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ABSTRACT

In this paper, we propose a novel transform thasgnves
the dynamic range—infinity-norm rotation. This tséorm is
perfectly reversible and piecewise linear, and keépe

coefficients. A linear transform with unitary deténant is
also proved to be integer reversible if a PLUSdeeation

is applied to the transform matrix [8]. Howeveredio the
dynamic range expansion problem [6] of these réviers
transforms, embedding locations need to be cayefull

maximum value unchanged. We apply the transform tselected to avoid overflow and underflow of pixalues,

reversible data hiding, which can be utilized fiagile data
hiding and covert communication. After the

which cuts down embedding capacity and complicétes

inversealgorithms. Therefore, the ideal transform for rside data

transform applied to the image with hidden data, ndiding should be perfect reversible, coefficiengtdbution

overflow or underflow occurs to the pixel valueadamall
changes of the coefficients in the transform donnagult in

compacted and dynamic range preserved. Besidesyritip
or piecewise linearity of a transform is also dasie to

small changes of the corresponding pixel value®raft guarantee that little change of coefficients residt little

reconstruction. With progressive symmetrical hisang
expansion, we obtain very high embedding capaoitydata
hiding in the transform domain of infinity-norm adion.
Furthermore,

expanded with blocked coefficients and low-frequenc

coefficients, which is demonstrated by our expenitse
Index Terms—Dynamic range preservation,
expansion, infinity-norm rotation, pyramidal
reversible data hiding

hierhy,

1. INTRODUCTION

Reversible data hiding, often referred to as reblas
watermarking, was proposed as a promising technfque

degradation of image quality after reconstructiBiecewise
Linear Haar-like transform (PLHaar) is such a tfams,
proposed by Senecal [7] for lossless and lossyngeavhich

the embedding capacity can be furthas a special case of our proposed infinity-nornation.

In this paper, we propose a reversible transforat th
preserves the dynamic range—infinity-norm rotatidn.

histogram possesses six interesting properties: (1) pertaarsibility;

(2) dynamic range preservation; (3) piecewise litga(4)
simple and fast implementation with in-place catioh; (5)
coefficient distribution compaction; (6) separahbied non-
separable implementation for arbitrary dimensigoghtion.
We will present the definition of infinity-norm ration and a
typical illustration of infinity-norm rotation in hree-
dimensional space in Section 2. Furthermore, a -four

covert communication and information hiding. Such a dimensional infinity-norm rotation is used as a +on

embedding algorithm allows extraction of intactded data
from the watermarked digital carriers and losslesovery
of the original images, when there is no maliciatiack.

In the literature of reversible data hiding, thehteiques
can be mainly classified into two categories byfedént
embedding domains. One type of reversible datangidi
technique embeds data directly into the spatialaloniThe
representatives of this type are compressing gkheaat
significant bits (GLSB) to excavate space as emingdd
locations [1], and shifting histogram to empty aértbins
for the data to be embedded [2]. The other typeraips
embedding in the transform domains [3-5]. Theseufmp
transforms, such as integer wavelet transform (IVemy
integer discrete cosine transform (IDCT),
compacting the coefficient distribution, and therilitate
the corresponding embedding rule to modify the redimed

* Supported by FANEDD(200038)&NKBRPC(2004CB3180053hina.

separable transform with pyramidal hierarchy forersible
data hiding. The detailed embedding process using
symmetrical histogram expansion is described ini&eas.
When low-frequency coefficients are left unchanged,
embedding into the blocked coefficients can furtbgpand

the embedding capacity even larger than 1bpp. Tressdts

are given in Section 4, and in Section 5 come the
conclusions.

2. INFINITY-NORM ROTATION

The ordinary rotation defined in Euclidean spachictv is
referred to as 2-norm rotation, is actually a iotatlong a

serve forcircle centered at the origin in 2D or on the stefaf a

sphere. The 2-norm of a point is its Euclidean teng
between the point and the origin. After 2-norm tiota, the
length or the 2-norm of the point is preserved.ilirty, we



can defingp-norm rotations as that preseq@orm after the shown in Fig.2, we can divide the space into 8aegi In
rotations. For example, a transform that presetveserm is  each region, the infinity-norm rotation is a lindgeansform
a 1-norm rotation; a transform that keeps the ityfinorm  which is a shear transform or a product of reftactand
unchanged is an infinity-norm rotation. Three rotag in  shear transform.

2D are illustrated in Fig.1, which shows the isetdnce 2-4, -1]x x—-RL<y<x=a regl
curves of 1-norm, 2-norm and the infinity-norm. Atitk 1 0]y —a=x<y<RL+x reg5
definition of p-norm rotation in higher dimensions is given 1 -0, Tx RL-y<x<y=a reg2 (6)
below. X 8= 0 1|y —a=y<x<-y-RL reg6
Definition 1. p-norm rotation RWGI=T0 1 7Tx -a=-y<x<RL-y reg3

p-norm rotation that preserves p-norm, geometrigak 1 2-4,|y -y-RL<x<-y=a reg7
a move on the curve of the same p-norm. 1 ofx RL+x<y<-x=a regd

e {ew 1Iy} -a=-x<ys<x-RL reg8
. - where X =(x,y)a=|x| @ndRL=alé, -
1 ¥
. . + B
(a) 1-norm rotation (b) 2-norm rotation (c) infighorm rotation ~- : @}5
Fig. 1 rotations in 2D T E RER

In two-dimensional space, infinity-norm rotation & rx
move along a square (shown in Fig.1(c)); in three- ge ol
dimensional space, an infinity-norm rotation is ave on S
the surface of a cube (shown in Fig.4); in highierethsional
space, infinity-norm rotation is a move on the acef of a Fig.2 piecewise linearity of infinity-norm rotation
hyper cube.
Definition 2. Angle of pnormrotation In discrete space, if the dynamic range of datéhés

Angle of pnorm rotation is the ratio of the runlength integers from 0 to 255, the domain and the range-of
between two points along an equal p-norm curveh® t dimensional infinity-norm  rotation are both a

radius of the curve. 256x% 256x.--x 256 lattice constructed by the sub-lattices
o = runlength 1) M
. "_ ragjius whose nodes have the same infinity-norm. fiirdengthfor
where the radius is defined as the p-norm of theecu each sub-lattice should also be discretized. =~ When

)
®

Especially, 6, = runlength/(siddength/2) , when rotating  x =y, y)a=|x
along a square in 2Dg, = arclengtiVradiusis the angle
measure of a circular rotation. An approximatedatieh

betweeng  andg, (g, 0[0,n/4]) can be defined ag =tg4,, ] o
iy - (601 ) - ~10% floor, to constrairrunlengthto have the same precision as

. :2_ Yvhen G=ni2- Othe.r relat|0n§ c.:a.n be four.1d by the nodes on the lattice. Excephlength only addition and
combining the above rotations. An infinity-norm abon  syptraction are needed during the in-place calculabf
from point A to point B by an angle, is denoted as infinity-norm rotation. It is feasible for hardware

runlength=|alé, | (7)
where|. | is a rounding operator which can be round, ceil or

B=R,(A g,)in following discussions. implementation with limited buffer, cheap fixed-pbi
1) Linearity: To find the proper rotation angles, we use the td@iD

X OO?, R.(X,alf, +bd,) =alR(X,0,)+bR(X,8,) (2) co-histogramof an image for analysis.
2) Infinity-norm preservation: Definition 3.' nb co—h|_stogram . . .
~ 3) nD co-histogram is an n-dimensional histogram foe t
IX].. =IR.(x.€.)l. statistics of the co-occurrence of n-dimensionalinfso

3) Periodicity: whose coordinates are the values of every n neigpbels
X00?%, R,(X,8,)=R,(X,8, +8) (4)  in the imaggsee [9] for 2D co-histogram).

The period of the infinity-norm rotation is 8, whithe 2- The angles of infinity-norm rotation are chosenhstiat

norm rotation has a period of/2. the diagonals in Fig. 3(a)(d) parallel to an axidter

4) Bijection: rotation, the dimension parallel to an axis is ryokept

X002, a.,B. 0[08):R.(X.a.)=R.(X,8.) = a. = B.(5) invariant, which represents the low-frequency congmds of
5) Piecev;i’sgline’ar trans;‘ooromS' e T the images, while the other dimensions are higieacy

An infinity-norm rotation can be represented bycomponintg of the Amages.. TFhe 1two—d|me|rt15|qnal 'Wﬁ;
piecewise linear transforms in Euclidean space2n as norm rotation as shown in Fig.1(c) results in Fig)



Fig.3(b) is for 2D DCT as a 2-norm rotation for quamison.
In three-dimensional discrete space, infinity-namtation,

3. REVERSIBLE DATA HIDING

denoted asR®, takes place on the surface of a cube a8.1. Symmetrical histogram expansion
illustrated in Fig.4.R? is the rotation around the center of For the convenience of description, th@uddydefinition is

the cube, and turns the diagonal of the cube phralan
axis. The points of the similar colors are on atamegle,
which rotate counter-clockwise along the rectandiae
ones in light color disappearing from one face aflpear in
another face. Similarly, it can be generalized iatbitrary
dimensional infinity-norm rotation. AfteRr® is applied to

image Lena, the result is shown in Fig.3(f), in pamson to
the result after DCT, a 2-norm rotation, shown igp. &e).
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Fig.3 co-histograms of Lena

(d) 3D original MR
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(a) beforer?

(b) after
Fig.4 the three-dimensional data on the surfaceafbe

After infinity-norm rotation around the middle pixel
values 127 and 128, the coordinates of the poims a
centralized to 127 and 128. The overall histogram o

coefficients is shown in Fig. 5(c), which is suitkfor
reversible data hiding using symmetrical
expansion.

For four-dimensional infinity-normrotation, a non-

separable transform with pyramidal hierarchy igsiltated in
Fig.5(a) to show multiresolusion analysis @fto images.

histogram =

presented first.
Definition 4. n-buddy

An n-buddy of an m-bit number is an m-bit nhumber,
whose uppem-n bits are the same, but the lower n bits
have at least one bit different.

Take 8-bit numbers as examples: 2 and 3 are 1-bsddi
of each other, and 4, 6, 7 are all 2-buddies df i5.obvious
that if a number is modified in the lower n bitsmust be
one of its n-buddies or itself. Therefore, aftee tbwer n
bits of the coefficients in a histogram bin are ified, the
pixel value in the bin expands into the empty nbahn-
buddy bins. In the recovery process, these neighbmrddy
bins are all mapped into the original single biheTower n-
bit modification schemdor embedding process can be
formulated as:

Cc,=|c/2" |2 +w (8)
Fig. 6 illustrates oursymmetrical histogram expansion
schemeFirstly, we choose bin 6 as the pivotal bin foe t
first embedding and shift bin 7 to the right as i@into
evacuate bin 7 for the embedding. Then we shifdbia the
left to embed data into bin 5. Finally, we embedadato
bin 8. That is for data embedding in a zigzag sranarder.
For hidden data extraction, we convert pixel valGemnd 7
into 6, 5 and 4 into 5, 3 into 4, 8 and 9 into 7a&®to
recover the original coefficient values in the samder as in
embedding.

Shift bin 7 right
. and Embed into -

N "’ I[] Shift bin4 left anc ! I- EI.IE"E b
embed into 5

123456789

o ]_F O Embed intobin 8 =

Ll i
L2sasenss 1 2 3 4 5 6 7 8 9
Fig.6 symmetrical histogram expansion for datdoedding

The 2-by-2 blocks in the image are taken as the-fou3.2. Data embedding and extraction

dimensional points to be rotated because they haykeer
correlations than 1-by-4 or 4-by-1 blocks. The gell
arrows in Fig.5(a) show the scan order inside thels.

(a) pyramidal hierarchy  (b) befopg (c) after?
Fig.5 non-separablg* and the histograms of Lena

a——

Based on the four-dimensioriafinity-norm rotation and the
symmetrical histogram expansion scheme, our preymes
algorithm is summarized as follows.

Data embedding:

1. Transform the original image usirg.

2. Attach the lower bits of the coefficients in thst row
to the data to be embedded.



3. Choose 128th bin in the coefficient histogramtlaes
pivot, and record the length of the data to be efdbd
into the lower bits of the coefficients in the firsw.

4. While there are data left to be embeddied

Expand the histogram symmetrically;
Modify the lowern bits of the coefficients.
End while
5. Apply the inversg*and output the image with data.

Data extraction and image r ecovery:
1. Transform the image with hidden data usigg

2. Extract the pivot value and the length of thediein data
from the coefficients in the first row.
3. While there are data left to be extractim
Extract the lowen bits of the coefficients;
Shrink the expanded histogram back.
End while
4, Recover the coefficients in the first row.
5. Apply the inverser* to recover the original image.

In our algorithm, we not only shift one bin for f-b
modification, but also shift three and seven bors2tbit and
3-bit modification to increase the capacity.

4. EXPERIMENTAL RESULTS

Using pyramidal four-dimensional rotation, we litthe
capacity(bytes)in each second row and PSNd®B) in each
first row for the test images with different anadytevels.
Three analysis levels are optimal for symmetrigatdgram
expansion in our experiments. Partition the cokffits into
blocks in the same size as that of low-frequenoglbkt the
highest analysis level. Then leave the incompaet- lo
frequency coefficients unchanged. The histogrameath
high-frequency block has the distribution like Fifc), but
more compact and more empty bins at both sides.utée
three level analyses, divide the coefficients i&t8 blocks,
and show the results as 3* in the sixth column abl& 1.
The embedding capacity of some images exceeds Hpigp,
can still be further expanded, if image quality slagot
matter much.

Table 1 Capacity (bytes) and PSNR (dB) for theiteages

Image 1 2 3 4 3*
Barbara 31.34 | 31.84 | 32.11 | 30.77 | 24.24
15912 | 19027 | 24001 | 24098 | 29315

Lena 31.92 | 32.77 | 32.93 | 31.49 | 24.53
19866 | 23683 | 26716 | 26802 | 37491

Boat 31.67 | 32.16 | 32.37 | 30.96 | 24.02
18266 | 22327 | 27674 | 27700 | 37949

Jet 31.87 | 32.68 | 32.73 | 31.03 | 23.68
19743 | 24153 | 28629 | 28631 | 42433

Baboon 31.38 | 31.22 | 30.15 | 29.26 | 23.94
10732 | 12286 | 13192 | 13296 | 15986

Gold 31.65| 32.27 | 32.30 | 31.09 | 24.33
16457 | 19484 | 22618 | 22748 | 28294

As in Table 2, we compare the performance of our
proposed method with the good performance of the
reversible data hiding methods in the recent litesa on
Lena and highly textured Baboon. It is obvious tbat
method have good average performance at high ermgedd
bit rate.

Table 2 Capacity (in bytes) and PSNR (dB) comparlsetween
reversible data hiding methods at high bit rates

Method Lena (512*512*8) | Baboon (512*512*8)
Capacity | PSNR | Capacity| PSNR
Tian [3] 27755 | 32.54 N/A N/A
Xuanetal[4] | 19661 34.39| 13107 30.69
Celik et al [1] 22127 31.9 5793 31.9
Ni et al [2] 683 48.2 678 48.2
Proposed 26716 32.93 13191 30.15

5. CONCLUSIONS

In this paper, we propose a piecewise linear toansfthat
preserves the dynamic rangeinfinity-norm rotation, and
apply it to reversible data hiding. The embeddiapacity is
very high. Furthermore, infinity-norm rotation cabe
generalized into arbitrary dimensional transfornd drave
diversified combinations. Which should be effectifer
reversible data hiding merits further investigation
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