
Problems Encountered in the

Machine-assisted Proof of Hardware
?

Paul Curzon

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge, UK.

Email: pc@cl.cam.ac.uk
URL http://www.cl.cam.ac.uk/users/pc/

Abstract. We describe our experiences verifying real communications
hardware using machine-assisted proof. In particular we reect on the
errors found, problems encountered and the bottlenecks that slowed the
progress of the proofs. We also note techniques which would alleviate the
problems. Most of the problems we discuss only become signi�cant when
large designs are veri�ed.

1 Introduction

Descriptions of formal veri�cation projects invariably focus on the successes.
However, much can also be learned from the things that slow progress. In this
paper we reect on the problems encountered in the veri�cation of real commu-
nications hardware: the Fairisle Asynchronous Transfer Mode (ATM) switching
fabrics [7]. Fairisle is an existing network, designed by the Systems Research
Group in Cambridge. It was designed as a platform for research into multi-
media and management issues of ATM networks, and carries real user data. The
switching fabrics that we considered contain both control and data paths. They
form the heart of the Fairisle communications network's switches. Higher-order
logic versions of Qudos HDL descriptions of the implementation were veri�ed.
The veri�cations consisted of proving that logic gate level implementations of
the devices satis�ed speci�cations at the timing diagram level: describing both
their timing and functional behaviour. They were carried out using the HOL90
proof assistant [5].

2 The Fairisle 16 by 16 Switching Fabric

The Fairisle switch (see Fig. 1) consists of three types of component: input port
controllers, output port controllers and a switching fabric. Each port controller
is connected to a transmission line and to the switching fabric. The port con-
trollers synchronise and process incoming and outgoing cells of data, appending
control information to the front of the cells in a routeing byte. A cell consists of

? In Correct Hardware Design and Veri�cation Methods, Eds. Paolo E Camurati and
Hans Eveking, LNCS 987, pp 56-70, Springer-Verlag, 1995.



TRANSMISSION
LINES

TRANSMISSION
LINES

FABRIC

PORT
CONTROLLERS

PORT
CONTROLLERS

Fig. 1. The Fairisle Switch

a �xed number of bytes of data which arrive one at a time. The fabric switches
cells from input port controllers to output ones according to the routeing byte. If
di�erent port controllers inject cells destined for the same output port controller
(as indicated by the routeing bytes) into the fabric at the same time, then only
one will succeed. The others must retry later. The routeing byte also includes
priority information which is used by the fabric when arbitrating clashes. Arbi-
tration takes place in two stages. High priority cells are given precedence over
low priority ones. Of the remaining cells, the choice is made on a round-robin
basis. The input port controllers are informed of whether their cell was success-
ful using acknowledgement lines. The fabric sends a negative acknowledgement
to the unsuccessful input ports, and passes the acknowledgement from the re-
quested output port to the successful input ports. This means the output port
controllers may reject cells even if they successfully pass through the fabric.

The port controllers and fabric all use the same clock so bytes are read in on
each link synchronously. They also use a higher level cell frame clock|the frame

start signal. It ensures that the port controllers inject data cells into the fabric
synchronously so that the routeing bytes arrive at the same time. The behaviour
of the switching fabric is cyclic. In each cycle or frame, it waits for cells to arrive,
reads them in, processes them, sends successful ones to the appropriate output
ports and sends acknowledgements. It then waits for the next round of cells to
arrive. The cells from all the input ports start when a particular bit of any one
of them goes high.

The inputs to the fabric consist of the data lines which carry the cells, the
acknowledgements that pass in the reverse direction, and the frame start signal
which is the only external control signal. The outputs consist of the switched
data and the switched and modi�ed acknowledgement signals.

The switching fabric consists of a series of switching elements connected in a
regular array. The simplest (4 by 4) switching fabric consists of a single element
which connects 4 input ports to 4 output ports. To make larger fabrics, several
elements can be connected together in a regular array. A 16 by 16 fabric can
be made from 8 elements in two rows connected as a delta network as shown
in Fig. 2. However, the design of the elements used for the front and back rows



di�er in several ways both from each other and from the original. For example
the 16 by 16 fabric uses more control information in the routeing byte, so the
elements di�er to cope with the extra information. The front elements must not
remove the routeing information as it is needed by the back elements. There are
also several aspects of the timing which di�er between the di�erent elements.
For example the frame start signal is delayed on entry to the 16 by 16 fabric
elements to allow the port controllers extra processing time.

0
1

2
3

Controllers
From Port

FRONT
ELEMENTS

BACK
ELEMENTS

Controllers
To Port

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

4x4

4x4 4x4

4x4

4x44x4

4x4 4x4

Fig. 2. The 16x16 Switching Fabric

The fabrics were designed using a Hardware Description Language: Qudos
HDL. This is a simple HDL which allows the structure of hardware to be speci-
�ed. It does not allow behaviour to be speci�ed directly. These descriptions were
translated into very similar higher-order logic descriptions for the veri�cation.
Extra features of HOL were used to simplify the descriptions. This was not in-
tended to change the underlying implementation. The fabricated elements were
implemented on 4200 gate-equivalent Xilinx programmable gate arrays.

3 The HOL system

The formal veri�cation was conducted using the HOL90 proof assistant: an LCF
style theorem prover for higher-order logic [5]. A user of the HOL system gives



proof commands in the form of Standard ML (SML) function calls. Proofs are
developed interactively, with a record of the proof script (ie SML program)
being kept in a separate �le. This �le can be rerun later in batch mode to
recreate the theorems. Proofs are structured into theories. Each theory has an
associated theory �le which stores details of the theorems and de�nitions (though
not proofs) of the theory. This allows the theorems to be accessed in the future
without being reproved from the proof scripts.

The HOL system is fully expansive. This means that all proof commands
ultimately must call sequences of the SML functions corresponding to the prim-
itive inference rules and axioms of the logic in order to create theorems. This is
enforced by the type system since the theorem type is an abstract type. Coupled
with the fact that proofs are just SML programs, this means that the user can
freely develop their own proof tools, perhaps speci�c to the theories developed.
The tool writer has complete assurance that such tools will not compromise the
system. The worst a tool can do is either raise an exception or prove the wrong
theorem. It cannot call something a theorem if it is not.

4 The Veri�cation

We have been concerned with the veri�cation of the fabric, not the port con-
trollers. In particular, we have veri�ed the fabricated 4 by 4 fabric and the
switching elements of the 16 by 16 fabric. We are also in the process of verifying
versions of the 16 by 16 fabric constructed from the veri�ed elements. Several
di�erent versions of the elements were veri�ed. Two back elements were veri�ed
because one was found to be erroneous when the veri�cation of the 16 by 16
fabric using it was conducted. Additional front elements were also veri�ed. One
corresponded to an alternative way of implementing the 16 by 16 fabric (though
such a design has not been fabricated). Others were used as stepping stones to
aid the veri�cation of the fabricated front element, consisting of some though
not all of the design changes made to the original 4 by 4 fabric.

The veri�cation consists of proving for each module in the design, a correct-
ness theorem of the form:

` Assumptions � (Implementation � Specification)

That is the description of the implementation implies the speci�cation under
certain assumptions on the environment. Here Implementation gives a struc-
tural description of the implementation: the components used, how they are
wired together and which wires are inputs, outputs and local to the module.
Specification gives the more abstract behavioural description consisting of the
timing and functional behaviour of the module, usually in the form of interval
temporal style operators. Assumptions give the conditions on the environment
(ie inputs) under which the module will satisfy the speci�cation. Details of the
speci�cations and correctness theorems are given elsewhere [2]. Once the sepa-
rate modules have been veri�ed, their correctness theorems are combined to give
a correctness theorem for the whole device.



5 Duration of the Proof E�ort

The original 4 by 4 fabric was formally speci�ed and veri�ed in approximately 4
person-months [1]. Of this time, over half was spent understanding and specifying
the design and its modules. This compares with the designers estimate that
\several months" had been required to design and implement the element. Much
of the veri�cation time was spent on two of the higher modules.

Next the 4 by 4 elements of the 16 by 16 design were veri�ed, including
several designs that were not fabricated. This was completed much more quickly,
each new element taking only hours or days (see Fig. 3). The speed up was
partly because many modules were reused and so did not need to be reveri�ed.
However, roughly the same number of modules were reveri�ed over all the new
versions as in the original. The total time required was much less however [3]. A
signi�cant portion of the speedup came from the fact that the proofs of modi�ed
modules were obtained by adapting old proofs for the new theorems, rather than
by creating new proofs from scratch. Problems related to this are discussed in
Sec. 8.1.

5

15

20

25

30

4

1

2

3

ORIGINAL

10

4x4 FABRIC
VARIOUS MODIFIED ELEMENTS

PERSON-DAYS

Fig. 3. Comparison of veri�cation time for variants of the 4 by 4 fabric



Once the separate elements of the 16 by 16 design were veri�ed, the proof that
when connected together they successfully implement the 16 by 16 fabric was
started. This proof is still in progress. It has taken much longer than originally
expected: over 20 person days to date.

6 Errors

In this section we give an overview of the errors discovered during the formal
veri�cation process. We outline the various kinds of errors which occurred. In
the more interesting cases, we give an indication of why they occurred and how
they were discovered. All errors found during the course of the veri�cation were
corrected and the proofs continued. The presence of errors consumed a large
amount of time. Many errors were trivial to �x: for example when an incorrect
word length had been given. However, the presence of large numbers of trivial
errors hindered the proof attempt by disrupting the thought processes of the
veri�er.

6.1 The Implementation

No errors were discovered in the fabricated implementation of the original 4
by 4 switching element. This is perhaps not surprising, since the fabric has
been in use for some time and the behavioural speci�cation was written by
examining the implementation. It is therefore possible that discrepancies between
the implementation and designers' intended behaviour have become \features"
of the behavioural speci�cation.

An error was discovered in the original fabricated version of the back elements
of the 16 by 16 fabric. The fact that the cells arrived at the back elements later
than at the front elements had not been accounted for. Consequently, data was
lost from the end of the cells. This error was known of by the designers, having
been found when the fabricated fabric was in use. Simulation of the design had
failed to discover it. The veri�er had not been aware of the problem. The faulty
element was successfully formally veri�ed! The error was only found by the formal
veri�cation process when the veri�cation of the 16 by 16 fabric constructed of
faulty elements was attempted. The faulty element was itself successfully veri�ed
because its speci�cation was reverse engineered from the implementation. This
initially masked the problem. The error was corrected by adding an extra delay
to the frame start signal. However, this correction introduced an \anomaly" into
the design (see Sec. 7.1).

6.2 The Structural Speci�cation

Several errors were found in the HOL structural speci�cation. These were intro-
duced in the translation from Qudos HDL, for example, due to the introduction
of multi-level words. Had a more direct translation from Qudos to HOL been



made, these errors would have been avoided. The veri�cation task would have
been made much more di�cult however.

In several places the wrong number of copies of a unit was speci�ed, due to
the speci�er believing that the replication operator used took as an argument an
index value (as in Qudos HDL) when it actually took the number of copies. This
could have been avoided if a duplication construct of HOL had been de�ned to
mirror the HDL more closely. This had originally been intended. The length was
eventually used since this made generic speci�cations simpler. In other modules,
where a piece of hardware was duplicated using the length of one of the signals,
the length of the wrong signal was used.

In several modules, the sizes of the local signals were not speci�ed, but this
information was needed in the proof.

In one module, 2 bytes of a signal were selected when actually it should have
been 2 bits from each byte.

The two wires of a control signal were inadvertently swapped in the descrip-
tion of two modules. If this had occurred in the implementation it would have
resulted in some cells being sent to the wrong outputs. This was discovered be-
cause the subgoal ([T, F] = [F, T]) was generated in the proof attempt. One
side of this equality originated from the behavioural speci�cation and one from
the structural speci�cation. This illustrates how the discovery of an error can
give a strong indication of its cause. It was clear from the proof attempt that two
signals had been swapped and also which signals they were, from the context of
the subgoal. It was not immediately clear in which speci�cation they had been
swapped.

The original HOL descriptions of the 16 by 16 front elements did not include
the extra circuitry required to prevent the routeing byte being removed. This
mistake was made because the structural speci�cations were created by modi-
fying those for the original element. This was faster than translating the Qudos
sources. As the same mistake was made in the behavioural speci�cations, it was
only discovered when the veri�ed element was used in a subsequent proof.

6.3 Documentation

The original documentation for the 16 by 16 fabric speci�ed the delay through
the fabric incorrectly.

In addition to the existing documentation for the whole design, an English
commentary was written by the veri�er for each module's behavioural speci�ca-
tion. They give brief, if not precise, overviews of the behaviour of the modules.
An error was discovered in the English commentary of the priority decoder mod-
ules. It mistakenly stated that the priority decoder outputs one word per output
port, when in fact it returns one word per input port. The formal speci�cation
was correct. The confusion arose because other components output one word
per output port. The error was discovered during the formal veri�cation because
the commentaries were being used to construct informal arguments to guide the
formal proof.



6.4 The Behavioural Speci�cations

Many errors were found in the behavioural speci�cations of the modules. Most
involved the incorrect speci�cation of word lengths similar to those in the struc-
tural speci�cations. They were generally easy to detect and correct.

The timing of several modules was incorrectly speci�ed. For example, in the
speci�cation of the timing module, an event was stated to occur at the same
time as the frame start signal when it actually occurred on the subsequent cycle.
Such errors were normally easy to detect and correct. Goals such as (ts=ts+1)
were obtained.

When writing the speci�cations it was assumed that the two bits of the main
control signal indicating the successful input port for a given output port were
sampled at a single time by the dataswitch. In fact the implementation samples
the two bits at consecutive times. This was discovered because a proof obligation
required information about the signal at one time, when the information was only
known for a di�erent time.

It was also initially assumed that the same de�nition of a time frame between
successive frame start signals could be used for all modules. However, the frame
start signal is passed to all modules with no delay, whereas other signals su�er
delays at various points in the circuit. This means that the de�nition of a frame
must vary between modules to account for the di�erent relative times of the
frame start and other signals arriving at a module.

The speci�cation of the arbiter did not specify its behaviour on the last cycle
of the frame in the case when no cells arrived. This was discovered because
a subgoal had to be proved about the value of a signal at this time, but no
information was available.

The initial speci�cations for the upper modules in the hierarchy did not
consider frames in which no cells arrive as a special case. It was believed that
empty frames were covered in the behaviour given. However, this was not so.
Consequentially an extra case needed to be added.

In several places the selection of the k-th bit of a signal was speci�ed when
what was needed was to test if the word was equal to k. This arose due to
confusion over the form in which the data was being output from those modules.

6.5 The Correctness Statement

An additional assumption needed to be added to the correctness statements of
some modules. This concerned the e�ect of the cells arriving close to the frame
start signal. It had initially been thought that the switching element functioned
correctly irrespective of when the cells arrived. This was not so. An assumption
stating that the cells did not arrive at an inopportune moment was needed.

6.6 Overview of Errors

The large number of errors in the original behavioural speci�cations were due
largely to the fact that the speci�er was not originally familiar with the designs



being speci�ed and little informal documentation was available. Confusion be-
tween the di�erent representations used for the request information by di�erent
modules was responsible for many errors.

The speci�cations would have contained fewer errors if written by the design-
ers during the design process, or if they had produced informal documentation
for each module. We were specifying and verifying an existing fabricated design.
It would have obviously been better if the design had been implemented from
the formal speci�cations, rather than the other way round.

Many errors were introduced in the structural speci�cations by the transla-
tion process. Most of these were introduced because a straight translation was
not performed. Instead extra structure was added to the signals, extra modules
were added, and other features of HOL were used to make the descriptions more
intuitive and simplify the veri�cation. A simple way that such translation errors
could have been detected would have been to generate a netlist for the circuit
from the HOL description and compare it syntactically with that generated from
the Qudos description.

There were fewer errors in the structural speci�cations of the modi�ed mod-
ules than in the original. This was because correct HOL descriptions were mod-
i�ed rather than conducting the error prone translation process. However, other
errors were introduced precisely because of this. In particular, modi�cations
made to the implementation were missed from the structural speci�cations. Er-
rors of this form could be avoided if the designers used HOL (or a pretty printed
version of it { ie an extended version of Qudos HDL embedded in HOL) to
produce designs in the �rst place. This would have the additional advantage of
allowing the designers to express the design more naturally. However, it would re-
quire simulation and fabrication technology, similar to that available for Qudos,
to be built around HOL.

Many errors concerned the sizes of words. These might have been discov-
ered earlier (during type checking) if the sizes of the words could have been
included in the type information. Some systems such as VERITAS [6] support
such dependent typing, though HOL currently does not.

The veri�cation process did detect the error that had been missed by simu-
lation. This in itself would have made the veri�cation worthwhile.

7 Troublesome Design Features

A great deal of veri�cation time was spent coping with a small number of trou-
blesome design \features". They did not render the design incorrect since the
system as a whole still ful�lled the task for which it was intended. However,
there was also no overriding reason why they should have been chosen in prefer-
ence to some other approach. In some cases they could be thought of as design
\anomalies", either because the behaviour had to be compensated for in other
parts of the design, or because an alternative would have yielded a simpler or
cleaner behaviour.



7.1 Examples

An example of a troublesome design feature occurs in one of the low level mod-
ules of the arbiters of the 4 by 4 elements. It controls the disabling of outputs
in response to the arbitration decision made. The module has a consistent be-
haviour except in the case when the frame start signal arrives at the same time
as the start of a cell. In this case the behaviour depends on whether a cell arrived
in the previous cycle or not. The way the elements are intended to be used is
that the frame interval is constant (currently 64 cycles) and the cells arrive on
a �xed (currently the 8th) cycle in the frame. In this environment the situation
should never arise. However, an extra assumption was required in the correctness
statement of the module since it was only true provided the two events did not
occur together. Variations of this assumption propagate throughout the design.
It can only be discharged at the point where the whole switch, with the fabric
connected to the frame start generator and the port controllers, is veri�ed. It
thus must be dealt with in the proofs throughout the rest of the design hierar-
chy including modules connected to, as well as parents of, the a�ected module.
The assumption changes form between the di�erent modules and refers to di�er-
ent (internal) signals. Thus a single theorem cannot be proved stating that the
situation never arises. It also becomes more complex in the higher level mod-
ules. Consequently, the proof e�ort required to deal with it becomes increasingly
signi�cant.

The need for this assumption could be removed by the addition of 2 extra
logic gates per arbiter to the design { a total of 8 per element. This would
e�ectively discharge the assumption immediately. The change would not be sig-
ni�cant because the elements were fabricated on Xilinx gate arrays. As such it
would actually involve no extra logic at all.

An example of a design anomaly occurring in the 16 by 16 fabric is the relative
delays placed on the frame start signal in the front and back elements. This is the
control signal that synchronises the timing of cell processing. It tells the elements
to stop forwarding cell bytes and start waiting for the next cell to arrive. The
delays on the front and back elements are di�erent because the cells arrive at
the back elements only after they have passed through the front elements. Thus
the delay through the front element must be accounted for. However, the delay
through the front element is 5 cycles, but the extra delay added to the frame
start signal is only 3 cycles. Thus the back elements stop forwarding bytes two
cycles too soon, losing the last bytes. This is not a problem because the frame
cycles are of longer duration than the cell length. Consequently, the lost bytes
should not contain data. However this means that the rate at which cells are
forwarded through the fabric is less than it might be.

7.2 Design for provability

The troublesome features meant that special cases needed to be considered in
the proof or assumptions were more complex than necessary. Furthermore, the
design was more di�cult to understand, and thus the informal proof harder to



construct. The designer accepted that the changes identi�ed could have been
made without adverse e�ects to the design.

Problem features in low level modules of the design can have an inordinate
e�ect on the whole proof, especially if they complicate assumptions. This is
because assumptions often need to be discharged during the veri�cation of all
components up the design hierarchy which are dependent on the anomalous
component. At higher levels the assumptions can change form as the signals
involved are manipulated by other hardware. Extra work may be required to
validate that the outputs of connected components do ful�l the conditions of the
assumptions.

Most of the design changes suggested as a result of the veri�cation were com-
pletely acceptable to the designer. This suggests that it is possible for designers
to design with provability in mind, simplifying the proof obligations without se-
riously a�ecting the designer's freedom. This idea is similar to ideas suggested on
the CHARME project in which �xed design styles could be used to improve ver-
i�ability. It is not in general clear how particular design decisions will a�ect the
proof until it is underway. However, our experiences suggest that big improve-
ments can be obtained by concentrating on the assumptions of each module.
They should be avoided or simpli�ed wherever possible.

8 Problems concerned with Machine-Assisted Proof

In this section we discuss aspects of the use of machine-assisted proof which
hampered the proof e�ort.

8.1 Proof Modi�cation

There are many situations where the whole or part of a previously developed
proof script can be used to prove a new theorem with only small modi�cations.
By modifying old proofs, new proofs can be developed much more quickly than
if they are created from scratch. Furthermore, proofs must often be reengineered
in this way when errors are found. In the Fairisle veri�cation proof reuse was
used extensively. However, several problems arose.

Reusing Proof Scripts One problem was that the available proof tools were
designed for proof creation rather than proof reuse. The way we reused proofs
was to replay the script on the new goal. Invariably, at some point the proof
would fail. The point where a change was needed was determined by examining
the �nal proof state if there was one, or by single stepping through the proof,
examining the intermediate proof steps. Single stepping was necessary because
the proof often failed long after the point where a change needed to be made.
Single stepping was performed manually by cutting and pasting fragments of the
proof from the source �le into the HOL session. Once the appropriate change
was made the proof was rerun until a further problem arose. Clearly a single



step debugger for proof scripts was really needed. This is being addressed in the
latest version of the TkHolWorkbench graphical user interface for HOL [8].

Tactics could also be better designed to help proof reuse. For example, they
could give a better indication of where the proof �rst went awry. A common early
indication of a problem is that the goal has not been changed by an applied tactic.
Thus the location where changes are needed would be easier to �nd if tactics
failed in this situation. Small changes in the design of tools like this can have
large e�ects on the ease of reengineering a proof script.

Proof Maintenance If proof scripts are reused, then their maintenance is
an important issue. It is not su�cient, simply to hack out a proof, obtaining
the theorem in whatever way is possible. The �nal script should be in a state
suitable for modi�cation and reuse. However, proof creation is often experimental
in nature with much backtracking. This is not conducive to the creation of
maintainable proofs. Neither is, the act of repeatedly modifying old proofs since
this is likely to degrade their reusability.

For small projects this is not a problem. The scripts can be quickly and
simply tidied, and the consequences of a certain amount of untidiness are small.
However, on larger projects such as the Fairisle veri�cation it becomes a problem.
Individual proofs, possibly consisting of many lemmas can take days or weeks
to develop and can be very large. The untidied script developed for the top level
of the 16 by 16 fabric was over 6000 lines long, for example. If the tidying is left
to the end of the development in this situation it becomes a formidable task.
It is unlikely to be done well if at all and will be time consuming. Furthermore
it hampers the continuing development of the script itself. On the other hand,
if the proof of every lemma is tidied as it is created, the thought processes of
the veri�er are liable to be disrupted. Also, proofs will be tidied only to be later
discarded.

The best solution, where possible, is for proof management tools to prevent
the proof script getting into an untidy state in the �rst place. HOL is currently
lacking in such tools. A particular problem of this kind that we encountered was
the lack of tools to allow multiple theories to be worked on within a session. This
is useful because it is often discovered mid-proof that a lemma is needed that
would be best placed in some other theory. HOL provides only limited facilities
to do this. Consequently, in the Fairisle veri�cation everything was initially de-
veloped in a single working theory that was regularly tidied by moving lemmas
to appropriate theories. This can be avoided by providing a more sophisticated
theory manager which allows lemmas to be placed directly into the most appro-
priate theory [4].

Comprehending Proofs Even when high level tactics are used, proof scripts
are di�cult to understand, and thus to reengineer. Clearly it is important that
informal proofs are given with, or are derivable from, proof scripts. Tools that
allow proofs to be stepped through interactively are also clearly important. Such
tools are under development for HOL.



8.2 Finding Things

The full proof scripts for the Fairisle proofs are very large, running to hundreds of
pages of A4 text. As a consequence �nding de�nitions, previously proved lemmas,
theorems and tools became problematic. The TkHolWorkbench graphical user
interface for HOL [8], currently being developed, is likely to ease this problem
in the future, providing a more sophisticated graphical interface for navigation
around theories. The recognition that proof script reuse is an important way of
creating new proofs means that the ability to �nd suitable old proofs becomes
an important consideration. It would be useful if tools could be developed to
help �nd and suggest suitable proofs.

8.3 Losing Sight of the Proof

A problem frequently encountered was that the veri�er became bogged down in
the details of the proof and consequently lost sight of the informal high level rea-
sons for the design's correctness. This is a common problem with HOL: because
of the relatively low level that proofs must currently be performed it is easy to
get engrossed in proving small details and miss the fact that the wrong theorem
is being proven. The veri�er must make a constant e�ort to keep the outline of
the proof in sight. Ideally an informal proof sketch would be written �rst, and
then followed. However, often the easiest way to determine the informal proof
is to experiment with the machine-checked proof: a theorem prover can be a
powerful tool to help understand a design and develop an informal proof.

8.4 Generic Theorems

Much time can be saved in a proof if de�nitions and theorems can be made
generic, such as considering an n-bit adder rather than separate adders for dif-
ferent word lengths. This approach has perhaps been most successful in the area
of microprocessor veri�cation [9]. Generic speci�cation is not a universal panacea
however. It requires appropriate regularity in the design and for there to be a
need for design variations which exploit this regularity. It can impose overly
rigid constraints on the designer. We adopted it for some modules of the Fairisle
designs, though the more exible proof reuse was generally more useful.

There was one case where a generic proof was possible but was not done.
Had it been, much time would have been saved. It concerned the delay on the
frame start signal to the switching elements, mentioned earlier. There was no
delay on the original 4 by 4 fabric veri�ed, and delays of 5 and 8 time units for
various versions of the elements for the 16 by 16 fabric. Furthermore, one of the
design modi�cations suggested by the veri�cation process for the 16 by 16 fabric
was to change the 8 cycle delay to a 10 cycle delay.

Each version was veri�ed separately by reengineering earlier proofs (in very
minor ways), rather than verifying a single generic version. The latter would in
retrospect, have saved time in the long term. This was not done initially because
the �rst design veri�ed had no delay at all, and it was not originally intended to



verify the other versions. The next elements veri�ed were 5 cycle delay versions
of the front and back elements of the 16 by 16 fabric. Since at this stage it was
believed that only 5 cycle delay versions were required, it was decided that the
extra e�ort required to create a generic version was not warranted given the time
constraints. However, the back element design was incorrect, and so the correct
8 cycle version then needed to be veri�ed. At this point, there was even more
time pressure to get the correct version veri�ed, so a generic version was still
not created.

The problem was that in the short term it was always quicker to verify
speci�c versions. Furthermore, the need for a generic design was not foreseen.
Interestingly, some other aspects of the design were made generic, where this
added little extra cost, but the exibility was never exploited as it was not
needed in any of the design variations veri�ed. It is clearly important that the
veri�ers are aware of the kind of ways that a design might vary so this can be
utilised from the outset.

9 Conclusions

We have outlined the errors discovered and described the problems encountered
when using a proof assistant for the formal veri�cation attempt of a relatively
large hardware design. Many of the problems encountered were speci�c to the
use of a proof assistant, and would not have arisen had a fully automated the-
orem prover been used. Clearly, trusted tools that can verify designs fully au-
tomatically are more desirable than a proof assistant. However, with current
technology, for large designs this is often infeasible. For example, model check-
ing approaches often require that the description of the design used is simpli�ed
such as by reducing word lengths. However, this can lead to errors being missed.
The inadvertent swapping of the two control signals, and the assumption that
the two bits of the control signal were sampled at the same rather than consec-
utive times would have been missed had only a single control bit been modelled.
There is a growing movement towards combining specialised automatic tools
with more general proof assistants. For example, it would have been sensible to
verify the lower level modules and simpler lemmas using a BDD tool, leaving
only the upper levels to machine-assisted proof. If this approach is taken the
problems we have encountered will still need to be overcome, however.

The detection and correction of errors consumed a large proportion of ver-
i�cation time. Most of the errors could have been found more easily by other
means, or prevented from occurring in the �rst place. Formal proof should be
used to �nd obscure bugs and sort out subtleties in the understanding of why the
design is believed to be correct. For such problems formal veri�cation may be the
only solution. Debugging of speci�cations, designs and implementations by tra-
ditional methods such as testing, code walk-throughs, comparison of netlists and
even model checking where appropriate should be conducted �rst. The formal
veri�cation task will then be much simpler.

Designer's can ease the veri�cation task without compromising other design



considerations. Our work suggests that one way this can be done is by ensuring
that the operating assumptions of modules are as few and as simple as possible. It
thus can be done early in the design cycle. The development of design constraints
for formal veri�cation would be useful.

As proof scripts increase in size, maintainability and reusability become im-
portant considerations. The creation of a proof script should be an engineering
discipline, following software engineering principles. Proof tools should ideally
prevent scripts from getting into an untidy state in the �rst place.

Acknowledgements

This work was supported by EPSRC grants GR/J11133 and GR/G23654. I am
grateful to Mike Gordon, Ian Leslie, Donald Syme and the members of the Auto-
mated Reasoning Group in Cambridge for their support, and to the anonymous
referees for their comments.

References

1. Paul Curzon. Experiences formally verifying a network component. In Proceedings

of the 9th Annual IEEE Conference on Computer Assurance, pages 183{193. IEEE
Press, 1994.

2. Paul Curzon. The formal veri�cation of the Fairisle ATM switching element. Tech-
nical Report 329, University of Cambridge Computer Laboratory, March 1994.

3. Paul Curzon. Tracking design changes with formal machine-checked proof. The

Computer Journal, 38(2):91{100, 1995.
4. Paul Curzon. Virtual theories. In E. Thomas Schubert, Phillip J. Windley, and

James Alves-Foss, editors, Proceedings of the 8th International Workshop on Higher

Order Logic Theorem Proving and Its Applications, volume 971 of Lecture Notes in
Computer Science, pages 138{153. Springer-Verlag, 1995.

5. M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving envi-

ronment for higher order logic. Cambridge University Press, 1993.
6. F.K. Hanna and N. Daeche. Dependent types and formal synthesis. In C. A. R.

Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and Hardware Design,
pages 49{68. Prentice Hall, 1992.

7. I.M. Leslie and D.R. McAuley. Fairisle: An ATM network for the local area. ACM
Communication Review, 19(4):327{336, September 1991.

8. Donald Syme. A new interface for HOL - ideas, issues and implementation. In Pro-

ceedings of the 8th International Workshop on Higher Order Logic Theorem Proving

and Its Applications, Lecture Notes in Computer Science. Springer-Verlag, 1995.
9. P.J. Windley, K. Levitt, and G.C. Cohen. The formal veri�cation of generic inter-

preters. Technical Report 4403, NASA Contractor Report, October 1991.

This article was processed using the LATEX macro package with LLNCS style


