
Y. Yagi et al. (Eds.): ACCV 2007, Part II, LNCS 4844, pp. 722–732, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Converting Thermal Infrared Face Images into  
Normal Gray-Level Images 

Mingsong Dou1, Chao Zhang1, Pengwei Hao1,2, and Jun Li2 

1 State Key Laboratory of Machine Perception, Peking University, Beijing, 100871, China 
2 Department of Computer Science, Queen Mary, University of London, E1 4NS, UK 

c.zhang@pku.edu.cn 

Abstract. In this paper, we address the problem of producing visible spectrum 
facial images as we normally see by using thermal infrared images. We apply 
Canonical Correlation Analysis (CCA) to extract the features, converting a 
many-to-many mapping between infrared and visible images into a one-to-one 
mapping approximately. Then we learn the relationship between two feature 
spaces in which the visible features are inferred from the corresponding infrared 
features using Locally-Linear Regression (LLR) or, what is called, Sophisticated 
LLE, and a Locally Linear Embedding (LLE) method is used to recover a visible 
image from the inferred features, recovering some information lost in the infrared 
image. Experiments demonstrate that our method maintains the global facial 
structure and infers many local facial details from the thermal infrared images.  

1   Introduction 

Human facial images have been widely used in the biometrics, law enforcement, sur-
veillance and so on [1], but only the visible spectrum images of human faces were used 
in most cases. Recently the literature begins to emerge for face recognition (FR) based 
on infrared images or fusion of infrared images and visible spectrum images [2-4], and 
some sound results have been published.  

Other than FR based on infrared images this paper focuses on the transformation 
from thermal IR images to visible spectrum images (see Fig.2 for examples of both 
modal images), i.e. we try to render a visible spectrum image from a given thermal 
infrared image.  

Thermal infrared imaging sensors measure temperature of shot objects and are in-
variant to illuminance. There are many surveillance applications in which the light 
conditions are so poor that we can only acquire thermal infrared images. As we know, 
we see objects because of the reflectance of light, i.e. formation of visible-spectrum 
images needs light sources. For thermal infrared images, it is very optimistic. All ob-
jects with temperature above the absolute zero emit electromagnetic wave, and the 
human body temperature is in the range of emitting infrared electromagnetic wave. So 
even it is completely dark, we can still obtain thermal infrared images with thermal 
infrared imaging cameras. 

Though the formations of visible spectrum and infrared facial images are of different 
mechanisms, the images do share some commons if they come from the same face, e.g. 
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we can recognize some facial features from both modals of images. There indeed exists 
some correlation relationship between them which can be learned from training sets.  

The problem to normally view thermal infrared images is actually very challenging. 
First of all, the correlations between the visible image and corresponding infrared one 
are not strong. As mentioned above, the imaging models are of different mechanisms. 
Infrared images are invariant under the changes of the lighting conditions, so many 
visible spectrum images taken under different lighting conditions correspond to one 
infrared image. Therefore, the solution to our problem is not unique. To the contrary, 
thermal infrared images are not constant, either. Thermal infrared images are subject to 
the surface temperature of the shot objects. For example, the infrared images taken 
respectively from a person when he just came from the cold outside and the same per-
son when he just did lots of sports are quite different. The analysis above shows that it 
is a many-to-many mapping between visual facial images and thermal infrared images 
of the same person, which is the biggest barrier for solving the problem. Another 
problem is that the resolution of visible spectrum facial images is generally much 
higher than that of thermal infrared images. Thus visible images have more informa-
tion, and some information of visible spectrum images definitely can not be recovered 
from thermal infrared images through the correlation relationship. 

In this paper, we have developed a method to solve the problems. We use Canonical 
Correlation Analysis (CCA) to the extract features, converting a many-to-many map-
ping between infrared and visible image into a one-to-one mapping approximately. 
Then we learn the relationship between the feature spaces, in which the visible features 
are inferred from the corresponding infrared features using Locally-Linear Regression 
(LLR) or, what is called, Sophisticated LLE, and a Locally Linear Embedding (LLE) 
method is applied to recover a visible image from the inferred features, recovering 
some information lost in the infrared image.  

2   Related Works 

As presented above, this paper addresses the problem of conversion between different 
modal images, which shares lots of commons with the super-resolution problem [5-7], 
which is to render one high resolution (HR) image from one or several low resolution 
(LR) images. For example, the data we try to recover for two problems both have some 
information lost in the given observation data.  

Baker et al. [5] developed a super-resolution method called face hallucination to 
recover the lost information. They first matched the input LR image to those in the 
training set, found the most similar LR image, and then take the first derivation in-
formation of the corresponding HR image in the training set as the information of the 
desired HR image. We adopt this idea of finding information from the training set for 
the recovery data. 

Chang et al. [6] introduced LLE [10] to super-resolution. Their method is based on 
the assumption that the patches in the low- and high- resolution images form the 
manifolds with the same local geometry in two distinct spaces, i.e. we can reconstruct a 
HR patch from the neighboring HR patches with the same coefficients as that for re-
constructing the corresponding LR patch from the neighboring LR patches. Actually 
this method is a special case of Locally-Weighted Regression (LWR) [8] when the 



724 M. Dou et al. 

weights for all neighbors are equal and the regression function is linear, as we show in 
Section 4. We develop a Sophisticated LLE method which is an extension of LLE. 

Freeman et al. [7] took images as a Markov Random Field (MRF) with the nodes 
corresponding to image patches, i.e. the information from the surrounding patches is 
used to constrain the solution, while LLE does not. MRF improves the results when the 
images are not well aligned, but in our paper we assume all the images are 
well-registered and we do not use the time-consuming MRF method. 

Our work is also related to some researches on statistical learning. Melzer et al. [11] 
used Canonical Correlation Analysis (CCA) to infer the pose of the object from the 
gray-level images, and Reiter et al.’s method [12] learns the depth information from 
RGB images also using CCA. CCA aims to find two sets of projection directions for 
two training sets, with the property that the correlation between the projected data is 
maximized. We use CCA for feature extraction. 

Shakhnarovich et al. [9] used Locally-Weighted Regression for pose estimation. To 
accelerate searching for the nearest neighbors (NN), they adopted and extended the 
Locality-Sensitive Hashing (LSH) technique. The problem we address here is much 
different from theirs. A visible image is not an underlying scene to generate an infrared 
image, while in their problem the pose is the underlying parameter for the corre-
sponding image. So we use CCA to extract the most correlated features, at the same 
time the dimensionality of data is reduced dramatically, making nearest neighbors 
searching easier. In our experiments we use exhaustive search for NN instead of LSH. 

3   Feature Extraction Using CCA 

As mentioned above, the correspondence between the visible and the infrared images is 
a many-to-many mapping, and then to learn a simple linear relationship between the 
two image spaces is not possible. Instead, extracting features and learning the rela-
tionship between the feature spaces can be a solution. We wish to extract features from 
the original image with the properties as follows: (1) The relationship between two 
feature spaces is stable, i.e. there exists a one-to-one mapping between them, and it is 
easy to be learned from the training set and performs well when generalized to the test 
set; (2) The features in two distinct feature spaces should contain enough information to 
approximately recover the images. Unfortunately for our problem the two properties 
conflict with each other.  

Principal Component Analysis (PCA), which is known as the EigenFace method 
[13] in face recognition, is a popular method to extract features. For our problem it well 
satisfies the second condition above, but two sets of principal components, extracted 
from a visible image and the corresponding infrared image, have weak correlations. 

Canonical Correlation Analysis (CCA) finds pairs of directions that yield the 
maximum correlations between two data sets or two random vectors, i.e. the correla-
tions between the projections (features) of the original data projected onto these direc-
tions are maximized. CCA has our desired traits as given in the above property (1). But 
unlike PCA, several CCA projections are not sufficient to recover the original data, for 
the found directions may not be able to cover the principal variance of the data set. 
However, we find that regularized CCA is a satisfying trade-off between the two de-
sired properties.  
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3.1   Definition of CCA 

Given two zero-mean random variables x, a p×1 vector, and y, a q×1 vector, CCA finds 
the 1st pair of directions w1 and v1 that maximize the correlation between the projec-
tions x = w1

Tx and y = v1
Ty,  

max ρ(w1
Tx, v1

Ty) , 

s.t.  Var(w1
Tx) = 1 and Var(v1

Ty) = 1 , (1) 

where ρ is the correlation coefficient, the variables x and y are called the first canonical 
variates, and the vectors w1 and v1 are the first correlation direction vector. CCA finds 
kth pair of directions wk and vk satisfying: (1) wk

Tx and vk
Ty are uncorrelated to the 

former k-1 canonical variates; (2) the correlation between wk
Tx and vk

Ty is maximized 
subject to the constraints Var(wk

Tx) = 1 and Var(vk
Ty) = 1. Then wk

Tx and vk
Ty are 

called the kth canonical variates, and wk and vk are the kth correlation direction vector, k 
≤ min(p, q). 

The solution for the correlation directions and correlation coefficients is equivalent 
to the solution of the generalized eigenvalue problem below,  

(∑xy∑yy
-1∑xy

T – ρ2∑xx)w = 0 , (2) 

(∑xy
T∑xx

-1∑xy – ρ2∑yy)v = 0 , (3) 

where ∑xx and ∑yy are the self-correlation matrices, ∑xy and ∑yx are the co-correlation 
matrices. There are robust methods to solve this problem, interested readers please refer 
to [15], where an SVD-based method is introduced. 

Unlike PCA, which aims to minimize the reconstruction error, CCA puts the first 
place the correlation of the two data sets. There is no assurance that the directions found 
by CCA cover the main variance of the data set, so generally speaking a few projections 
(canonical variates) are not sufficient to recover the original data well.  

Beside the recovery problem, we also have to deal with the overfitting problem. 
CCA is sensitive to noise. Even if there is small amount of noise in the data, CCA might 
give a good result to maximize the correlations between the extracted features, but the 
features more likely represent the noise rather than the data.  

As mentioned in [11], it is a sound method to add a multiple of the identity matrix λI 
to the co-variance matrix ∑xx and ∑yy to overcome the overfitting problem, and this 
method is called regularized CCA. We find that it also has effect on the reconstruction 
accuracy, as depicted in Fig.1. Then regularized CCA is a trade-off between the two 
desired properties mentioned above. 

3.2   Feature Extraction and Image Recovery from Features 

We extract the local features rather than the holistic features for the holistic features 
seem to fail to capture the local facial traits. There is a training set consisting of pairs of 
visible and infrared images at our disposal. We partition all the images into overlapping 
patches, then at every patch position we have a set of patch pairs for CCA learning, and 
CCA finds pairs of directions W(i) = [w1,w2,…,wk] and V(i) = [v1,v2,…,vk] for visible 
and infrared patches respectively, where the superscript (i) denotes the patch index  



726 M. Dou et al. 

(or the patch position in the image). Every column of W or V is a unitary direction 
vector, but it is not orthogonal between different columns. Take a visible patch p 
(represented as a column vector by raster scan) at position i for example, we can extract 
the CCA feature of the patch p, using 

f = W(i)Tp , (4) 

where f is the feature vector of the patch.  

     

     
                           (a)             (b)             (c)               (d)              (e) 

Fig. 1. The first row is the first CCA directions with different λ (we rearrange the direction vector 
as an image, and there are outlined faces in the former several images), and the second row is the 
corresponding reconstruction results. CCA is patch-based as introduced in Section 3.2; we re-
construct the image with 20 CCA variates using Eq(6). If the largest singular value of variance 
matrix is c, we set (a) λ = c/20; (b) λ = c/100; (c) λ = c/200; (d) λ = c/500; (e) λ = c/5000. It is 
obvious that when λ is small, the CCA direction tends to be noisy, and the reconstructed face 
tends to the mean face. 

It is somewhat tricky to reconstruct the original patch p through feature vector f. 
Since W is not orthogonal, we cannot reconstruct the patch by p = Wf as we do in PCA. 
However we can solve the least squares problem below to obtain the original patch,  

p = argp min ||WTp – f||2
2 , (5) 

or to add an energy constraint, 

p = argp min ||WTp – f||2
2 + ||p||2

2 . (6) 

The least squares problem above can be efficiently solved with the scaled conjugate 
gradient method.  

The above reconstruction method is feasible only in the situation when the feature 
vector f contains enough information of the original patch. When fewer canonical 
variates (features) are extracted, we can recover the original path using LLE method 
[10]. As the method in [6], we assume that the manifold of the feature space and that of 
the patch space have the same local geometry; then the original patch and its features 
have the same reconstruction coefficients. If p1, p2,…, pk are the patches whose fea-
tures f1, f2,…, fk are f’s k nearest neighbors, and f can be reconstructed from neighbors 
with f = Fw, where F = [f1, f2,…, fk], w = [w1, w2,…, wk]

T, we can reconstruct the 
original patch by 
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p = Pw , (7) 

where P = [p1, p2,…, pk]. The reconstruction results using Eq(6 & 7) are show in  
Fig. 3(a). When only a few canonical variates at hand, the method of Eq(7) performs 
better than Eq(6); while there are more canonical variates, two methods give almost the 
same satisfying results.  

4   Facial Image Conversion Using CCA Features 

From the training database we can obtain the CCA projection directions at every patch 
position, and for all the patches from all the training images we extract features by 
projection onto the proper directions, then at each patch position i we get a visible 
training set Ov

i = {fv,j
i} and an infrared one Oir

i = {fir,j
i }. 

Given one new infrared image, we partition it into small patches, and obtain the 
feature vector fir of every patch. If we can infer the corresponding visible feature vector 
fv, the visible patch can be obtained using Eq(7) and then the patches will be combined 
into an visible facial image. In this section we will focus on the prediction of the visible 
feature vector from the infrared one. Note that the inferences for patches at different 
positions are based on different training feature sets. 

4.1   Reconstruction Through Locally-Linear Regression 

Locally-Weighted Regression [8][9] is a method to fit a function of the independent 
variables locally based on a training set, and it suits our problem well. To simplify the 
methods, we set the weights of nearest neighbors (NN) equal, and use a linear model to 
fit the function, then LWR degenerates to Locally-Linear Regression (LLR). 

For an input infrared feature vector fir, we find K-NNs in training set Oir, which 
compose a matrix Fir = [fir,1, fir,2,…, fir,K], and their corresponding visible feature vectors 
compose a matrix Fv = [fv,1, fv,2,…, fv,K]. Note that we omit the patch index for con-
venience. Then a linear regression obtains the relation matrix,  

M = argM min ∑k || fv,k – M fir,k||2
2 

= Fv. Fir
+ , 

(8) 

where Fir
+ is the pseudo-inverse of Fir. The corresponding visible feature vector fv can 

be inferred from the input infrared feature fir by 

fv = M fir  

     = Fv Fir
+ fir. 

(9) 

To find the nearest neighbors, the distance between two infrared feature vectors fT 
and fI

 need be defined. In this paper, we define the distance as 

D = ∑k ρk ( fk
T

,  – fk
 I

, ) , (10) 

where ρk is kth correlation coefficient; fk
T and fk

 I denotes the kth element of the feature 
vector fT and fI respectively.  
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Actually the LLE method using in [6] is equivalent to LLR. The reconstruction  
coefficients w of infrared feature fir from K-NNs, Fir, can be obtained by solving the 
Least Squares Problem. 

w = argw min || Fir w - fir || 

                                             = Fir
+ fir . 

(11) 

then the reconstructed corresponding visible feature vector fv= Fv Fir
+ fir, which has the 

same form as Eq(9). 
The difference between the two methods is the selection of the number K of NNs. In 

LLR, to make regression sensible we select a large K to ensure that Fir∈Rm×n has more 
columns than rows (m<n), i.e. Fir

+ = Fir
T(Fir Fir

T)-1. While in LLE method, a small K is 
selected, then m>n and Fir

+ = (Fir
T Fir)

-1 Fir
T. The reconstruction results are shown in 

Fig.2(b)(e). The LLR method gives better results, but consumes more resources for it 
needs to find a larger number of NNs. In the next section we extend LLE to a Sophis-
ticated LLE which achieves competitive results as LLR, while it uses approximately the 
same resources as LLE. 

4.2   Reconstruction Via Sophisticated LLE 

The reason of the poor performance of LLE method may be that the local geometry of the 
two manifolds of visible and infrared features is not the same. We use an experiment to 
demonstrate it. For every infrared feature vector fir

i in the training set we find its four NNs 
{fir

1, fir
2, fir

3, fir
4} (the neighbors are organized in the decreasing order according to the 

distance to fir
i, the same below.) whose convex hull (a tetrahedron) contains the infrared 

patch, but their visible counterpart, the visible feature vector fv
i and its neighbors {fv

1, fv
2, 

fv
3, fv

4} do not preserve the same geometric relations. Moreover, more than 90 percent of 
fv

i’s are out of the convex hulls of the corresponding neighbors. 
It is a natural idea to learn the changes between two local geometries of two mani-

folds. Since the local geometry is represented by the reconstruction coefficients, we 
only need to learn the mapping H(·) between the infrared and the visible reconstruction 
coefficients denoted as x and y respectively, and y = H(x). 

Since we have a training database at hand, we collect the pairs of reconstruction 
coefficient vectors (x1, y1),…,(xN, yN), which are used to reconstruct feature vectors of 
visible and infrared patches respectively. We can obtain the function H(·) between 
them using the least squares method. Or a simpler algorithm can be used, while the 
form of H(·) need not be known. For an input feature vector fir

i, we compute its re-
construction coefficients xi using its k-NNs in the infrared feature space. What we try to 
obtain is the reconstruction coefficient vector yi which is used to reconstruct the visible 
feature fv

i corresponding to fir
i. We found the most similar coefficient vector xi’ with xi 

in the infrared coefficient dataset, and we regard the corresponding visible coefficient 
vector yi’ as an estimate of yi. We call our method Sophisticated LLE.  

5   Experimental Results 

We use the public available database collected by Equinox Corporation [14] for our 
experiments. We select 70 subjects from the database, and each subject has 10 pairs of 
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visible and infrared images with different expressions. The long wave thermal infrared 
images are used because the points of image pairs are well-matched, even though they 
have lower resolution than the middle wave images. All the images have been manually 
registered to guarantee the eye centers and the mouth centers are well-registered. Some 
image pairs of the data set are shown in Fig. 2(a)(g). 

We test our algorithm on the training set using the leave-one-out scheme, i.e. take 
one pair out from the database as the test images (the infrared image as the input and the 
visible image as the ground truth); all the pairs of the same subject are removed from 
the database as well; and the left pairs are taken as the training data.  

       

       

       

       

       

       

                  (a)                 (b)            (c)               (d)               (e)               (f)              (g) 

Fig. 2. The results of face image conversion from thermal infrared images. (a)the input infrared 
image; (b) the result of our method using the prediction method of LLR using 5 canonical vari-
ates for each patch; (c) the result of our method using the prediction method of Sophisticated 
LLE; (d) the reconstruction face using 5 canonical features for each patch extracted from the 
ground truth; (e) the result using directly LLE method; (f) the result using the holistic method; (g) 
the ground truth. 
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There are several parameters to be chosen in our algorithm, such as the size of 
patches, the number of canonical variates k (the dimensionality of feature vector) we 
take for every patch, and the number of the neighbors we use to train the canonical 
directions.  

Generally speaking, the correlation between pairs of infrared and visible patches of a 
smaller size is weaker, so the inference is less reasonable. While the larger size, 
makes the correlation stronger, but more canonical variates are needed to represent the 
patch, which makes training samples much sparser in the feature space. The size of 
images of our database is 110×86, and we choose the patch size of 9×9 with 3-px 
overlapping.  

Since the projections (features) onto the former pairs of direction have stronger 
correlations, choosing fewer features makes the inference more robust, while choosing 
more features gives a more accurate representation of the original patch. Similarly, 
when we choose a larger number of neighbors, K, there are more samples, which makes 
the algorithm more robust but time-consuming. We choose 2~8 features and 30~100 
neighbors for LLR, and we have the slightly different results. 

We have compared our methods with other existing algorithms such as LLE and the 
holistic method. The results in Fig.2 show that our method is capable to preserve the 
global facial structure and to capture some facial detailed features such as wrinkles, 
mustache, and the boundary of nose. Our algorithm is also robust to facial expressions,  
 

              

              

              

(a)                                                                       (b) 

Fig. 3. (a) The comparison of reconstruction results using Eq(6) and Eq(7). The first row is the 
ground truth; the second row is the face reconstructed using Eq(7), and the third row using Eq(6). 
5 canonical variates taken from the ground truth are used for each patch. It is clear that the re-
constructions of Eq(7) contain more information than those of Eq(6). (b) The face image con-
version results with different expressions of the same subject. The first column is the input 
infrared image; the second column is our conversion result; the third column is the reconstruction 
result using the canonical variates extracted from the ground truth; the last column is the ground 
truth. 
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as shown in Fig. 3 (b). The prediction methods proposed in Section 4.1 and 4.2 give 
slightly different results as shown in Fig. 2(b) (c). 

Although our method is effective, there is still difference between our results and the 
ground truth. There should be two key points to account for it. First, the correspondence 
between the visible and the infrared images is a many-to-many mapping and infrared 
images contain less information than visible images. Second, our method tries to obtain 
the optimal result only in the statistical sense.  

6   Conclusion and Future Work 

In this paper we have developed an algorithm to render the visible facial images from 
thermal infrared images using canonical variates. Given an input thermal infrared 
image, we partition it into small patches, and for every patch we extract the CCA fea-
tures. Then the features of the corresponding visible patch can be inferred by LLR or by 
sophisticated LLE, and the visible patch can be reconstructed by LLE using Eq(7) 
according to the inferred features. 

We use CCA to extract features, which makes the correlation in the feature space are 
much stronger than that in the patch space. And using LLE to reconstruct the original 
patch from inferred features recovers some information lost in the infrared patch and in 
the feature-extraction process. 

The experiments show that our algorithm is effective. Thought it cannot recover 
visible images the same as the ground truth because of less information of infrared 
images, but it does preserve some features of the ground truth such as the expression.  

The future work includes: (1) applying the method in infrared face recognition to 
improve the recognition rate for it recovers some information lost in infrared images; 
(2) making the methods more robust to ill-registered images. 
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