
13. The Search is On (Search Algorithms)

Canst thou by searching find out God?
The Bible, Job Chapter 11, verse 7.

Linear Search
Take a pack of cards. Shuffle it thoroughly. Now find the Four of Spades. How did
you do it? Put that card back and shuffle the pack again. Now find the Nine of Hearts.
Did you look for the card the same way as the first time? Suppose the card you were
looking for was missing. How would you have discovered this fact when searching?
At what point in the search would you have known for certain that the card was not
there?

If you used some methodical way of finding the card that you followed each time then
you were using a search algorithm. Most people would search for a card in a shuffled
pack by starting at one end of the pack, and checking the cards one by one until they
came across the card they were looking for. This method of searching is well known
in Computer Science. It is called Linear Search. It is one of the simplest ways of
searching. You know when the thing you are looking for is not there when doing a
linear search if you have reached the end and have not seen it. This is obviously so,
because by that point you have inspected every card in the pack.

Suppose like me you have a pile of CDs next to your Hi-fi. Each time I play a CD I
put the old one that was in the machine back on the top of the pile. This means the
pile ends up in a totally random order. Suppose I want to find the CD Regatta de
Blanc by the Police. How do I find it? I start at the top of the pile and check them in
order until I get to it. If I got to the bottom of the pile I would know it was not there,
and was probably in my CD walkman. I am again using the linear search algorithm.

Suppose you need a taxi from home to the airport. How would you find the phone
number of one? Get a copy of the Yellow Pages and go to the Taxi section. Now pick
a taxi firm. You could just take the first, but its probably best to get one that is based
near to where you live so that it is more likely to be on time. Chances are you would
start with the first one and check through them in turn until you came to one with an
address near to you. The owners of taxi firms know this is what you are likely to do.
They also know that the Yellow Pages puts firms in alphabetical order. That is why so
many taxi firms are called things like AA Taxis. Guesthouses use the same trick. I
have stayed in one called A&B Guest house, for example. The names of many
businesses are thus the way they are because of the linear search algorithm!

On the corner of my desk I have a pile of papers that represent my "TO DO" list. New
things to be done get added to the pile, which I gradually work through. Suppose my
Boss came in asking me why I never returned the form he sent me that should have
been filled in the day before. I would have to quickly find it. Unless I had some idea
where it was in the pile, I would have to start at the top and work down the pile one at
a time. Again I am using linear search.

The book, The Diving-bell and the Butterfly, (Bauby 1998) was written (or at least
dictated) using linear search. It is the autobiography of Jean-Dominique Bauby, the
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former editor-in-chief of the French magazine Elle. He suffered a massive stroke and
was left totally paralysed, unable to move or speak, other than being able to move a
single eyelid. Rather than give in to his disability, he instead decided to write his
autobiography. In the book he describes what life is like for someone who is totally
paralysed, including how he communicated with people and so managed to write the
book. He dictated it to a secretary, just using blinks. This is where linear search came
in. The secretary read through the alphabet a letter at a time. When she read out the
letter that came next in the word Bauby wanted, he would blink, and she would write
it down. She would then start at the beginning again looking for the next letter. Letter
by letter, the whole book was written in this way. Each letter was found by a linear
search of the alphabet. The algorithm was improved slightly from a straight linear
search of the alphabet in that the letters were ordered by frequency in French (Bauby's
native language and that in which the book was written). E is the most common letter
so it was first in the list, then S, A, R and so on finishing with W, the least commonly
used letter. All Bauby's communication to the outside world was done in this way.

The game of Hangman is played using a variation of linear search. The problem is to
work out a word one of the other players has thought of. You only know the number
of letters in the word to start with. The search task is to search through the letters of
the alphabet and work out which are in the word. You might start by guessing E as it
is the most common letter in the English language. Next you try S, then perhaps A and
R. With each letter tried, you are told either that it is not in the word (and lose a life)
or the positions that word occurs. In the earlier stages of the game you have effectively
lined up the letters of the alphabet in order: E,S,A,R... and are doing a linear search
down them, until all the letters of the word have been found. Of course if you are
playing well, you will not have the alphabet in a fixed order but will start to guess the
word and change the order of the letters based on the results of the previous guesses.

The game of I-spy is also played by something similar to linear search. One person
thinks of a word and tells the other players its first letter: “I spy with my little eye
something beginning with T”. The players then list the things they can see that start
with the letter T: “Toe”, “Toy”,  “Television”, ... When a person names the thing the
first person had thought of the search (and the game) stops. Otherwise the game
continues until the players have tried every possibility they can think of. The search is
being done in a linear fashion: one by one, and on each search question one possibility
is ruled out. The difference here is that you do not start with a full list of the things to
search. You may not ever come up with the answer if you do not think of it. You are
performing a linear search of the things you can think of and see that start with the
given letter.

Linear Search is so commonly used because it is simple and relatively quick provided
the amount of things to sort through is small. It is a natural way to search when the
things being searched through are in random order, and you do not expect to have to
search for things very often. Does the fact that it is so common mean that it is the only
way to search for things, or that it is always the best search algorithm? Things
certainly do not always seem to go as well as they should. How often have you
searched for something in one place after another, only to have the thing you were
looking for in the very last place you could possibly have looked? That is one of the
disadvantages of linear search. In its worst case you have to check everything. 
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Let us try and write out the algorithm for linear search. If in all the above situations
we are following the same algorithm, then we ought to be able to write one set of
instructions that works for all. Lets start with the problem of searching through a pile
of books. We are doing something over and over again – so we have some form of
repetition. We probably do not know how many books there are to search through so
it is not a counter controlled loop. We stop if we have found the thing we are looking
for or we have run out of books to check. In other words we keep going while the
current book is not the one we are after and while there are still books to look at.
Our algorithm is going to look something like:

while you are not holding a book and 
your finger is not at the bottom of the pile
do the following repeatedly

....
What do we do repeatedly? We check the current book and ask if it is ours or not. We
are making a decision and will do different things depending on whether it is ours or
not. That sounds like a 2-branched if statement.

while you are not holding a book and
your finger is not at the bottom of the pile
do the following repeatedly

if your finger is against the book you want 
then ...
else ...

What do we do if the book is the one we want? We take it out of the pile – we have
found it. What do we do if the book is not the one we want? We move on to the next
one.

while you are not holding a book and 
your finger is not at the bottom of the pile 
do the following repeatedly

if your finger is against the book you want 
then take that book from the pile
else move your finger to the next book.

So we check that we are not holding the book, and have not run out of books to check.
If so we ask if the current book is the one we want. If it is we take it from the pile. If
not we move to the next book (the current book is now the next book). We then go
back to the loop question and see if we have finished yet. 

There is one thing still missing: initialisation (remember I warned you about
forgetting that!) What is our finger doing before we start? (it could be painful if it is
picking our nose at the time when we start to follow the algorithm). We have not
explicitly said where in the pile of books to start: we must start at the top as otherwise
we will not check some of the books so fail to find the book we are looking for (so its
important!). We also have not said whether or not we are holding a book at the start.

To find a book in a pile do the following:
1. Put down any books you happen to be holding.
2. Put your finger against the top book.
3. while you are not holding a book and your finger is not at the bottom of

the pile do the following repeatedly
if your finger is against the book you want
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then take that book from the pile
else move your finger to the next book.

Try this algorithm out on a real pile of books to make sure it really does work –
remembering to follow the instructions rather than doing what you think you have to
do.

Problem 1

Write out a version of the linear search algorithm for the situation when you are
searching for a given DVD in a pile.

Problem 2

That should have been easy as you just have to replace the word “book” for “DVD”.
Write out a version for a Nurse who Jean Dominique Bauby is trying to communicate
a single letter to (assume normal alphabetic order is used).

That needs slightly more changes but the basic structure of the algorithm should be
the same – the same loop with similar tests and a similar if then else statement inside.

To find a letter being thought of from the alphabet do the following:
1. Take a blank piece of paper.
2. Say the letter A.
3. while you have not written a letter down and 

    you are not at the end of the alphabet 
    do the following repeatedly

if the person blinked
then write down the last letter you said 
else say the next letter of the alphabet.

The structure of this algorithm is identical to the version for books. Notice we have
still accounted for the situation when you end up not writing a letter down – if you get
to the end of the alphabet the search failed. Perhaps he was not trying to communicate
anything to you! However I have been slightly lazy in that I have assumed that if the
last letter said is Z then when given the instruction to say the next letter the person
will say something sensible like “there’s nothing left” or just say nothing. Strictly I
ought to have spelled this out. In fact whatever is said then is a sentinel value – not a
letter of the alphabet but something else that means the end. By “at the end of the
alphabet” I mean the person has just said that sentinel value.

Problem 3

Modify the above algorithm to explicitly use the sentinel value “END”.

Since it is a single algorithm, we should be able to write a general version of it that
works whatever kind of thing we are searching through. We can then use it whenever
we wish to do a linear search. We do this by taking the parts of the algorithm that are
specific to a particular problem (like books or letters) and change them to something
more general, but leaving the structure alone. For example we could replace the word
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“letter” by “thing”. We also need to change various of the sentences to make sense
when talking about general things. Here is one more general version of the algorithm.

To find a thing from a series of things do the following:
1. Note that you have not found the thing yet.
2. Set the current thing to be the first thing.
3. while you have not found the thing you are searching for and 

    you are not at the end of the series of things 
    do the following repeatedly

if the current thing is the thing you are searching for
then you have found the thing you are looking for
else make the current thing the next thing in the sequence

We now have a general set of instructions (algorithm) called linear search that we can
use to search for things. There are other ways of writing it that amount to the same
thing and so are still linear search. However linear search is just one way of searching
(and actually not that good a way in many situations). We will now look at some
others.

Binary Search
There are actually many search algorithms, used for different purposes, and you
probably use variations of several without even thinking about it. Have you ever
played the game of 20 Questions? This involves one person thinking of a famous
person. The other player has to work out who it is just by asking Yes and No
questions. You try to do it in as few questions as possible. If you take more than 20
questions you lose. This is just a search problem – we are searching for the name of a
person out of the millions of famous people there are in the world. If the game is just
a search problem then we could play it by doing a linear search. How would this
work? We would ask a series of questions of the form "Is it X?" as with I-spy. For
example a typical game might go:

"Is it Nelson Mandella?"
- "No"
"Is it Arundhati Roy?"
- "No"
"Is it Freddy Mercury?"
- "No"

If you played this way, you would probably lose every time except for perhaps on a
few very lucky occasions. These lucky occasions would also probably convince you
that you could read minds! You would only win if the correct answer were one of the
first 20 people you thought of. Given there are millions of people to choose from you
do not have much hope (unless of course you can read minds!) So why do people ever
play? And how come they often manage to get the right answer in much less that 20
questions? The problem with linear search is that you rule out only one answer (or
thing in the pile you are looking through) at a time.

Suppose you were playing 20 questions with me. What would you ask first? A
common first question is

"Is the person male?" 
Other questions that you might ask early on are

" Is the person alive?" and " Is the person fictional?"
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Why are these questions good ones to ask and in particular better than giving a series
of names? They all have the obvious disadvantage that you have no chance of
winning on that question itself. Are they then wasted questions?

The big advantage of such questions that makes it worthwhile "wasting" the chance
of winning on that turn is that they rule out large numbers of people in one go. Most
importantly they do this whatever the answer to the question. Questions such as "Was
the person a member of the rock group Queen?" rule out a large number of people if
the answer is YES. However, they only rule out the 4 members of Queen if the
answer is NO. Since the latter is the most likely outcome until, perhaps, the later
stages of the game, it is not a good question. Thus the ideal question is one that rules
out half of all people if the answer is yes, and the other half if the answer is no. That
means it does not matter to you what the answer is, you are equally close to the
person's identity. The "Queen" question would be worthwhile if somehow you had
narrowed down the search on the previous questions to being a member of either
Oasis or Queen for example. The best of the above questions to ask first is thus the
male/female one. The more questions that divide the remaining possibilities in half
that you come up with, the quicker you will get to the answer. Halving the population
repeatedly very quickly takes you to a single person. If there were a million possible
candidates, it only takes 20 such questions to guarantee narrowing down the search
to a single person: and that really is a guarantee! Compare that with linear search. If
you are very, very lucky you might get the right answer the first time (I once won in 2
questions!). In the worst case, however, the correct person could be the last one you
asked about, assuming you had the time to ask a million questions. The skill of the
game is of course to come up with good questions that do keep splitting the field in
half. If a question does not split the field in half every time it could take more
questions, and you no longer have that guarantee.

Does this approach to searching only work for 20 questions or can it or variations
work on other kinds of thing being searched through? Get a residential telephone
directory and find a friend's telephone number in it. How did you do it? Did you use
linear search – starting at the first page and checking every entry until you found your
friend's? If you did, it probably took you a very long time (unless their name happens
to be something like Aahann, Aammir or Aaronovitch – and it is very bad news if
their name is Zwiebel, Zygovistinos or Zykun). It is more likely that you used a
variation on the 20 questions algorithm (if a little haphazardly). If the name was
Steinbeck, for example, you would not start at the first page, but open the directory
somewhere in the middle. There is little point starting at the beginning, after all, as a
name starting with S is more likely to be near the end. However, it is possible that
you have over shot the page you wanted. You would therefore check what the names
started with on the page you had opened the directory at. If you are at a page before
the name you want, then you can rule out the first half of the directory and
concentrate on the second half. This is possible because the telephone directory is
sorted. If it were in a random order, you would be no nearer finding the right entry. If
you have overshot, then you can rule out the second half and concentrate on the first
half. Now you have only half as many entries to search, and can continue in the same
way, go to a page roughly half way through the part you have not discarded and
discard another half. Keep doing this until you get to the single entry that is your
friend's name. 
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Let us suppose I opened the book at McDonald. It is before Steinbeck, so I ignore all
pages before that point. I move to a page half way between McDonald and the end of
the book. This time the first name on that page is Tambe, so I overshot. I now go half
way between McDonald (assuming I remembered to keep my finger in that place) and
Tambe finding Poulter: I overshot in the other direction this time. I go forwards again
to a point halfway between Poulter and Tambe and find Shah. Not far enough, so I
split between Shah and Tambe. Smith: not far enough. Split between Smith and
Tambe: Stanton. I am now on the correct page (so could continue with the same
process working through the page). With 7 questions I have narrowed down a whole
telephone directory to a single page. A few more and I would be down to a single
entry. With Linear Search I would only have made it as far as Aarrons in the same
time!

This approach of searching things by dividing the field in two is called binary
search. As with good 20-questions play, this search algorithm halves the number of
entries to search on each "question". The great thing here, though, is you just keep
asking the same question every round! The question in this case is "Is the entry in the
place I opened the book earlier than the one I want". It is making use of the fact that
the information to be searched has been pre-organised: it is sorted.

Let us return to searching a pack of cards. If you thought the pack was shuffled, you
would probably start the search by linear search. However, if after checking a few
cards they seemed to be in order, you would quickly abandon that approach and
switch to something similar to binary search, jumping ahead and ruling out whole
portions of the pack in one go.

The reason we can find entries in books such as dictionaries so quickly is because
time was spent by the editors organising the entries. It is only because they are
organised in a known (alphabetical) order that we can use variations on binary search.
Sorting the entries will have been a great deal of work for the editors, but by doing
that work once, the time taken by the many people subsequently using the
dictionaries to search for things is much shortened. A similar approach is used in a
variety of algorithms: you spend longer at the start organising the information once
and for all, so as to save time doing something that will be repeated many times later.
Provided the repeated part is done often enough this will save time overall. Today it
seems inconceivable that a dictionary or telephone directory would be in anything but
alphabetical order. However, one of the first ever dictionaries (in the 16th century),
John Withals' Shorte Dictionarie for Yonge Begynners, was actually ordered by
subject (Winchester, 1999), so the realisation that alphabetical order would be the
most useful organisation was clearly not immediately obvious.

Jean-Dominique Bauby, the person who was totally paralysed but still managed to
write a book, could have made his task much easier if he had known of binary search.
Instead of having the person he was communicating with work through the alphabet a
letter at a time, they could have started with M. Instead of a blink meaning "Yes", it
could have meant "later in the alphabet", with no blink meaning "earlier in the
alphabet". A double blink would mean "that is the letter". Each time the next letter
read out would be roughly half way through the interval remaining. This would have
taken the secretary longer to learn to do, perhaps, but it would have meant every letter
of the alphabet could have been identified in only 5 blinks. With Bauby's algorithm,
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only the letters E,S,A,R and I could be identified that quickly. The least common
letters would take up to 25 blinks. The book is139 pages long with around 180 words
per page and perhaps 7 letters per word: something over 175 000 letters. Binary
search would have saved an awful lot of blinks. That is just for the book. If all
Bauby's communication had been with binary search, communication would have
been significantly less frustrating both for him and for his friends and relatives. An
understanding of algorithms can thus make real difference to a person’s life.

The German developers of a brain scan based system developed for sufferers such as
Bauby did know of Binary search. They developed an electroencephalogram (EEG)
headset that can read the wearer’s mind, at least as far as recognising when they think
“yes”. They needed a way of turning this small ability into a full communication
system. Here is a description of what they did with the person’s thoughts:

“If the subject’s brain activity gave a “yes” signal, the group of letters was
split, and then split again until only one letter was left – a letter that began to
spell a word, and then a sentence.” (Radford, 1999)

Thus binary search has even be used to read minds.

It probably occurred to you that when you actually search for a name in a telephone
directory, (or a word in a dictionary) you would probably do it slightly differently. If
looking for Steinbeck, you would not open it in the middle as that would almost
certainly take you to the middle letter – M – as it did in the example above. S is
nearer the end of the alphabet so you might open the directory two-thirds of the way
through. You would do this on each step: using your knowledge of the positions of
letters in the alphabet, to make a better guess than halfway each time. This is an
optimisation of binary search where you are using even more knowledge (the
positions of letters in the alphabet) about the thing being sorted to speed things
further.

Here is a new game I have just invented that is similar to 20-questions. It is called 10-
questions. Just as in 20-questions, one person thinks of a famous person. The rules
for questions are now slightly different. The questions no longer have to be ones with
YES/NO answers but can have up to four alternatives (including as one of the
alternatives, “none of those”). The person giving the answers must say which of the
alternatives is the case. For example the person guessing might ask as their first
question: “Is the person you are thinking of a) Asian b) African c) European d) none
of those”. The answer given  might be “a) Asian”. A question later in the game might
be: “Is the person you are thinking of a) Nelson Mandella b) Archbishop Tutu c)
neither of those. Notice that you do not have to always give 4 alternatives, the
questions could have two three or four alternatives, as long as one of the alternatives
is “none of those”. However, you now only have 10 questions to get the answer. Play
a game or two to get the idea. We decided that a perfect player of the original 20-
questions would come up with questions that divided the possible answers in two.
Why? Because that way, whatever the answer you always rule out the same number
of people. Does the same thing apply to this game? Is the best strategy still to ask
essentially yes/no questions? That is still allowed but is it still best? Perhaps one of
the options should cover half the alternatives and the others can be anything? 

Problem
Before reading on decide what you think the best questions to ask are.
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Problem
Is it easier or harder to get the answer in 10 questions than in the original game with
20 questions to ask?

Suppose with earlier questions we have narrowed down the search so that we now
know the answer is one of the four Beatles. We have several questions left but
obviously want to be sure to get the answer as quickly as possible. Here are some
questions we could ask.

Is it a) John Lennon or b) one of the others?
or we could ask

Is it a) John Lennon or Paul McCartney, or b) one of the others?
or we could ask

Is it a) John Lennon or b) Paul McCartney or c) one of the others?
or we could ask

Is it a) John Lennon or b) Paul McCartney or c) Ringo Star or d) the other one?

Which of these questions would you ask?

If you ask the first question then you would not even be playing good 20-questions! If
you are right and it is John Lennon then fine. However if wrong you still have 3
choices left, which is not so good.  

If you ask the second question then you are playing good 20-questions. That question
splits the options in half, so whatever the answer there will be two choices left and
one more question is guaranteed to get it. That sounds good, but we only have half as
many questions over all so really we need to be able to do better than 20-questions.

If you ask the third question you are trying to make use of the extra flexibility you
have but not fully – perhaps you thought John Lennon and Paul McCartney are the
most famous so its worth naming them. However, if that hunch is wrong we still have
two possibilities left and need a further question. 

Of course the last question is the best question. Whatever the answer it rules out three
people: three quarters of the alternatives. We are sure of the answer with only one
question. Suppose the question before we knew the answer was either a member of
the Beatles, a member of the Spice Girls, a member of Queen or a member of REM
(all pop groups with 4 members). Obviously the question to ask is

“Is the person in a) Queen, b) REM c) the Beetles or d) none of the above (ie
the Spice Girls)?”

Why because whatever the answer we rule out three-quarters of the options. We will
then be sure of getting the answer in one more question. The tactic to use is to try and
come up with questions that always rule out roughly three-quarters of the population
whatever the answer. That is each choice should cover an equal number of people.
This is actually the same reasoning as with the original game. We only have 2 choices
of answer so we want to be left with half of them with each question. Now we have 4
choices of answer so we aim to have only a quarter of the people left with each
question. In both situations we want each possible answer to cover the same number
of people as that is the only way we can be sure that whatever the answer we get the
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same outcome. Suppose we were allowed only questions with a choice of three
possible answers, what fraction of people would we want each answer to cover?

So when playing the game of 10-questions, the best players will try to come up with
questions where each option covers a quarter of the people left. This rules out more
people with each question than in 20-questions so it must take fewer questions to get
the answer. How fewer? Suppose we have asked questions in both games so that
there are exactly 64 possible people left. 

With the rules of 20-questions and each question ruling out half the alternatives. The
first question leaves 32 people (dividing 64 in half), the second question leaves 16
people, the third question leaves 8 people, the fourth question leaves 4 people, the
fifth question leaves 2 people and with the sixth question there is only one person left
– we know who it is in 6 questions.

With the rules of 10-questions on the other hand and each question ruling out three
quarters of the alternatives. The first question leaves 16 people (dividing 64 in 4), the
second question leaves 4 people, and with the fourth question there is only one person
left – we know who it is in only 3 questions. It is twice as fast. If you do the same
reasoning starting with a million or so people you will find that 10 questions in the
game of 10-questions is exactly as efficient (ruling out the same number of people) as
20 questions in the game of 20-questions. Just as 20-questions played well
corresponds to binary search. The game of 10-questions corresponds to a faster
algorithm of dividing into four. The more categories you can divide into in a single
question the faster the algorithm will be. When we open a dictionary in roughly the
correct place for the first letter of the word we are looking for, we are very roughly
doing this. The “question” is which of the 26 letters of the alphabet does it start with.
We then go directly to that section.

Could we use the observation that 10-questions is faster than 20-questions to help
come up with a faster algorithm for someone with locked-in syndrome to use to
communicate? This would require the paralysed person to be able to indicate one of
four options. If they could only blink one eye then you would need some system of
single or double blinks. If they could blink both eyes then there are four signals
possible: no blinks, blink left, blink right, blink both at once. The question now asked
would not be first or second half of the alphabet remaining, but, first quarter (no
blinks, second quarter (left blink), third quarter (right blink) and fourth quarter (both
blinks). The first question would narrow the search down to A-F, G-M, N-S, or T-Z.
Each of these has 6 or 7 possibilities in. Suppose no blinks were communicated, this
would mean A-F. The next question might be AB, CD, E or F. (As there are not 8
alternatives we do not have 2 choices in each category). That question might give us
the answer, but if not (say left blink was communicated meaning C or D) a third
question (C or D?) would give the answer. At worse we get the answer in 3 questions
but at the expense of being able to blink with both eyes and it being harder to
determine what the answer means. 

Binary search works well for computers because the basic “questions” computers can
ask are binary yes/no ones as we saw when discussing if-the-else statements. There
are situations where we can overcome this restriction as we will see. Of course, if we
would ask a question that can have any number of options as answer then it would
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tells us which of the alternatives the answer is directly in one question. As we will see
that idea leads to a different algorithm (lookup-tables and bucket searching) that have
other disadvantages.

When I was at School, our R.E. teacher arranged for a Missionary who had just
returned home from Papua New Guinea to talk to us about his life there. The most
interesting thing he described (to me at least) was the way he learnt the local
language. He did not have an English-Papua New Guinean dictionary as none existed
at the time so he had to write one himself as he went along. I kept a similar
vocabulary book of new words when I was learning French at school. The problem
with my vocabulary book, however, was that the words were not in alphabetical order
but in the order I came across them. This was very infuriating, as often I knew I had
come across a word, but just could not find it. The Missionary used a different
storage mechanism (data structure) which allowed him to use a search algorithm
similar to binary search even though the words were never sorted. Each time he came
across a new word, he would write it and its translation on a card, so that he had one
card for each word. These cards acted as his dictionary. He did not keep the cards in
alphabetical order as in a normal dictionary, however. Instead each card had a series
of 26 holes along each edge, with each hole labelled by a letter of the alphabet. 

The topside of the card represented the first letter of the word. The bottom side of the
card represented the second letter of the word on the card. Suppose the Missionary
was told the Papua New Guinea word for Pig. He would cut a notch in the edge of the
card into the hole labelled P. He would then cut a notch in the bottom edge against
the letter I (as in the above diagram).

The word Pig and its translation would be written on the card and it would be put in
the pile of other words. If at some later time, he needed to know the word for Pig, he
would take the pile of cards and place a knitting needle through the hole labelled P on
the top edge. He would then hold up the knitting needle and shake it. All the cards
with a notch cut in the P (cards for words starting with P) would fall to the ground,
leaving all the others on the knitting needle. They would be discarded, and the
knitting needle would be put through the hole labelled I on the bottom edge of the
cards that had fallen to the ground. After another shake only cards for words starting
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PI would fall down. Usually this left a small enough number of cards that the correct
card could be found using linear search.

The cards are being used to do a variation on binary search in a similar way to 10-
questions. The first "question" narrows down the search task to words starting with P.
The second to those starting PI. By putting more holes round the cards, further letters
of the words could have been labelled. The first question leaves you with a 26th of the
original possible words, and the second a 26th of those (assuming their are roughly the
same number of words starting with each letter). 

The same search algorithm using cards can be used to help identify objects – in the
same way as 20 questions works. In the 1950s, the Forestry Products Research
Establishment used a similar card system to classify the thousands of different species
of trees that exist. Given a series of known facts about a tree the cards were used to
work out which species it was. Here, the holes on the cards represented YES/NO
questions, such as "Are growth rings present?" and "Is the wood porous?" A hole
with a notch represented "YES" and no notch represented "NO" as the answer to the
question. The name of each tree species was written on a card, and notches cut in the
holes for which the answer to those questions was YES for that tree. The same
approach, inserting a knitting needle through the pack was used to answer the series
of questions about the tree to be identified. If the answer to the question for the wood
under scrutiny was YES, then the cards that dropped were kept. If the answer was
known to be NO, then the cards on the knitting needle was kept. Eventually, only one
card would remain and it would hold the name of the tree under scrutiny. Note that
the order the questions are asked is important. This is because the answer to one
question may lead to another being superfluous. For example, there is no point asking
if the smell is leather-like if we already asked if the pores are in a radial pattern since
there are no trees with these two properties. We will see later how our questions
actually form a tree data structure.
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Tree Searching
Binary search is fast because it makes use of the existing organisation of the data: that
the data is sorted. However, the information is still placed in a long list both for linear
search and for binary search. We can organise data in other ways, however. A tree is a
way the data can be organised to give a search algorithm similar in some ways to
binary search.

Imagine you are a tourist on a day-trip to London. You arrive at Charing Cross Station
and wish to visit Nelson's Column. As you have never visited London before, you do
not know which way to go. However, a friend has told you it is in easy walking
distance. You are faced with a search problem. How to find Nelson's column among
the thousands of other places in London. You could buy a map, but they can be
difficult to follow. You could ask for directions. However, perhaps you are a foreign
tourist and do not speak English very well so you are not confident that you would
understand the instructions. Perhaps like me you know that even if you did understand
you would still get mixed up and go left-right-right instead of left-left-right. You
could get a taxi, but that is expensive (and you are worried that you might be making a
fool of yourself if it turns out that Nelson's Column is actually just round the corner!)

Luckily the London Authorities want you to find Nelson's Column too along with
many of the other places you might have been wishing to visit such as Covent Garden,
Leicester Square, the National Gallery, etc. They have therefore done some organising
in advance. This is only worth their while because they know there are lots and lots of
people attempting the same search problems every day – all those tourists. As you
walk out of the station, and are wondering which direction to go in, you see a
signpost. It does not give you all the directions, just the first stage: which street to go
down immediately. It also gives directions to other places too, so you might find
yourself with people going to Leicester Square, though the tourists wanting Covent
Garden have gone the other way. As you arrive at the next junction your step starts to
falter, as you realise you do not which way to go again. However, just as the doubt
sets in, you see another signpost. The Leicester Square tourists now split off another
way, and you continue. At each junction you are told the way to go next. You are
never given the whole instructions, just the information needed immediately at each
point. 

This differs to the approach used by a taxi driver. London cab drivers spend months
learning the best ways from any place in London to any other. They spend their days
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before being licensed, riding round on mopeds learning the streets. Before they
become a cab driver they must pass a test to prove they do know the way from
anywhere to anywhere else. All the information of all routes is stored in one place: the
cab drivers head. With the signposts, we have spread the information out amongst the
street junctions. The workman who put up the signs was effectively building a tree of
information. Each junction is a node in the tree, and each road an edge. It allows you
to search for Nelson's Column using an algorithm called tree searching. Think of a
(simplified) view of the streets from Charing Cross Station. Charing Cross is the root
of a tree-like structure. There are two branches out of it – the street in each direction.
Each road junction is a node in the tree: at each junction there is a split and two or
more different ways to go. 

Tree searching involves building a structure like the tree of roads and junctions out of
the things to be searched through, rather than just putting them in a long list. The data
is placed in the nodes (junctions) along with signposts indicating what is down each
path onwards out of the node. By starting at the root, the thing being searched for is
found by following the signposts. 

If there were lots of data, then this suggests that each branch would have lots and lots
of signs – one to each destination. Imagine having a signpost outside Charing Cross
Station that gave the direction to go in for every single tourist sight in the whole of
London. It would be a gigantic signpost (and finding the direction to your destination
would be a time-consuming search problem in its own right). To avoid this problem
signposts give directions to classes of places. Leaving London on the M1 the
signposts list the nearest cities. All the others are classed together as, for example,
"The North". In the opposite direction, they are grouped as "The South".

In a tree built for tree searching, we do the same trick. Suppose we are searching for
names in a tree-based directory. We start at the root node (which might hold the
telephone number of McEwan say) and look at the signpost. It would not list all the
names in the directory, but would be arranged so that all the names before McEwan in
a dictionary order lie down the left branch, and all those above McEwan lie down the
right branch. Unlike with tourist attractions, we can put things where we like in our
tree. Organising things in this way is similar to the way a normal telephone directory
is sorted: names are not just entered in the order that people applied for telephones.
Thus we are using two "classes" of names. Those alphabetically later than the name in
our node and those alphabetically earlier. Our signpost in the first node just needs two
signs "Less than McEwan" and "Greater than McEwan". Each node is organised
similarly. It holds a name and the corresponding phone number. One branch leads to
all the names that come earlier alphabetically than the name in this node. The other
leads to all the names that come later. You compare the name you are looking for with
a node, and if its not yours move on to the node indicated by the signpost. In this way,
you quickly find the phone number you are after. Why is it quick? Just like in Binary
Search, we discard half of the data with every decision. In a tree search we discard the
whole sub-tree down the branch we ignore. Once we decide that the name we want is
after McEwan we have discarded in the following example, Crace, Atwood and Doyle
in one go.
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Search trees are also used for classifying objects as an alternative to the card system
we saw earlier. For example, the diagram below is adapted from one in an
encyclopedia about timber (Bramwell, 1976) for identifying wood. We show only the
branch for porous trees with growth rings. Even though at first sight this diagram does
not look very tree shaped, it is a tree in our sense. It has a root node (labelled "start")
and each node has two branches out each leading to either a leaf or another node. By
adding more questions at the start (root) node, we would be able to classify a wider
variety of wood. We start at the start node and ask the question there. The answer
sends us one way or the other down the search tree, ruling out half the possibilities as
we go. Eventually we get to a leaf of the search tree where we are given the name of
the wood we are trying to identify.
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Jean-Dominique Bauby could have made use of tree searching to aid his
communication with visitors. We saw earlier how binary search would have made it
quicker for him to communicate. The problem with this is that without practice,
working out the next letter to ask, halfway through the interval left, is hard. Bauby had
a similar problem with his method, since few people can recite the alphabet by letter
frequency: E, S, A. R, etc. The problem was solved by giving visitors a list with the
correct order on. We would similarly solve our problem by giving visitors a tree.
Instead of working along a list, they follow the branches of the tree. Bauby's blinks
now indicate whether to go down the left branch or the right branch.

This tree could be optimised for letter frequency in the same way as Bauby did with
his list. As it stands, infrequent letters like W and Q are at the top of the tree, and
common ones like E, S, A and R are at the bottom so take more blinks to get to. By
rearranging the order we could have common letters at the top. "Earlier" and "later" in
the alphabet would now be different so Bauby would need to learn the tree himself so
he could blink appropriately, rather than just knowing the normal alphabetic order.

In the above style of tree searching, the things we are looking for are stored all the
way through the tree – in its nodes. At each stage we therefore have a choice of three
possibilities: “it is here”, “it is down the left branch”, and “it is down the right
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branch”. The advantage of this is that it means some things are found immediately
(the letter M in the above tree for example). However it comes at a cost: you need to
ask 3-way questions with 3 possible answers instead of binary ones. Bauby would
therefore need 3 signals such as no blink, 1 blink and 2 blinks to indicate which way
to go. You therefore lose some of the advantage of reducing the questions asked by
needing more blinks per question. An alternative is to just put binary YES/NO
questions in the nodes and put the things being searched for at the ends of the
branches: in the trees leaves (as in the search tree for identifying wood given above).
Now a blink means go one way and no blink the other. However you have to descend
to the leaves of the tree whatever the letter. With an alphabet of 32 letters you would
always need 5 questions as the tree would be 5 layers deep. With our alphabet of only
26 letters, some of the branches can be shorter than this, however. This again gives us
an opportunity to optimise the questions asked so that the common letters such as E
can be found more quickly.

Search trees are, in one sense, the data structure equivalent to if-then-else statements.
If you wish to make a decision based on information such as that for identifying
timber, you could write an algorithm as a series of if-statements. However, such an
algorithm can only make decisions about a fixed set of things such as trees. To make
decisions about other kinds of object you would need to write a new set of instructions
– a new algorithm.  Alternatively, you could put the same information in a search tree
data structure. Now the general tree searching instructions allow you to make
decisions. To make decisions about a different kind of object you use the same
algorithm but applied to a different search tree – containing different data. You do not
need to learn and follow a new set of instructions, just follow the old instructions but
on a different diagram.
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Bucket Search 
If we have plenty of space and are going to do lots of searching for the same things, a
very fast way of searching is to do a bucket search. This involves pre-computing the
answer to the question "is it there?" for each thing we might search for. We store the
answers in an array with one entry for each thing we might search for (the array is
effectively a look-up table containing answers to the search question). The array
subscripts are thus labels naming each thing we might search for. In the simplest case
the array entries are just YES or NO, indicating whether the thing was found or not.
This is exactly what we were suggesting when taking binary search to the extreme and
saying we want a way so that in one question we can be told the answer to our search
question. 

This is one of the most common ways that people organise appointments (meetings,
parties, etc) they must keep. One way to do this would be to keep a list. Every time
you found out about some event, you would add it to the list, noting the date. Finding
if you have an appointment on some date would take a lot of time. You might try and
keep this list sorted into order, but you would have to keep writing it out over and
over as new appointments were added. Not surprisingly most people use a completely
different way of organising appointments. We buy and use diaries and calanders.
These are booklets with one entry for each day of the year (office diaries even have an
entry marked out for every hour of the year). That is it has one entry for every possible
day you could have an appointment, whether or not you do have appointments on that
day. Initially all entries are empty, but as you are invited to parties or whatever, you
fill in the appropriate entry. To discover if you have a party on a particular day, you
simply go straight to that entry. It takes no time at all, because you do not need to scan
through all the entries. Now a diary can actually be very wasteful – perhaps you are
different but I do not have parties (or even other appointments) every day. Many of the
entries in my diary remain blank. In a sense a diary is therefore a waste of paper.
Putting appointments in one long list as I found out about them as suggested originally
would use far less paper. This is the downside to being able to check for appointments
quickly. The fact that diaries are so popular suggests that the trade-off is considered
worthwhile in this case. 

Consider the following memory game. A pack of cards are shuffled and you are
given12 cards. You have 30 seconds to memorise those cards during which time you
must place them face down (anywhere) on the table. You are then asked to turn up a
given card, or state that it is not on the table. If you turn up the wrong card, or
incorrectly say it is not on the table, you lose. One way to do well at this game, would
be not to spend your 30 seconds memorising the cards, but instead spend the time
organising them. Mentally divide the table into a series of card size slots with one row
for each suit, Kings at one end, Aces at the other. Put the cards down on the table in
place corresponding to their slot. You have just created a bucket array. To find a given
card, you just look at its slot. If the slot is empty, the card is not on the table. If the slot
is full, that is the card you are searching for. The skill of the game is then in
visualising the array of cards rather than in remembering things. Organisation beats
rote-learning any day!

When I was at University, my Hall of Residence used something similar so that
people could tell whether I was in or out. At the entrance was a board with everyone's
name on, with an IN/OUT sign partially covered by a slider. When I was out I would
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leave OUT visible by my name, and when I returned I would slide it across to leave IN
visible. This is acting like a bucket array, in that visitors did not need to do a full
search – i.e. go all the way to my room to find whether I was in or out – the answer is
pre-computed on the board. However, some extra work is required beforehand in that
someone had to set up the board, and presumably put everyone's names to OUT before
we arrived at the start of term. Also each time I went in or out, I had to do some work
moving the slider.

Hash Tables
The trick to making bucket search fast is having a quick way of getting to the correct
bucket. If you cannot go straight to the correct bucket, you have just replaced one
search problem by another. If the buckets are numbered and in numerical order (ie the
subscripts are numbers) it is relatively easy to go straight to the correct one. If the
buckets are labelled some other way (for example by names) then you need a way of
turning that label into a position quickly. Otherwise how do you find the right bucket!
That is effectively what you are doing when you do a search – finding the correct
position. The examples of lookup tables we saw earlier have this problem. When
searching for a symbol in a map legend, we more or less have to search through each
key of the table. We cannot work out from the symbol exactly where its position in the
table will be.
 
Hash functions give a way of doing this. When a hash function is used in a lookup
table, the table is known as a hash table rather than just a lookup table to show it is a
special sort of lookup table. In the first instance the hash function is used to determine
where to store things in the lookup table when constructing it (the pre-processing
phase). You must put things in a place where you will then be able to find them. If you
have read the Harry Potter books (if not why not?), then you have come across
something very much like a hash function: the sorting hat (Rowling, 1997). Every
year when the new batch of first years arrive at Hogwarts School of Witchcraft and
Wizardry, the first thing that happens to them is that they are sorted into houses. Every
pupil is in one of the houses: Gryffindor, Hufflepuff, Ravenclaw and Slytherin. Each
house has its own tower with dormatories containing a bed for each pupil, so by
organising the pupils into houses means (amongst other things) that they can be found
when needed (eg to punish them). The four houses are thus like a lookup table with 4
entries – one for each house. Look in the Gryffindor tower and you will find all the
students that were put there. The ceremony that allocates them is a pre-processing
process. The pupils are processed one at a time. Each goes forward and puts on the
"Sorting Hat". It is a magical hat that given a pupil can tell which House they should
go in. It is like a hash function: a function that given a pupil works out where they
should go. The pupil then goes to the house that the hash function (the "sorting hat")
says they belong. The four house towers together are the hash table. As there are lots
of students but only four houses, there are obviously lots of students in each house
(unlike a straight lookup table where each entry has one thing in it). Thus having
found the right house, a little more searching is needed some other way to find the
right pupil. Normally hash functions are used in situations where there are more
places to put things than things to put – eg more houses than there are pupils so that
each pupil currently at the school gets their own house. For the "Sorting Hat" to be a
proper hash function is would need to also be able to answer questions about its
decisions. If one of the teachers (Professor McGonagall, say) asked it which house a
pupil was in (say Harry) then it ought to be able to tell them. (I will not spoil the book
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by saying where Harry Potter ended up, in case you somehow inexplicably have not
read the book yet.) That way the Professors could use the hat to quickly find any pupil
it had originally "sorted". We will see later that this kind of "sorting" is slightly
different to what computer scientists usually call sorting (putting things into order,
rather than putting them in the right place as here) – so do not get confused.

Thinking of hash tables as being like lookup tables where a number is needed top
work out where to go. That is as though each Hogwarts house had a number (eg
Gryffindor is House 1, and so on. Then the Sorting Hat would just give a number for
each pupil. Knowing the number you would know which house to go to. 

The sorting hat uses magic to determine where to look. Computers cannot do that.
They do things by calculation instead. We are free to order the objects in a lookup
table in any way we like. If they are placed appropriately we can often calculate the
position to look at from the label. Address books do something similar. Addresses are
put into slots in the book calculated from the first letter of the name. You then go
straight to the correct page, assuming you know the order of the alphabet. Bookshops
use a similar idea to help you find books. Instead of ordering books completely
alphabetically, they are organised into shelves labelled by subject: Computing,
Politics, Mathematics, Literature, etc. To find a particular book you first have to work
out its subject, then go straight to that shelf. Map makers similarly try to help by
grouping similar symbols together in the Legend, for example, however it can still
take several seconds to find the correct symbol.

With both address books, bookshops and maps, the calculation does not take us to a
unique book, just one of many that we must then sort through some other way. If you
had a very large number of pages in your address book, it could be organised in a
different way so that you could go straight to the correct place without needing much
if any further searching. You would just need to do a slightly harder calculation to get
there. Since there are in most search problems a massive number of possibilities,
having a lookup table with one entry for each possibility is impractical. Imagine
having an address book, with one pre-written entry for each possible name any human
was called, with telephone numbers filled in only for the people you know. It would
be enormous in size, so is just not done. We could come up with a compromise that
was better than just labelling sections by the first letter.

For example, suppose you knew the positions of every letter in the alphabet off by
heart (A=0,B=1, ... Z=25). The normal method used in address books effectively
involves turning the first letter into a page number in this way. You could alternatively
turn the first two letters into a position and have one page per pair. Assuming
dictionary order is still used with BA following AZ, for example, the page would be
calculated by turning each letter into its position in the alphabet as above then
multiplying the first by 26 and adding the second. Thus, for example, AZ is converted
to (0  26) + 25 = 25 and BA is converted to to (1  26) + 0 = 26. The address of
someone called Azar would therefore be placed on page 25. How do you find the
same person's address later? You just calculate the number 25 in the same way and go
straight to that page. As long as two people you know do not have the same first two
letters in their name, you will get a unique address. A function for calculating a
position in this way is called a hash function, and a lookup table where the
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information is accessed via a hash function is called a hash table. When two entries
end up in the same place it is called a hash collision.

The above method uses up quite a lot of space. Many pages are likely to be blank as
there will be many pairs of letters that are not the start of the name of anyone you
know. Hash tables make a trade-off between search time and space wasted. At one
extreme everything goes into one bucket (page), so you only need as much space as
you have entries. However, you have to search through them all, which is slow. At the
other extreme there is one page for each name that exists in the world. Then you can
go immediately to the correct entry, but you are wasting a vast amount of unused
space.

Using two letters is a compromise - there probably are many names that start the same
way, so there will still have collisions where you have several names on one page, but
hopefully you will only have a few entries to search. Since many members of my
family have the name Curzon, however, the CU page in my address book would still
be full. The calculation we used makes a poor hash function for names. We could
avoid the problem by using a different hash function. For example, using initials
together with the 3rd letter of the surname might be better. A good hash function is one
that spreads the data evenly throughout the table, and so avoids clashes. 

A hash table is thus a lookup table, where a calculation must be performed to find the
correct entry, and where entries are shared by several different things, on the
assumption that most of the time only one will be present. When a collision occurs,
linear search is used to find the correct entry between those that have collided. 

Summary
Searching is a commonly performed operation. There are many different algorithms
for searching with different properties.

Linear search is the simplest search algorithm. It involves checking the elements
being searched one at a time in order. It is, in general, a slow way of searching.

Binary search is a faster method of searching that uses the fact that the things being
searched are sorted. We first check the central element, and decide whether the thing
being searched is in the top or bottom half, then just search those elements in the same
way.

Tree Searching first involves placing the things to be searched into a tree structure. A
signpost is placed at each node indicating which part of the tree the things to be
searched will be found – larger things are down one sub-tree, smaller ones down the
other. The things being searched could be placed in all the nodes or just in the leaves
of the tree.

Bucket Searching involves allocating a fixed position or "bucket" for each thing to
be searched for, for example in a lookup table. The things are placed in their
appropriate positions. Searching then involves going directly to the correct bucket. If
the thing is there it is found, if not then it is not possessed.
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Hash tables are lookup tables used for a form of bucket search where a calculation
(given by a hash function) is performed to determine the place to look in the table. A
hash table does not have one entry for each thing as would a full lookup table. Instead
different elements make share the same location. This saves space as the table is
smaller, but means hash collisions can occur, and so takes longer to find the element
being searched for when this happens.
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