies the following probabilities for each observa-
tion:

oNYY = {ah1 + bh2 + bh3}, oYYN = {bh1 + bh2 + ah3}
oNNN = {bh1 + bh2 + bh3}, oYNY = {bh1 + ah2 + bh3}

From this and from Theorem 4.1 we deduce that the channel
capacity is given by solving the following equations:

−a ln(
oNYY

a
)− b ln(

oYYN

b
)−B − b ln(

oYNY

b
)− 1 + λ0 = 0

−b ln(
oNYY

b
)− b ln(

oYYN

b
)−B − a ln(

oYNY

a
)− 1 + λ0 = 0

−b ln(
oNYY

b
)− a ln(

oYYN

a
)−B − b ln(

oYNY

b
)− 1 + λ0 = 0

where the term B = −b ln( oNNN
b

) = −b ln( bh1+bh2+bh3
b

) = 0

(because bh1+bh2+bh3
b

= 1) can be eliminated. There is only
one λ-term in these equations which is λ0, and there is only
one constraint considered, which is h1 + h2 + h3 = 1.

Let us start with an example where the protocol provides
perfect anonymity. This is the case if the coin-toss is fair;
i.e. p = 1

2
and therefore a = b = 1

4
. As result of that, the

three equations reduce to one:

ln(h1 + h2 + h3)− 1 + λ0 = 0

and because h1 + h2 + h3 = 1, we get λ0 = 1. Now we have
the means to calculate the channel capacity by Proposition
4.2. By plugging in the values of λ0 and hi we conclude
that the channel capacity is 0. Hence there is no loss of
anonymity.

For the extreme cases, i.e. when “p = 0” and “p = 1”,
this results in a = 1 and b = 0. The three equations above
reduce to

ln(hi)− 1 + λ0 = 0

This system has only one solution, namely

h1 = h2 = h3 =
1

3

which results in a channel distribution of log 3 bits, i.e. the
identity of the payer is revealed.

To generalize, with given p, the channel distribution can
be solved as above by the only constraint of

P
i hi = 1, and

the channel capacity of the Dining Cryptographer protocol
can be calculated by

(1− p + p2) log 3− (1− 3p + 3p2) log(
1− p + p2

1− 3p + 3p2
)−

2(p− p2) log(
1− p + p2

p− p2
)

5.3 Anonymity: asymmetric case
Suppose we now add additional constraints for the dis-

tribution of the secret. For example, if the master is ten
times more likely to choose the first cryptographer than the
second, the information can be represented by a constraint:

h1 = 10h2

using this constraint and from Theorem 4.1 we get the
following equations:

− a ln(
oNY Y

a
)− b ln(

oY Y N

b
)− b ln(

oY NY

b
)− 1 + λ0 + λ1 = 0

− b ln(
oNY Y

b
)− b ln(

oY Y N

b
)− a ln(

oY NY

a
)− 1 + λ0 − 10λ1 = 0

− b ln(
oNY Y

b
)− a ln(

oY Y N

a
)− b ln(

oY NY

b
)− 1 + λ0 = 0

Using the constraints

h1 = 10h2,
X

i

hi = 1

this system of equations is simplified to:

−(1− 3b) ln(A1)− b ln(A2)− b ln(A3) = B + 1− λ0 − λ1

−b ln(A1)− b ln(A2)− (1− 3b) ln(A3) = B + 1− λ0 + 10λ1

−b ln(A1)− (1− 3b) ln(A2)− b ln(A3) = B + 1− λ0

where A1 = 10h2−40bh2 + b; A2 = 1−3b−11h2 +44bh2;
A3 = h2 − 4bh2 + b; B = −(1− 3b) ln(1− 3b)− 2b ln b.

These equations only include three unknown variables λ0,
λ1 and h2. (b is associated with p which is given.)

By solving these equations the channel capacity is derived
using Proposition 4.2.

The channel capacities for Dining Cryptographers in the
symmetric (unconstrained) case, and in the case with the
additional constraint h1 = 10h2 are plotted in Figure 1, as
a function of p.
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Figure 1: Dining Cryptographers: channel capacity

For both versions of the protocol, when p is 0 or 1 the
channel capacity is equal to the entropy of the secret. When
the coin becomes fairer, the channel capacity decreases. As
p increases from 0 to 0.5, the channel capacity decreases to
0. However, the constraint h1 = 10h2 implies there is less
uncertainty in the initial secret, hence the channel capacity
when p = 0 is lower compared to the unconstrained case.



6. CROWDS

6.1 Protocol description
The Crowds protocol by Reiter and Rubin [25] enables

anonymous Web browsing for end users. The main idea is
to hide each user’s identity by routing them randomly within
a group of similar users.

The routing paths are set up using the following protocol:

• The sender selects a crowd member at random (possi-
bly itself), and forwards the message to it, encrypted
by the corresponding pairwise key.

• The selected member, which now acts as router, flips a
coin. With probability 1− pf , it delivers the message
directly to the destination. With probability pf , it
selects a crowd member at random (possibly itself) as
the next router in the path, and forwards the message
to it, re-encrypted with the appropriate pairwise key.
The next router then repeats this step.

Theoretically, even if a local eavesdropper or a corrupt
group member observes a message sent by a particular user,
it can not be sure whether the user is the actual sender, or is
routing another user’s message. Previous result states that,
if the crowd contains n members, of which c are corrupt,
the minimum value of pf is required to satisfy the following
condition to guarantee the probable innocence of the real
sender on any single path [4] (i.e., the probability that the
real sender appears on the path immediately before a corrupt
member is less than 0.5):

n ≥ pf

pf − 1
2

(c + 1)

6.2 Anonymity: symmetric case
Suppose there are n normal users and c corrupted nodes in

a network. The attacker is interested in finding the identity
of the sender, which is the secret; an observation O is the
node being observed (by a corrupted node or the server) to
deliver the message. The observations and their probabilities
are given in Table 4 where we use numbers from 0 to n−1 to
identify the normal users. From Table 4, when the secret is
hi, the probability of observation of hi is (1−pf )+pf

c+1
n+c

, in

which (1−pf ) comes from the server and pf
c+1
n+c

comes from

corrupt nodes. This is because hi has the probability c+1
n+c

to choose the corrupt node to forward the request to; the
probability of other observations hj(j 6= i) is pf

1
n+c

because
they have the same probability to be observed in the routing.

6.2.1 Lagrange method
Now we consider to solve the general case using Lagrange

method.
By definition φ is:

∀hi : φi,i = (1− pf ) + pf
c + 1

n + c

∀j 6= i : φi,j = pf
1

n + c

Using the relationship between o and φ we get:

oi =
X

0≤j≤n−1,i6=j

hjφi,j + hiφi,i

h O P
0 0 (1− pf ) + pf

c+1
n+c

1 pf
1

n+c

2 pf
1

n+c

3 pf
1

n+c

. . . pf
1

n+c

n-2 pf
1

n+c

n-1 pf
1

n+c

. . . . . . . . .
n-1 0 pf

1
n+c

1 pf
1

n+c

2 pf
1

n+c

3 pf
1

n+c

. . . pf
1

n+c

n-2 pf
1

n+c

n-1 (1− pf ) + pf
c+1
n+c

Table 4: Crowds: observations and probabilities

This can be rewritten into:

oi = {
X

0≤j≤n−1,i6=j

(pf
1

n + c
)hj + ((1− pf ) + pf

c + 1

n + c
)hi}

From this and from Theorem 4.1 we have the following
system of n equations:

−a ln(
o0

a
)− b ln(

o1

b
)− · · · − b ln(

on−1

b
)− 1 + λ0 = 0

−b ln(
o0

b
)− a ln(

o1

a
)− · · · − b ln(

on−1

b
)− 1 + λ0 = 0

. . .

−b ln(
o0

b
)− b ln(

o1

b
)− · · · − a ln(

on−1

a
)− 1 + λ0 = 0

where a = (1− pf ) + pf
c+1
n+c

; b = pf
1

n+c
.

This above equations system only admits one solution

h0 = h1 = h2 = · · · = hn−1 =
1

n

The channel capacity is given by

I(h; O) = log n−H(a, b, b, . . . , b| {z }
n−1

)

To compare with the symmetric case in [4], we take their
parameters n = 50, c = 10 to demonstrate our result. Thus
from the formula above, the channel capacity is

log 50 + (1− 49pf

60
) log(1− 49pf

60
) +

49pf

60
log

pf

60

When the forwarding probability pf increases, the channel
capacity decreases because the attacker has less probability
to know who is the sender.

6.3 Anonymity: asymmetric case
In a real world network some users are more active than

others. As an example, we study a network with 50 normal
users and 10 corrupt ones, where the first four users hold
ninety percent of the total probability of sending a message.
We further assume that among these four users, the first



user’s probability of sending a message is the sum of the
second and the third. Because the nonactive users only have
very little impact in the whole network, we assume that
these only share the remaining ten percent with uniform
distribution. Hence the constraints are:

h0 + h1 + h2 + h3 = 0.9, h0 = h1 + h2

h4 = h5 = · · · = h49 =
0.1

46

These constraints imply
P

0≤i≤49 hi = 1. Then we use equa-
tion 4.1 we deduce the following system of 50 equations:

A0 + λ0 + λ1 = 0

A1 + λ0 − λ1 = 0

A2 + λ0 − λ1 = 0

A3 + λ0 = 0

Ak + λ2 = 0, (4 ≤ k ≤ 49)

where

Ai = −a ln Wi − b
X
j 6=i

ln Wj + a ln a + 49b ln b− 1

and

Wr = ahr +
X
s 6=r

bhs, 0 ≤ r ≤ 49

Because A1 = A2 we deduce that

h1 = h2

Using

h0 + h1 + h2 + h3 = 0.9, h0 = h1 + h2

We can define h0, h2, h3 in terms of h1 as

h0 = 2h1, h2 = h1, h3 = 0.9− 4h1

Also all other values of h can be replaced by a constant,
i.e.

h4 = h5 = · · · = h49 =
0.1

46

The above system can hence be reduced to a system of
4 equations and 4 unknown variables: h1, λ0, λ1, λ2 which
then can be solved for a given pf using standard numerical
analysis methods.

Figure 2 shows the channel capacity of the Crowds pro-
tocol in the unconstrained case and constrained cases of
50,1000,10000 users (under the same constraints as in the
case of 50 users).

7. ONION ROUTING
Onion Routing [24] is designed to protect data and sender

anonymity in communication over a public network such as
the Internet. A number of onion routers form an overlay
network, in which each onion router is connected to some
(if not all) other onion routers. The general idea is, when
a client (sender) communicates with a server (receiver), it
will first initialize a circuit that comprises of several onion
routers. The data will then go through the circuit instead
of going directly to the server. We assume that:

1. A circuit can be of any number of nodes as long as no
node appears twice.
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Figure 2: Crowds: channel capacity

2. The client never sends the message to the server di-
rectly.

3. Observations by a node include the previous node and
the next one.

4. All paths are equally likely.

Ideally, the packet data is encrypted separately for each hop
in the circuit so the data confidentiality is protected. The
identity of the sender is also partially protected against the
server and onion routers, since they do not know whether
it is from the sender or another onion router. However, if
there are adversaries within the Onion Routing network then
there may be a loss for the sender anonymity. 2

This section will focus on the loss of sender anonymity in
this adversary model, and we will show how it can be quan-
titatively analyzed using the definition of channel capacity.
A simple Onion Routing network is used as an example, as
shown in Figure 3. The node “R” is the receiver. There are
4 nodes 1,2,3,4 in which either of them can initiate the com-
munication; node 3 is an adversary in the network. We list
all the possible paths, observations on the adversary node
and the conditional probabilities for the observations in the
Table 5.

Figure 3: Example of An Onion Routing Network

From the Table 5, we get o using oj =
P

i φi,j :

o(N,N) =
1

3
h1, o(2,R) =

1

3
h1 +

1

2
h2

2An adversary here refers to a compromised node, where the
attacker is able to observe which node delivered the packet
to it and which node the packet shall then be delivered to.



h Path O (in, out) φhi,O(in,out)

1(h1) 1→ 2→ R (N, N) 1
3

1→ 2→ 3→ R (2, R) 1
3

1→ 2→ 4→ 3→ R (4, R) 1
3

2(h2) 2→ 4→ 3→ R (4, R) 1
2

2→ 3→ R (2, R) 1
2

3(h3) 3→ 2→ R (N, R) 1
4(h4) 4→ 3→ R (4, R) 1

2
4→ 3→ 2→ R (4, 2) 1

2

Table 5: Onion Routing: observations and probabil-
ities

o(4,R) =
1

3
h1 +

1

2
h2 +

1

2
h4, o(N,R) = h3, o(4,2) =

1

2
h4

From o and φ and Theorem 4.1 we deduce that the channel
capacity is given by solving the following equations:

−1

3
ln(

o(N,N)

1
3

)− 1

3
ln(

o(2,R)

1
3

)− 1

3
ln(

o(4,R)

1
3

)− 1 + λ0 = 0

−1

2
ln(

o(2,R)

1
2

)− 1

2
ln(

o(4,R)

1
2

)− 1 + λ0 = 0

− ln o(N,R) − 1 + λ0 = 0

−1

2
ln(

o(4,2)

1
2

)− 1

2
ln(

o(4,R)

1
2

)− 1 + λ0 = 0

This system has only one solution

h1 = 0.173, h2 = 0.160, h3 = 0.390, h4 = 0.276, λ0 = 0.059

Using Proposition 4.2, the channel capacity is hence

d(1− λ0) =
1

ln 2
(1− 0.0589) = 1.3577 bits

7.1 Anonymity: constrained case
Similar to the analysis of Crowds protocol, we now con-

sider the case when an active user sends out messages more
frequently than non-active users. Here we assume h1 has
twice the probability than h2. Then we have an additional
constraint:

h1 = 2h2

with the constraint C0:

h1 + h2 + h3 + h4 = 1

We use Theorem 4.1 to get the following equations:

−1

3
(ln(

o(N,N)

1
3

) + ln(
o(2,R)

1
3

) + ln(
o(4,R)

1
3

))− 1 + λ0 + λ1 = 0

−1

2
ln(

o(2,R)

1
2

)− 1

2
ln(

o(4,R)

1
2

)− 1 + λ0 − 2λ1 = 0

− ln o(N,R) − 1 + λ0 = 0

−1

2
ln(

o(4,2)

1
2

)− 1

2
ln(

o(4,R)

1
2

)− 1 + λ0 = 0

The system has only one solution

h1 = 0.216, h2 = 0.108, h3 = 0.391, h4 = 0.285,

λ0 = 0.0615, λ1 = −0.0027

h Path O (in, out) φhi,O(in,out)

1(h1) 1→ 2→ R (N, N) 1
2

1→ 2→ 3→ R (2, R) 1
2

2(h2) 2→ 3→ R (2, R) 1
3(h3) 3→ 2→ R (N, 2) 1
4(h4) 4→ 3→ R (4, R) 1

2
4→ 3→ 2→ R (4, 2) 1

2

Table 6: The onion network with less connectivity

Using Proposition 4.2 we get the channel capacity(in bits):

d(h1(1−λ0−λ1)+h2(1−λ0+2λ1)+(h3+h4)(1−λ0)) = 1.354

We have only one constraint in this case, and from the for-
mula in Theorem 4.1X

os∈Ôi

φs,i ln(
φs,i

os
)− 1 +

X
k

λkfi,k = 0

multiple constraints will only affect the last item
P

k λkfi,k

in the equation system. The complexity is increased linearly
by increasing the number of factors λk.

7.2 Anonymity: the impact of network con-
nectivity

In an onion network each individual router can allow or
disallow connections from other routers. Using the same
additional constraint as in the previous case study, we set off
to investigate the relationship between the connectivity and
the loss of anonymity in an onion network. This can be the
basis to understand quantitatively how much connectivity
an onion network needs to have to achieve a certain level of
anonymity.

In this case, the connection from node 2 to node 4 is re-
moved, as shown in Figure 4. The additional constraint is
maintained:

h1 = 2h2

1

2

4 3

R

Figure 4: An Onion Network with Less Connectivity

The observable outputs and corresponding probabilities
are listed in Table 6. From the table, we can get o using
oj =

P
i φi,j as follows:

o(N,N) =
1

2
h1, o(2,R) =

1

2
h1 + h2

o(4,R) =
1

2
h4, o(N,2) = h3, o(4,2) =

1

2
h4

From o and φ and Theorem 4.1 we deduce that the channel
distribution of hi’s is given by solving the following equa-



tions:

−1

2
ln(

o(N,N)

1
2

)− 1

2
ln(

o(2,R)

1
2

)− 1 + λ0 + λ1 = 0

− ln(
o(2,R)

1
)− 1 + λ0 − 2λ1 = 0

− ln o(N,2) − 1 + λ0 = 0

−1

2
ln(

o(4,R)

1
2

)− 1

2
ln(

o(4,2)

1
2

)− 1 + λ0 = 0

With the constraints the system has only one solution

h1 = 0.2488, h2 = 0.1244, h3 = 0.2834, h4 = 0.2834

λ0 = −0.2609, λ1 = 0.1155

Using Proposition 4.2 we get the channel capacity in a sim-
ilar way (in bits)

d(h1(1−λ0−λ1)+h2(1−λ0+2λ1)+(h3+h4)(1−λ0)) = 1.819

Notice there is hence a difference of 0.54 bits between 1.891
and 1.354 as in the previous case study, which is due to the
reduced connectivity of the second network. As the intuition
suggests, if there is better connectivity and generally more
paths to choose from, then there will be higher entropy with
respect to the observations, and better anonymity can be
achieved. This example shows that our techniques can be
used to measure the impact from certain parameters of a
protocol on the loss of its anonymity.

7.3 Anonymity: Knowing the path length
In this section, we are going to show how the Theorem 4.3

and Proposition 4.4 can be applied to study the impact of
tuning the path length in Onion Routing.

In an onion network, suppose the protocol sets the length
of the path which is also known to the attacker. In this case,
the path length is represented by additional, “low” informa-
tion in theoretical terms.

For illustration, we use the same case as in Figure 4 with-
out any constraint. Here Rj represents the probability that
a path has a length of j. For example, we use R2 for the
path 1 → 2 → R because the length is 2.

We will show that the channel capacity hereby derived will
be a linear combination of Rj , which implies that tuning Rj

will effectively change the channel capacity.
In this case, the constraints are only built up from the

joint probability of the input:X
i

(hi, Rj) = Rj

For this example, the observable outputs and corresponding
joint probabilities are listed in Table 7. Here the secret is
listed in the first column as before; the path lengths are
either 2 or 3 which are interpreted as R2 and R3 in the
second one; the probabilities (os, Rj) are (hi, Rj) because
each pair has different output.

From Table 7, each input pair (hi, Rj) produces different
outputs, thus the conditional probabilities φ is:

φi,j,k = 1

From o and φ and Theorem 4.3 we deduce that the channel

h R Path O (in, out) (os, Rj)
1(h1) R2 1→ 2→ R (N, N) (h1, R2)

R3 1→ 2→ 3→ R (2, R) (h1, R3)
2(h2) R2 2→ 3→ R (2, R) (h2, R2)
3(h3) R2 3→ 2→ R (N, 2) (h3, R2)
4(h4) R2 4→ 3→ R (4, R) (h4, R2)

R3 4→ 3→ 2→ R (4, 2) (h4, R3)

Table 7: The onion network with less connectivity

capacity is given by solving the following equations:

ln
R2

(h1, R2)
− 1 + λ0 = 0 ln

R3

(h1, R3)
− 1 + λ1 = 0

ln
R2

(h2, R2)
− 1 + λ0 = 0 ln

R2

(h3, R2)
− 1 + λ0 = 0

ln
R2

(h4, R2)
− 1 + λ0 = 0 ln

R3

(h4, R3)
− 1 + λ1 = 0

With the constraints the system admits the solution:

h1 =
1

4
R2 +

1

2
R3, h2 =

1

4
R2, h3 =

1

4
R2

h4 =
1

4
R2 +

1

2
R3, λ0 = 1 + ln

1

2
, λ1 = 1 + ln

1

4

Using Proposition 4.4 we get the channel capacity:

d
X
i,j,k

(hi, Rj)(1−
X

k

λkfi,j,k) = R2 + 2R3 bits

which is a linear combination of R2 and R3. For example, if
we assume R2 = R3 then the corresponding channel capacity
is

R2 + 2R3 = 1.5 bits

In fact, when Rj is introduced into the system of equations,
the solution of the system of equations becomes a linear
combination involving Rj . The channel capacity (maximal
anonymity loss) is then a linear function of Rj . Therefore,
ideally we can find an optimum probabilistic distribution of
the path length that will result in the best anonymity.

An important implication is that it becomes possible to
tune the parameters within the protocol (e.g. path length)
to automatically adapt to dynamic properties of the anony-
mity system (e.g. possible location and distribution of ad-
versaries and level of connectivity). It is beyond the scope of
this paper to discuss the specific algorithms used by Onion
Routing, however we believe an opportunity clearly exists
to improve such protocols in the light of our analysis.

8. CONCLUSION
This paper introduced Lagrange multipliers to analyse the

channel capacity in anonymity protocols. The constraints in
the Lagrange method are shown to have a practical relevance
e.g. in reflecting real properties of networks, in quantifying
the design weaknesses in anonymity protocols, but also to
specify and analyze the impact of properties like network
connectivity.

We believe our work, as a theoretical framework, is ac-
curate, useful and feasible. We applied the methodology
to analyze three different protocols. More applications can
certainly be found in such areas like communications, voting
and auctions.



8.1 Further work
Scalability: The solution of system of equations can be
very costly as the number of unknown (constraints) grows.
There is a wealth of knowledge in the literature on efficient
solutions to systems of equations which we haven’t explored
so far.
Inequality and Nonlinear Constraints: In this paper
we have dealt with constraints expressed as linear equa-
tions. We are currently working on the use of nonlinear
constraints. Further, to deal with inequalities as constraints
we need to use a generalization of the technique known as
Karush-Kuhn-Tucker conditions.
Probabilistic analysis: A comparison of the information
theoretical and probabilistic analysis of anonymity protocols
would be very interesting. For example It would be interest-
ing to compare our analysis with the probabilistic analysis
of Onion routing presented in [14].
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