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We show how program transformation techniques can be used for the verification of both safety
and liveness properties of reactive systems. In particular, we show how the program transformation
technique distillation can be used to transform reactive systems specified in a functional language
into a simplified form that can subsequently be analysed to verify temporal properties of the systems.
Example systems which are intended to model mutual exclusion are analysed using these techniques
with respect to both safety (mutual exclusion) and liveness (non-starvation), with the errors they
contain being correctly identified.

1 Introduction

Formal verification of software components is gaining more and more prominence as a viable method-
ology for increasing the reliability and reducing the cost of software production. We consider here the
problem of verifying properties of reactive systems, i.e., systems which continuously react to external
events by changing their internal state and producing outputs. The properties of such systems are usu-
ally expressed using a temporal logic such as Computational Tree Logic (CTL) or Linear-time Temporal
Logic (LTL). These logics are used to express safety properties which essentially state that nothing bad
will happen, and liveness properties which essentially state that something good will eventually happen.

Model checking is a well established technique originally developed for the verification of temporal
properties of finite state systems [4]. However, reactive systems usually have an infinite number of states.
Model checking techniques therefore need to be extended to handle such systems, but the problem of
verifying such systems is undecidable in general. Most proposed approaches to this problem are semi-
automatic and involve either mathematical (co-)induction [3, 8] or abstraction to finite state models [11,
16]. Fold/unfold program transformation techniques have more recently been proposed as an automatic
approach to this problem. Folding corresponds to the application of a (co-)inductive hypothesis and
generalisation corresponds to abstraction. Many such techniques have been developed for logic programs
(e.g. [13, 17, 5, 1, 9]). However, very few such techniques have been developed for functional programs
(with the work of Lisitsa and Nemytykh [14, 2] using supercompilation [19] being a notable exception),
and these deal only with safety properties.

In this paper, we describe a fold/unfold program transformation technique which can be used to verify
both safety and liveness properties of reactive systems which have been specified using a functional
language. The program transformation technique which we use is our own distillation [6, 7] which
builds on top of positive supercompilation [18], but is much more powerful. Distillation is used to
transform programs into a simplified form which makes them much easier to analyse. We argue that
since distillation removes more intermediate structures than positive supercompilation more accurate
results are obtained; these intermediate structures need to be generalised in positive supercompilation,
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leading to a loss of information. We define a number of verification rules on the simplified form produced
by distillation to verify temporal formulae. These techniques are then applied to a number of example
systems which are intended to model mutually exclusive access to a critical resource by two processes,
revealing a number of errors.

The remainder of this paper is structured as follows. In Section 2, we introduce the functional
language over which our verification techniques are defined. In Section 3, we show how to model reactive
systems in our language, and give a number of example systems which are intended to model mutually
exclusive access to a critical resource by two processes. In Section 4, we describe how we specify
temporal properties, and specify both safety (mutual exclusion) and liveness (non-starvation) for the
example systems. In Section 5, we describe our technique for verifying temporal properties of reactive
systems and apply this technique to the example systems to verify the previously specified temporal
properties. Section 6 concludes and considers related work.

2 Language

In this section, we describe the syntax and semantics of the higher-order functional language which will
be used throughout this paper.

2.1 Syntax

The syntax of our language is given in Figure 1.

e ::= x Variable
| c e1 . . .ek Constructor Application
| λx.e λ -Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1→ e1 | · · · | pk→ ek Case Expression
| let x = e0 in e1 Let Expression
| e0 where f1 = e1 . . . fn = en Local Function Definitions

p ::= c x1 . . .xk Pattern

Figure 1: Language Grammar

A program in the language is an expression which can be a variable, constructor application, λ -abstraction,
function call, application, case, let or where. Variables introduced by λ -abstractions, let expressions and
case patterns are bound; all other variables are free. An expression which contains no free variables is
said to be closed.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has arity 2. In an expression
c e1 . . .en, n must equal the arity of c. The patterns in case expressions may not be nested. No variable
may appear more than once within a pattern. We assume that the patterns in a case expression are non-
overlapping and exhaustive. We also allow a wildcard pattern which always matches if none of the
earlier patterns match. Types are defined using algebraic data types, and it is assumed that programs are
well-typed. Erroneous terms such as case (λx.e) of p1→ e1 | · · · | pk→ ek and (c e1 . . .en) e where c is
of arity n cannot therefore occur.
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2.2 Semantics

The call-by-name operational semantics of our language is standard: we define an evaluation relation
⇓ between closed expressions and values, where values are expressions in weak head normal form (i.e.
constructor applications or λ -abstractions). We define a one-step reduction relation r; inductively as
shown in Figure 2, where the reduction r can be f (unfolding of function f ), c (elimination of constructor
c) or β (β -substitution).

((λx.e0) e1)
β
; (e0{x 7→ e1}) (let x = e0 in e1)

β
; (e1{x 7→ e0})

f = e

f
f

; e

e0
r; e′0

(e0 e1)
r; (e′0 e1)

pi = c x1 . . .xn

(case (c e1 . . .en) of p1 : e′1| . . . |pk : e′k)
c; (ei{x1 7→ e1, . . . ,xn 7→ en})

e0
r; e′0

(case e0 of p1 : e1| . . . pk : ek)
r; (case e′0 of p1 : e1| . . . pk : ek)

Figure 2: One-Step Reduction Relation

We use the notation e r; if the expression e reduces, e⇑ if e diverges, e⇓ if e converges and e⇓ v if e
evaluates to the value v. These are defined as follows, where r;

∗
denotes the reflexive transitive closure

of r;:
e r;, iff ∃e′.e r; e′ e⇓, iff ∃v.e⇓v
e⇓v, iff e r;

∗
v∧¬(v r;) e⇑, iff ∀e′.e r;

∗
e′⇒ e′ r;

3 Specifying Reactive Systems

In this section, we show how to specify reactive systems in our programming language. While reactive
systems are usually specified using labelled transitions systems, our specifications can be trivially derived
from these. Reactive systems have to react to a series of external events by updating their state. In order
to facilitate this, we make use of a stream datatype, which is defined as follows:

Stream a ::=Cons a Stream

A stream is therefore an infinite list of elements of type a. Our programs will map an input stream of
external events and an initial state to an output stream of states. In this paper, we wish to analyse a
number of systems which are intended to implement mutually exclusive access to a critical resource for
two processes. In all of these systems, the external events belong to the following datatype:

Event ::= Request1 | Request2 | Take1 | Take2 | Release1 | Release2

Each of the two processes can therefore request access to the critical resource, and take and release this
resource. States in all of our example systems belong to the following datatype:

SysState ::= State ProcState ProcState
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ProcState ::= T |W |U

Each process can therefore be thinking (T ), waiting for the critical resource (W ) or using the critical
resource (U). In all of the following examples, the variable es represents the external event stream, and
s1 and s2 represent the states of the two processes respectively.

Example 1 In the first example shown in Figure 3, each process can request access to the critical re-
source if neither process is using it, take the critical resource if it is waiting for it, and release the critical
resource if it is using it.

f es T T
where
f = λes s1 s2.Cons (SysState s1 s2) (case es of

Cons e es → case e of
Request1 → case s1 of

U → f es s1 s2

| → case s2 of
U → f es s1 s2

| → f es W s2

| Request2 → case s2 of
U → f es s1 s2

| → case s1 of
U → f es s1 s2

| → f es s1 W
| Take1 → case s1 of

W → f es U s2

| → f es s1 s2

| Take2 → case s2 of
W → f es s1 U
| → f es s1 s2

| Release1 → case s1 of
U → f es T s2

| → f es s1 s2

| Release2 → case s2 of
U → f es s1 T
| → f es s1 s2)

Figure 3: Example 1

Example 2 In the second example shown in Figure 4, each process can request access to the critical
resource if it is thinking, take the critical resource if it is waiting for it and the other process is thinking,
and release the critical resource if it is using it.

Example 3 In the final example in Figure 5, we implement Lamport’s bakery algorithm [10] for two
processes. In this example, to request access to the critical resource, each process must take a ‘ticket’
with a number, and the process with the lowest valued ticket is given precedence. A ticket value of zero
indicates that a process has not requested to use the critical resource, so when a process releases the
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f es T T
where
f = λes s1 s2.Cons (SysState s1 s2) (case es of

Cons e es → case e of
Request1 → case s1 of

T → f es W s2

| → f es s1 s2

| Request2 → case s2 of
T → f es s1 W
| → f es s1 s2

| Take1 → case s1 of
W → case s2 of

T → f es U s2

| → f es s1 s2

| → f es s1 s2

| Take2 → case s2 of
W → case s1 of

T → f es s1 U
| → f es s1 s2

| → f es s1 s2

| Release1 → case s1 of
U → f es T s2

| → f es s1 s2

| Release2 → case s2 of
U → f es s1 T
| → f es s1 s2)

Figure 4: Example 2

critical resource its ticket value is reset to zero. We therefore add two further variables t1 and t2 which
give the current ticket number for each process. These are natural numbers belonging to the following
datatype:

Nat ::= Zero | Succ Nat

Note that, since there is no limit to the number of a ticket, this is an example of an infinite state system
which can cause problems for some model checkers.

4 Specification of Temporal Properties

In this section, we describe how temporal properties of reactive systems defined in our functional lan-
guage are specified. We use Linear-time Temporal Logic (LTL), in which the set of well-founded formu-
lae (WFF) are defined inductively as follows. All atomic propositions p are in WFF; if ϕ and ψ are in
WFF, then so are:

• ¬ϕ

• ϕ ∨ψ
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f es T T Zero Zero
where
f = λes s1 s2 t1 t2.Cons (SysState s1 s2)

(case es of
Cons e es → case e of

Request1 → case s1 of
T → f es W s2 (Succ t2) t2
| → f es s1 s2 t1 t2

| Request2 → case s2 of
T → f es s1 W t1 (Succ t1)
| → f es s1 s2 t1 t2

| Take1 → case s1 of
W → case s2 of

T → f es U s2 t1 t2
| → case (t1 < t2) of

True → f es U s2 t1 t2
| False→ f es s1 s2 t1 t2

| → f es s1 s2 t1 t2
| Take2 → case s2 of

W → case s1 of
T → f es s1 U t1 t2
| → case (t2 < t1) of

True → f es s1 U t1 t2
| False→ f es s1 s2 t1 t2

| → f es s1 s2 t1 t2
| Release1 → case s1 of

U → f es T s2 Zero t2
| → f es s1 s2 t1 t2

| Release2 → case s2 of
U → f es s1 T t1 Zero
| → f es s1 s2 t1 t2)

Figure 5: Example 3

• ϕ ∧ψ

• ϕ ⇒ ψ

• 2ϕ

• 3ϕ

• #ϕ

The temporal operator 2ϕ means that ϕ is always true; this is used to express safety properties. The
temporal operator 3ϕ means that ϕ will eventually be true; this is used to express liveness properties.
The temporal operator #ϕ means that ϕ is true in the next state. These modalities can be combined to
obtain new modalities; for example, 23ϕ means that ϕ is true infinitely often, and 32ϕ means that
ϕ is eventually true forever. Fairness constraints can also be specified for some external events (those
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belonging to the set F) which require that they occur infinitely often. For the examples given in this
paper, it is assumed that all external events belong to F .

Propositional models for linear-time temporal formulas consist of an infinite sequence of states π =
〈s0,s1, . . .〉 such that each state si supplies an assignment to the atomic propositions. The satisfaction
relation is extended to formulas in LTL for a model π and position i as follows.

π, i � p iff p ∈ si

π, i � ¬ϕ iff π, i 2 ϕ

π, i � ϕ ∨ψ iff π, i � ϕ or π, i � ψ

π, i � ϕ ∧ψ iff π, i � ϕ and π, i � ψ

π, i � ϕ ⇒ ψ iff π, i 2 ϕ or π, i � ψ

π, i � 2ϕ iff ∀ j ≥ i.π, j � ϕ

π, i � 3ϕ iff ∃ j ≥ i.π, j � ϕ

π, i � #ϕ iff π, i+1 � ϕ

A formula ϕ holds in model π if it holds at position 0 i.e. π,0 � ϕ .
The atomic propositions of these temporal formulae can be trivially translated into our functional

language. For our verification rules, we define the following datatype for truth values:

TruthVal ::= True | False | Undefined

The reason that we use a three-valued logic is that our verification rules must always return an answer,
but some of the properties to be verified may be undecidable. For our example programs which attempt to
implement mutual exclusion, the following two properties are defined. Within these temporal properties,
we use the variable s to denote the current state whose properties are being specified.

Property 1 (Mutual Exclusion) This is a safety property which specifies that both processes cannot be
using the critical resource at the same time. This can be specified as follows:

2(case s of
SysState s1 s2 → case s1 of

U → case s2 of
U → False
| → True

| → True)

Property 2 (Non-Starvation) This is a liveness property which specifies that each process must eventu-
ally get to use the critical resource if they are waiting for it. This can be specified for process 1 as follows:

2((case s of
SysState s1 s2 → case s1 of

W → True
| → False)⇒3(case s of

SysState s1 s2 → case s1 of
U → True
| → False))

The specification of this property for process 2 is similar.
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5 Verification of Temporal Properties

In this section, we show how temporal properties of reactive systems defined in our functional language
can be verified. To facilitate this, we first of all transform the reactive systems definitions into a simplified
form using distillation [6, 7], a powerful program transformation technique which builds on top of the
supercompilation transformation [19, 18]. Due to the nature of the reactive systems definitions, in which
the input is an external event stream, and the output is a stream of states, the programs resulting from
this transformation will take the form e /0, where eρ is defined as follows.

eρ ::= Cons eρ

0 eρ

1
| f x1 . . .xn

| case x of p1→ eρ

1 | · · · | pk→ eρ
n , where x /∈ ρ

| x eρ

1 . . .e
ρ
n , where x ∈ ρ

| let x = λx1 . . .xn.e
ρ

0 in e(ρ∪{x})1
| eρ

0 where f1 = λx11 . . .x1k .e
ρ

1 . . . fn = λxn1 . . .xnk .e
ρ
n

The let expressions indicate where generalisation has taken place. The let variables are added to the set
ρ , and will not be used in the selectors of case expressions. These let variables will be abstracted so no
information can be assumed about them during verification.

We define our verification rules on this restricted form of program as shown in Figure 6. The param-
eter ϕ denotes the property to be verified and φ denotes the function variable environment. ρ denotes the
set of function calls previously encountered; this is used for the detection of loops to ensure termination.
ρ is also used in the verification of the 2 operator (which evaluates to True on encountering a loop), and
the verification of the 3 operator (which evaluates to False on encountering a loop); ρ is reset to empty
when the verification moves inside these temporal operators. For all other temporal formulae, the value
Undefined is returned on encountering a loop.

The verification rules can be explained as follows. The logical connectives ∧, ∨, ⇒ and ¬ are
defined in the usual way for a three-valued logic in our language in rules (1-4). Rules (5a-d) deal with a
constructed stream of states. In rule (5a), if we are trying to verify that a property is always true, then we
verify that it is true for the first state (with ρ reset to empty) and is always true in all remaining states.
In rule (5b), if we are trying to verify that a property is eventually true, then we verify that it is either
true for the first state (with ρ reset to empty) or is eventually true in all remaining states. In rule (5c),
if we are trying to verify that a property is true in the next state then we verify that the property is true
for the next state. In rule (5d), if we are trying to verify that a property is true in the current state then
we verify that the property is true for the current state by evaluating the property using the value of the
current state for the state variable s. Rules (6a-c) deal with function calls. In rule (6a), if we are trying
to verify that a property is always true, then if the function call has been encountered before while trying
to verify the same property we can return the value True; this corresponds to the standard greatest fixed
point calculation normally used for the 2 operator in which the property is initially assumed to be True
for all states. Otherwise, the function is unfolded and added to the set of previously encountered function
calls for this property. In rule (6b), if we are trying to verify that a property is eventually true, then if the
function call has been encountered before while trying to verify the same property we can return the value
False; this corresponds to the standard least fixed point calculation normally used for the 3 property in
which the property is initially assumed to be False for all states. Otherwise, the function is unfolded and
added to the set of previously encountered function calls for this property. In rule (6c), if we are trying to
verify that any other property is true, then if the function call has been encountered before we can return
the value Undefined since a loop has been detected. Otherwise, the function is unfolded and added to the
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(1) P[[e]] (ϕ ∧ψ) φ ρ = case (P[[e]] ϕ φ ρ) of
True →P[[e]] ψ φ ρ

| False → False
| Undefined→ Undefined

(2) P[[e]] (ϕ ∨ψ) φ ρ = case (P[[e]] ϕ φ ρ) of
True → True
| False →P[[e]] ψ φ ρ

| Undefined→P[[e]] ψ φ ρ

(3) P[[e]] (ϕ ⇒ ψ) φ ρ = case (P[[e]] ϕ φ ρ) of
True →P[[e]] ψ φ ρ

| False → True
| Undefined→ Undefined

(4) P[[e]] (¬ϕ) φ ρ = case (P[[e]] ϕ φ ρ) of
True → False
| False → True
| Undefined→ Undefined

(5a) P[[Cons e0 e1]] (2ϕ) φ ρ = P[[Cons e0 e1]] ϕ φ /0∧P[[e1]] (2ϕ) φ ρ

(5b) P[[Cons e0 e1]] (3ϕ) φ ρ = P[[Cons e0 e1]] ϕ φ /0∨P[[e1]] (3ϕ) φ ρ

(5c) P[[Cons e0 e1]] (#ϕ) φ ρ = P[[e1]] ϕ φ ρ

(5d) P[[Cons e0 e1]] ϕ φ ρ = v, where ϕ[e0/s] ⇓ v

(6a) P[[f x1. . .xn]] (2ϕ) φ ρ =
{

True, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] (2ϕ) φ (ρ ∪{ f}), otherwise
where φ( f ) = λx′1 . . .x

′
n.e

(6b) P[[f x1. . .xn]] (3ϕ) φ ρ =
{

False, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] (3ϕ) φ (ρ ∪{ f}), otherwise
where φ( f ) = λx′1 . . .x

′
n.e

(6c) P[[f x1. . .xn]] ϕ φ ρ =
{

Undefined, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] ϕ φ (ρ ∪{ f}), otherwise
where φ( f ) = λx′1 . . .x

′
n.e

(7a) P[[case x of p1→ e1 | · · · | pn→ en]] (3ϕ) φ ρ

= (
∨

pi∈F
P[[ei]] (3ϕ) φ ρ)∨ (

n∧
i=1

P[[ei]] (3ϕ) φ ρ)

(7b) P[[case x of p1→ e1 | · · · | pn→ en]] ϕ φ ρ

=
n∧

i=1
P[[ei]] ϕ φ ρ

(8) P[[x e1 . . .en]] ϕ φ ρ = Undefined
(9) P[[let x = e0 in e1]] ϕ φ ρ = P[[e1]] ϕ φ ρ

(10) P[[e0 where f1 = e1 . . . fn = en]] ϕ φ ρ

= P[[e0]] ϕ (φ ∪{ f1 7→ e1, . . . , fn 7→ en}) ρ

Figure 6: Verification Rules

set of previously encountered function calls. Rules (7a-b) deal with case expressions. In rule (7a), if we
are trying to verify that a property is eventually true, then we verify that it is either eventually true for at
least one of the branches for which there is a fairness assumption (since these branches must be selected
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eventually), or that it is eventually true for all branches. In Rule (7b), if we are trying to verify that any
other property is true, then we verify that it is true for all branches. In rule (8), if we encounter a free
variable, then we return the value Undefined since we cannot determine the value of the variable; this
must be a let variable which has been abstracted, so no information can be determined for it. In rule (9),
in order to verify that a property is true for a let expression, we verify that it is true for the let body; this
is where we perform abstraction of the let variable. In rule (10), for a where expression, the function
definitions are added to the environment φ .

Theorem 5.1 (Soundness) P[[e]] ϕ /0 /0 = True⇒ π,0 � ϕ , where π is a model for e.

The proof of this is by recursion induction on the verification rules P .

Theorem 5.2 (Termination) ∀e ∈ Prog, ϕ ∈WFF, P[[e]] ϕ /0 /0 always terminates.

Proof of termination is quite straightforward since there will be a finite number of functions and uses of
the temporal operators 2 and 3, and verification of each of these temporal operators will terminate when
a function is re-encountered.

Using these rules, we try to verify the two properties (mutual exclusion and non-starvation) for the
example programs for mutual exclusion given in Section 3. Firstly, distillation is applied to each of the
programs.

Example 1 The result of distilling Example 1 is shown in Figure 7. Verification of Property 1 (mutual
exclusion) fails for this transformed program; if the input event stream starts with [Request1, Request2,
Take1, Take2, . . .], then we can see that we end up within the function f9, where both processes are using
the critical resource.

Example 2 The result of distilling Example 2 is shown in Figure 8. Verification of Property 1 (mutual
exclusion) succeeds for this transformed program; we can easily see that there is no state in which both
processes are using the critical resource. When trying to prove this always property, as soon as we re-
encounter any of the functions within the program, the value True is returned by the verification rules.
However, verification of Property 2 (non-starvation) fails; if the input event stream starts with [Request1,
Request2, . . .], then we can see that we end up within the function f5. At this point, both processes are
waiting for the critical resource, so we need to prove that they will eventually get to use it. When trying
to prove this eventuality property, we immediately re-encounter the function f5, so the value False is
returned by the verification rules.

Example 3 The result of distilling Example 3 is shown in Figure 9. We can see that the use of tickets is
completely transformed away and that the resulting program has a finite number of states. This is where
distillation provides an advantage over other transformation techniques such as positive supercompilation
which are not able to remove as many intermediate data structures and thus to transform away the use of
tickets. Verification of both Property 1 (mutual exclusion) and Property 2 (non-starvation) succeed for
this transformed program. The proof of Property 1 is quite straightforward and similar to the proof of
this property for Example 2. If we consider the proof of Property 2 for process 1, if process 1 requests
access to the critical resource first then we end up within function f2. From this point, process 1 must
either take the critical resource immediately moving into function f4, or process 2 also requests access
to the critical resource moving into function f6, at which point process 1 must take the critical resource
moving into function f8. If process 2 requests access to the critical resource before process 1 then we
end up within function f7. From this point, process 2 must take the critical resource first, moving into
function f9, and then eventually release the critical resource moving into function f2. From this point,
process 1 must eventually take the critical resource, as already shown.
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f1 es
where
f1 = λes.Cons (SysState T T) (case es of

Cons e es → case e of
Request1 → f2 es
| Request2 → f3 es
| → f1 es)

f2 = λes.Cons (SysState W T) (case es of
Cons e es → case e of

Take1 → f4 es
| Request2 → f5 es
| → f2 es)

f3 = λes.Cons (SysState T W) (case es of
Cons e es → case e of

Request1 → f5 es
| Take2 → f6 es
| → f3 es)

f4 = λes.Cons (SysState U T) (case es of
Cons e es → case e of

Release1 → f1 es
| → f4 es)

f5 = λes.Cons (SysState W W) (case es of
Cons e es → case e of

Take1 → f7 es
| Take2 → f8 es
| → f5 es)

f6 = λes.Cons (SysState T U) (case es of
Cons e es → case e of

Release2 → f1 es
| → f6 es)

f7 = λes.Cons (SysState U W) (case es of
Cons e es → case e of

Release1 → f3 es
| Take2 → f9 es
| → f7 es)

f8 = λes.Cons (SysState W U) (case es of
Cons e es → case e of

Release2 → f2 es
| Take1 → f9 es
| → f8 es)

f9 = λes.Cons (SysState U U) (case es of
Cons e es → case e of

Release1 → f6 es
| Release2 → f4 es
| → f9 es)

Figure 7: Result of Distilling Example 1
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f1 es
where
f1 = λes.Cons (SysState T T) (case es of

Cons e es → case e of
Request1 → f2 es
| Request2 → f3 es
| → f1 es)

f2 = λes.Cons (SysState W T) (case es of
Cons e es → case e of

Take1 → f4 es
| Request2 → f5 es
| → f2 es)

f3 = λes.Cons (SysState T W) (case es of
Cons e es → case e of

Request1 → f5 es
| Take2 → f6 es
| → f3 es)

f4 = λes.Cons (SysState U T) (case es of
Cons e es → case e of

Release1 → f1 es
| → f4 es)

f5 = λes.Cons (SysState W W) (case es of
Cons e es → case e of

→ f5 es)
f6 = λes.Cons (SysState T U) (case es of

Cons e es → case e of
Release2 → f1 es
| → f6 es)

Figure 8: Result of Distilling Example 2

6 Conclusion and Related Work

In this paper, we have shown how a fold/unfold program transformation technique can be used to verify
both safety and liveness properties of reactive systems which have been specified using a functional lan-
guage. Many corresponding techniques have been developed for verifying temporal properties for logic
programs [13, 17, 5, 1, 9]). Some of these techniques have been developed only for safety properties,
while others can be used to verify both safety and liveness properties. Due to the use of a different
programming paradigm, it is difficult to compare the relative power of these techniques to our own.
However, we argue that the use of a more powerful program transformation algorithm will remove more
intermediate data structures, and thus be capable of proving more properties directly within the same
framework, without the need for making use of external solvers.

Very few techniques have been developed for verifying temporal properties for functional programs
other than the work of Lisitsa and Nemytykh [14, 2]. Their approach uses supercompilation [19, 18]
as the fold/unfold transformation methodology, where our own approach uses distillation [6, 7]. Since
distillation has been shown to be more powerful than positive supercompilation, it follows that we should
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f1 es
where
f1 = λes.Cons (SysState T T) (case es of

Cons e es → case e of
Request1 → f2 es
| Request2 → f3 es
| → f1 es)

f2 = λes.Cons (SysState W T) (case es of
Cons e es → case e of

Take1 → f4 es
| Request2 → f6 es
| → f2 es)

f3 = λes.Cons (SysState T W) (case es of
Cons e es → case e of

Take2 → f5 es
| Request1 → f7 es
| → f3 es)

f4 = λes.Cons (SysState U T) (case es of
Cons e es → case e of

Release1 → f1 es
| Request2 → f8 es
| → f4 es)

f5 = λes.Cons (SysState T U) (case es of
Cons e es → case e of

Release2 → f1 es
| Request1 → f9 es
| → f5 es)

f6 = λes.Cons (SysState W W) (case es of
Cons e es → case e of

Take1 → f8 es
| → f6 es)

f7 = λes.Cons (SysState W W) (case es of
Cons e es → case e of

Take2 → f9 es
| → f7 es)

f8 = λes.Cons (SysState U W) (case es of
Cons e es → case e of

Release1 → f3 es
| → f8 es)

f9 = λes.Cons (SysState W U) (case es of
Cons e es → case e of

Release2 → f2 es
| → f9 es)

Figure 9: Result of Distilling Example 3
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be able to verify more properties using our approach. Also, the work of Lisitsa and Nemytykh can verify
only safety properties, while our approach can be used to verify both safety and liveness properties.

One other area of work related to our own is the work on using Higher Order Recursion Schemes
(HORS) to verify temporal properties of functional programs. HORS are a kind of higher order tree
grammar for generating a (potentially infinite) tree and are well-suited to the purpose of verification
since they have a decidable mu-calculus model checking problem. Kobayashi [15] first showed how this
approach can be used to verify safety properties of higher order functional programs. This approach was
then extended to also verify liveness properties by Lester et al. [12]. These approaches have a very bad
worst-case time complexity, but techniques have been developed to ameliorate this to a certain extent.
It does however appear likely that this approach will be able to verify more properties than our own
approach but much less efficiently.
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