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ABSTRACT 
 
In this paper, we propose a novel transform that preserves 
the dynamic range—infinity-norm rotation. This transform is 
perfectly reversible and piecewise linear, and keeps the 
maximum value unchanged. We apply the transform to 
reversible data hiding, which can be utilized for fragile data 
hiding and covert communication. After the inverse 
transform applied to the image with hidden data, no 
overflow or underflow occurs to the pixel values, and small 
changes of the coefficients in the transform domain result in 
small changes of the corresponding pixel values after 
reconstruction. With progressive symmetrical histogram 
expansion, we obtain very high embedding capacity for data 
hiding in the transform domain of infinity-norm rotation. 
Furthermore, the embedding capacity can be further 
expanded with blocked coefficients and low-frequency 
coefficients, which is demonstrated by our experiments. 
Index Terms—Dynamic range preservation, histogram 
expansion, infinity-norm rotation, pyramidal hierarchy, 
reversible data hiding. 
 

1. INTRODUCTION 
 
Reversible data hiding, often referred to as reversible 
watermarking, was proposed as a promising technique for 
covert communication and information hiding. Such an 
embedding algorithm allows extraction of intact hidden data 
from the watermarked digital carriers and lossless recovery 
of the original images, when there is no malicious attack. 

In the literature of reversible data hiding, the techniques 
can be mainly classified into two categories by different 
embedding domains. One type of reversible data hiding 
technique embeds data directly into the spatial domain. The 
representatives of this type are compressing general least 
significant bits (GLSB) to excavate space as embedding 
locations [1], and shifting histogram to empty certain bins 
for the data to be embedded [2]. The other type operates 
embedding in the transform domains [3-5]. These popular 
transforms, such as integer wavelet transform (IWT) and 
integer discrete cosine transform (IDCT), serve for 
compacting the coefficient distribution, and then facilitate 
the corresponding embedding rule to modify the centralized 
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coefficients. A linear transform with unitary determinant is 
also proved to be integer reversible if a PLUS factorization 
is applied to the transform matrix [8]. However, due to the 
dynamic range expansion problem [6] of these reversible 
transforms, embedding locations need to be carefully 
selected to avoid overflow and underflow of pixel values, 
which cuts down embedding capacity and complicates the 
algorithms. Therefore, the ideal transform for reversible data 
hiding should be perfect reversible, coefficient distribution 
compacted and dynamic range preserved. Besides, linearity 
or piecewise linearity of a transform is also desirable to 
guarantee that little change of coefficients results in little 
degradation of image quality after reconstruction. Piecewise 
Linear Haar-like transform (PLHaar) is such a transform, 
proposed by Senecal [7] for lossless and lossy coding, which 
is a special case of our proposed infinity-norm rotation. 

In this paper, we propose a reversible transform that 
preserves the dynamic range—infinity-norm rotation. It 
possesses six interesting properties: (1) perfect reversibility; 
(2) dynamic range preservation; (3) piecewise linearity; (4) 
simple and fast implementation with in-place calculation; (5) 
coefficient distribution compaction; (6) separable and non-
separable implementation for arbitrary dimensional rotation. 
We will present the definition of infinity-norm rotation and a 
typical illustration of infinity-norm rotation in three-
dimensional space in Section 2. Furthermore, a four-
dimensional infinity-norm rotation is used as a non-
separable transform with pyramidal hierarchy for reversible 
data hiding. The detailed embedding process using 
symmetrical histogram expansion is described in Section 3. 
When low-frequency coefficients are left unchanged, 
embedding into the blocked coefficients can further expand 
the embedding capacity even larger than 1bpp. These results 
are given in Section 4, and in Section 5 come the 
conclusions. 

 
2. INFINITY-NORM ROTATION  

 
The ordinary rotation defined in Euclidean space, which is 
referred to as 2-norm rotation, is actually a rotation along a 
circle centered at the origin in 2D or on the surface of a 
sphere. The 2-norm of a point is its Euclidean length 
between the point and the origin. After 2-norm rotation, the 
length or the 2-norm of the point is preserved. Similarly, we 



can define p-norm rotations as that preserve p-norm after the 
rotations. For example, a transform that preserves 1-norm is 
a 1-norm rotation; a transform that keeps the infinity-norm 
unchanged is an infinity-norm rotation. Three rotations in 
2D are illustrated in Fig.1, which shows the iso-distance 
curves of 1-norm, 2-norm and the infinity-norm. And the 
definition of p-norm rotation in higher dimensions is given 
below. 
Definition 1. p-norm rotation 

p-norm rotation that preserves p-norm, geometrically, is 
a move on the curve of the same p-norm. 

 
(a) 1-norm rotation (b) 2-norm rotation (c) infinity-norm rotation 

Fig. 1 rotations in 2D 
In two-dimensional space, infinity-norm rotation is a 

move along a square (shown in Fig.1(c)); in three-
dimensional space, an infinity-norm rotation is a move on 
the surface of a cube (shown in Fig.4); in higher dimensional 
space, infinity-norm rotation is a move on the surface of a 
hyper cube. 
Definition 2. Angle of p-norm rotation 
Angle of p-norm rotation is the ratio of the runlength 
between two points along an equal p-norm curve to the 
radius of the curve. 

                 
radius

runlength
p =θ                                           (1) 

where the radius is defined as the p-norm of the curve. 
Especially, )2//( lengthsiderunlength=∞θ , when rotating 

along a square in 2D; radiuslengtharc /2 =θ is the angle 

measure of a circular rotation. An approximated relation 
between ∞θ  and

2θ ])4/,0[( 2 πθ ∈  can be defined as 
2θθ tg=∞
, 

2=∞θ  when 2/2 πθ = . Other relations can be found by 

combining the above rotations. An infinity-norm rotation 
from point A to point B by an angle∞θ is denoted as 

),( ∞∞= θARB in following discussions. 

Properties of infinity-norm rotation:  
1) Linearity: 

2ℜ∈X , ),(),(),( ∞∞∞∞∞ ⋅+⋅=⋅+⋅ θθθθ XRbXRabaXR   (2) 

2) Infinity-norm preservation: 
                         

∞∞∞∞
= ),( θXRX                                    (3) 

3) Periodicity: 
                 2ℜ∈X , )8,(),( += ∞∞∞∞ θθ XRXR                   (4) 

The period of the infinity-norm rotation is 8, while the 2-
norm rotation has a period of 2π . 

4) Bijection:  
2ℜ∈X , )8,0[, ∈∞∞ βα ,

∞∞∞∞∞∞ =⇔= βαβα ),(),( XRXR (5) 

5) Piecewise linear transforms: 
An infinity-norm rotation can be represented by 

piecewise linear transforms in Euclidean space. In 2D, as 

shown in Fig.2, we can divide the space into 8 regions. In 
each region, the infinity-norm rotation is a linear transform 
which is a shear transform or a product of reflection and 
shear transform. 
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where ),( yxX = ,
∞

= Xa and ∞⋅= θaRL . 

 
Fig.2 piecewise linearity of infinity-norm rotation 

 
In discrete space, if the dynamic range of data is the 

integers from 0 to 255, the domain and the range of n-
dimensional infinity-norm rotation are both a 

444 3444 21 L
n

256256256 ×××  lattice constructed by the sub-lattices 

whose nodes have the same infinity-norm. The runlength for 
each sub-lattice should also be discretized.  When 

),( yxX = ,
∞

= Xa ,  

                           ∞⋅= θarunlength                               (7) 

where  •  is a rounding operator which can be round, ceil or 

floor, to constrain runlength to have the same precision as 
the nodes on the lattice. Except runlength, only addition and 
subtraction are needed during the in-place calculation of 
infinity-norm rotation. It is feasible for hardware 
implementation with limited buffer, cheap fixed-point 
arithmetic unit and fixed-width channels. 

To find the proper rotation angles, we use the tool of nD 
co-histogram of an image for analysis. 
Definition 3. nD co-histogram 

nD co-histogram is an n-dimensional histogram for the 
statistics of the co-occurrence of n-dimensional points 
whose coordinates are the values of every n neighbor pixels 
in the image (see [9] for 2D co-histogram).  

The angles of infinity-norm rotation are chosen such that 
the diagonals in Fig. 3(a)(d) parallel to an axis. After 
rotation, the dimension parallel to an axis is mostly kept 
invariant, which represents the low-frequency components of 
the images, while the other dimensions are high-frequency 
components of the images. The two-dimensional infinity-
norm rotation as shown in Fig.1(c) results in Fig.3(c). 
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Fig.3(b) is for 2D DCT as a 2-norm rotation for comparison. 
In three-dimensional discrete space, infinity-norm rotation, 
denoted as 3

∞R , takes place on the surface of a cube as 

illustrated in Fig.4. 3
∞R  is the rotation around the center of 

the cube, and turns the diagonal of the cube parallel to an 
axis. The points of the similar colors are on a rectangle, 
which rotate counter-clockwise along the rectangle. The 
ones in light color disappearing from one face will appear in 
another face. Similarly, it can be generalized into arbitrary 
dimensional infinity-norm rotation. After 3

∞R  is applied to 

image Lena, the result is shown in Fig.3(f), in comparison to 
the result after DCT, a 2-norm rotation, shown in Fig.3(e). 

        
(a) 2D original              (b) 2D DCT                    (c) 2

∞R  

 
(d) 3D original               (e) 3D DCT                    (f) 3

∞R  

Fig.3 co-histograms of Lena  

                  
(a) before 3

∞R                                      (b) after 3
∞R  

Fig.4 the three-dimensional data on the surface of a cube 
 

After infinity-norm rotation around the middle pixel 
values 127 and 128, the coordinates of the points are 
centralized to 127 and 128. The overall histogram of 
coefficients is shown in Fig. 5(c), which is suitable for 
reversible data hiding using symmetrical histogram 
expansion. 

For four-dimensional infinity-norm rotation, a non-
separable transform with pyramidal hierarchy is illustrated in 
Fig.5(a) to show multiresolusion analysis of 

∞R to images. 

The 2-by-2 blocks in the image are taken as the four-
dimensional points to be rotated because they have higher 
correlations than 1-by-4 or 4-by-1 blocks. The yellow 
arrows in Fig.5(a) show the scan order inside the blocks.  

 
(a) pyramidal hierarchy      (b) before 4

∞R             (c) after 4
∞R  

Fig.5 non-separable 4
∞R  and the histograms of Lena 

 

3. REVERSIBLE DATA HIDING 
 
3.1. Symmetrical histogram expansion 
For the convenience of description, the n-buddy definition is 
presented first. 
Definition 4. n-buddy 

An n-buddy of an m-bit number is an m-bit number, 
whose upper nm−  bits are the same, but the lower n bits 
have at least one bit different.  

Take 8-bit numbers as examples: 2 and 3 are 1-buddies 
of each other, and 4, 6, 7 are all 2-buddies of 5. It is obvious 
that if a number is modified in the lower n bits, it must be 
one of its n-buddies or itself. Therefore, after the lower n 
bits of the coefficients in a histogram bin are modified, the 
pixel value in the bin expands into the empty neighbor n-
buddy bins. In the recovery process, these neighbor n-buddy 
bins are all mapped into the original single bin. The lower n-
bit modification scheme for embedding process can be 
formulated as:  

  WCC nn
w +⋅= 22/                              (8) 

Fig. 6 illustrates our symmetrical histogram expansion 
scheme. Firstly, we choose bin 6 as the pivotal bin for the 
first embedding and shift bin 7 to the right as bin 8 to 
evacuate bin 7 for the embedding. Then we shift bin 4 to the 
left to embed data into bin 5. Finally, we embed data into 
bin 8. That is for data embedding in a zigzag scanning order. 
For hidden data extraction, we convert pixel values 6 and 7 
into 6, 5 and 4 into 5, 3 into 4, 8 and 9 into 7 so as to 
recover the original coefficient values in the same order as in 
embedding. 

               
               
 
 
 

 
 
 
 
 

     Fig.6 symmetrical histogram expansion for data embedding 
 
3.2. Data embedding and extraction 
 
Based on the four-dimensional infinity-norm rotation and the 
symmetrical histogram expansion scheme, our progressive 
algorithm is summarized as follows.  
Data embedding: 
1. Transform the original image using4

∞R . 

2. Attach the lower bits of the coefficients in the first row 
to the data to be embedded.  
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3. Choose 128th bin in the coefficient histogram as the 
pivot, and record the length of the data to be embedded 
into the lower bits of the coefficients in the first row. 

4. While there are data left to be embedded do 
Expand the histogram symmetrically; 
Modify the lower n bits of the coefficients. 

End while 
5. Apply the inverse 4

∞R and output the image with data. 

Data extraction and image recovery: 
1. Transform the image with hidden data using 4

∞R . 

2. Extract the pivot value and the length of the hidden data 
from the coefficients in the first row. 

3. While there are data left to be extracted do 
Extract the lower n bits of the coefficients; 
Shrink the expanded histogram back. 

End while 
4. Recover the coefficients in the first row. 
5. Apply the inverse 4

∞R  to recover the original image. 

In our algorithm, we not only shift one bin for 1-bit 
modification, but also shift three and seven bins for 2-bit and 
3-bit modification to increase the capacity. 
 

4. EXPERIMENTAL RESULTS 
 
Using pyramidal four-dimensional rotation, we list the 
capacity (bytes) in each second row and PSNR (dB) in each 
first row for the test images with different analysis levels. 
Three analysis levels are optimal for symmetrical histogram 
expansion in our experiments. Partition the coefficients into 
blocks in the same size as that of low-frequency block at the 
highest analysis level. Then leave the incompact low-
frequency coefficients unchanged. The histogram of each 
high-frequency block has the distribution like Fig. 5(c), but 
more compact and more empty bins at both sides. We use 
three level analyses, divide the coefficients into 8*8 blocks, 
and show the results as 3* in the sixth column of Table 1. 
The embedding capacity of some images exceeds 1bpp, and 
can still be further expanded, if image quality does not 
matter much. 
 

Table 1 Capacity (bytes) and PSNR (dB) for the test images 
Image 1 2  3  4 3*  

31.34 31.84 32.11 30.77 24.24 
Barbara 

15912 19027 24001 24098 29315 
31.92 32.77 32.93 31.49 24.53 

Lena 
19866 23683 26716 26802 37491 
31.67 32.16 32.37 30.96 24.02 

Boat 
18266 22327 27674 27700 37949 
31.87 32.68 32.73 31.03 23.68 

Jet 
19743 24153 28629 28631 42433 
31.38 31.22 30.15 29.26 23.94 

Baboon 
10732 12286 13192 13296 15986 
31.65 32.27 32.30 31.09 24.33 

Gold 
16457 19484 22618 22748 28294 

As in Table 2, we compare the performance of our 
proposed method with the good performance of the 
reversible data hiding methods in the recent literature on 
Lena and highly textured Baboon. It is obvious that our 
method have good average performance at high embedding 
bit rate. 

 
Table 2 Capacity (in bytes) and PSNR (dB) comparison between 

reversible data hiding methods at high bit rates 
Lena (512*512*8) Baboon (512*512*8) 

Method 
Capacity PSNR Capacity PSNR 

Tian [3] 27755 32.54 N/A N/A 

Xuan et al [4] 19661 34.39 13107 30.69 
Celik et al [1] 22127 31.9 5793 31.9 

Ni et al [2] 683 48.2 678 48.2 
Proposed 26716 32.93 13191 30.15 
 

5. CONCLUSIONS 
 
In this paper, we propose a piecewise linear transform that 
preserves the dynamic range —infinity-norm rotation, and 
apply it to reversible data hiding. The embedding capacity is 
very high. Furthermore, infinity-norm rotation can be 
generalized into arbitrary dimensional transform and have 
diversified combinations. Which should be effective for 
reversible data hiding merits further investigation.  
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