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Both automatic program verification and program transformation are based on program analysis. In
the past decade a number of approaches using various automatic general-purpose program transfor-
mation techniques (partial deduction, specialization, supercompilation) for verification of unreacha-
bility properties of computing systems were introduced and demonstrated [25, 8, 31]. On the other
hand, the semantics based unfold-fold program transformation methods pose themselves diverse kind
of (un)reachability tasks and try to solve them, aiming to improve the semantics tree of the program
being transformed. That means some general-purpose verification methods may be used for strength-
ening program transformation techniques. This paper considers the question how finite countermod-
els for safety verification method [29] might be used in Turchin’s supercompilation method. We
extract a number of supercompilation sub-algorithms trying to solve (un)reachability problems and
demonstrate use of an external countermodel finder for solving some of the problems.
Keywords: program specialization, supercompilation, program analysis, program transformation,
safety verification, finite countermodels

1 Introduction

A variety of semantic based program transformation techniques commonly called specialization aim to
improve some properties of the program P being transformed in a given context of using the program P.
The transformation techniques save the partial function defined by P on the domain of P. Given a cost
model the specialization aim may be optimization of P. Specialization also can be used for verification of
some program properties [25, 8, 31]. The residual program (the specialization result) may have simple
explicit syntactic properties, which are not evident in the original program P. I.e., in essence, they are
semantic properties of P and specialization shifts them on the syntactic level. Such syntactic properties
of the residual programs may be treated in different ways.

For example, let two programming language L 1 and L 2 be given. Let us suppose for simplicity
that the data sets of the two languages coincide. Let D denote the common data set. Let Int(p,d) be
an L 1-interpreter written in L 2 and let we be given a specializer transforming the programs written in
L 2 into the same language. Here p is an L 1-program to be computed on the input data d ∈ D. That
is Int(p,d) = p(d). Given a fixed program p0(·) one may specialize the interpreter with respect to
its first argument: Int(p0,d). Let q(·) be the result of the specialization. Then q(·) ∈ L 2 and, by
definition of specialization, for any d ∈ D the following equalities q(d) = Int(p0,d) = p0(d) hold.
Formally, those mean q(·) can be seen as a result of compilation (from L 1 into L 2) of the program
p0(·). Potential issue with the residual program is it could be not optimal. Speaking informally, to
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guarantee some optimality one may use the following syntactic property of the residual program: q(·)
contains no the key-words of the L 1-language. Those are all L 1-terms excluding the terms defining
data. The construction above is well-known and called the first Futamura projection [11, 7, 47].

It has been known for a while [48, 49, 24, 8, 10] that program transformation techniques, in particular
program specialization, can be used to prove some properties of programs automatically. For example,
if a program actually implements (in a given context of use) a constant function, sufficiently powerful
and semantics preserving program transformation may reduce the program to a syntactically trivial “con-
stant” program, pruning away unreachable branches and proving thereby the property. Viability of such
an approach to verification has been demonstrated in previous works [30, 31] where it was applied to
the verification of program models of parameterized cache coherence protocols and Petri Nets models
[21, 32]. Later the program functional modeling was addressed to several cryptographic protocols and
supercompilation succeeded to verify the protocol program models and even more a supercompiler was
used for an interactive search for attacks on some cryptographic protocols [1, 42].

Specialization can be used for analysis of other program properties, basing on syntactic properties
of the corresponding residual program. For example, any program can be seen as a graph and for some
reasons one may try to apply specialization for improving some given properties of the graph (see [33]).

It is clear that any automated program analysis somehow may be applied to program verification.
On the other hand, many program analysis tasks, in particular those appearing in the context of program
transformation techniques can be considered as verification problems.

In this paper we address the question of applications of a particular verification technique, finite
countermodel based verification (FCM) [44, 16, 28, 29] within the context of supercompilation particular
program transformation method. Supercompilation is a semantic based specialization method introduced
by V. F. Turchin [49] and which utilizes in particular unfold-fold based program transformation.

One of the main challenges in unfold-fold based program transformation techniques is to construct a
good enough approximation of the semantic tree of the program P being transformed. That is to detect
as many unreachable paths in the syntactic tree of P as possible and to prune away the dead paths. This
syntactic tree is being stepwise unfolded from the program P definition.1 Thus, in essence, this challenge
is an (un)reachability problem. Supercompilation also poses itself other kind of (un)reachability tasks
and tries to solve them (see Sec. 5 for examples).

Finite countermodels method (FCM) for safety verification utilizes the principle reachability as
derivability in the first-order logic and reduces the task of safety verification, generally for infinite state
and parameterized systems, to the tasks of disproving first-order formulae, which are tackled then by
available finite model finders. Proposed initially for the verification of cryptographic protocols in [44, 16]
it has been later expanded to the larger classes of infinite state and parameterised verification problems,
including safety for general term-rewriting systems [28]. The method has been shown to be relatively
complete with respect to more widely known methods of regular model checking [29] and regular tree
model checking [26] and generally it works when the safety can be demonstrated using regular invariants.

What makes the combination of supercompilation and the FCM method interesting and promising
it is their somewhat complimentary features. On the one side the analysis mechanisms exploited within
supercompilation do not cover all regular properties of parameterized program configurations, so any
help from the theoretically (relatively) complete the FCM method could potentially be useful. On the
other hand, supercompilation (as well as other specialization methods) sometimes is able to recognize
and use non-regular properties of the program P (see Sec. 6 for examples) going beyond of what is

1I.e. given a loop (or recursion definition), a one-step syntactic unfolding is a formal symbolic one-step unwinding the loop
without any improvement of the copy of the loop body definition taken out of the loop iterations following the taken iteration.
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possible by the FCM method.
So in short, the main idea of this paper is to explore the combination of FCM, theoretically complete

for verification by regular invariants, with the mechanisms of supercompilation able to recognize and
deal with non-regular properties.

It is known that the problem of constructing a good approximation of the semantics tree of a pro-
gram is especially difficult if strings are among data sets involved in the program. Associativity of string
concatenation causes that. Unfolding for such programs connects program transformation with solv-
ing word equations. The decidability of the corresponding satisfiability problem was demonstrated by
G. S. Makanin [34] in 1977, but still solving word equations remains nontrivial task from a practical
point of view. Strings form a fundamental data type used in most programming languages. Recently, a
number of techniques producing string constraints have been suggested for automatic testing [15, 2] and
program verification [45]. String-constraint solvers are used in many testing and analysis tools [5, 43].
This attracts interest in string manipulation in the context of program analysis and transformation and
motivates our choice of the presentation language below.

This paper assumes the reader has basic knowledge of concepts of functional programming, pattern
matching, term rewriting systems. We also assume that the reader is familiar with the basics of the first-
order logic. In particular, we use without definitions the following concepts: the first-order predicate
logic, first-order models, interpretations of relational, functional and constant symbols, satisfaction |= of
a formula in a model, semantic consequence |=, deducibility (derivability) ` in the first-order logic. We
denote interpretations by square brackets, so, for example, [ f ] denotes an interpretation of a functional
symbol f in a model.

2 Preliminaries

2.1 The Presentation Language

We present our program examples in a variant of a pseudocode for functional programs while real super-
compilation experiments with the programs were done in a strict functional programming Refal language
[50].

The programs given below are written as strict (call by value) term rewriting systems based on pattern
matching. The sentences in the programs are ordered from top to bottom to be matched.

The data set is a free monoid of concatenation (i.e. the concatenation is associative) with an additional
unary constructor, which is denoted only with its parenthesis (i.e. without a name). The colon sign stands
for the concatenation. The constant ε is the unit of the concatenation and may be omitted, other constants
c are characters. The monoid D of the data may be defined with the following grammar:
D 3 d ::= ε | c | d1 : d2 | (d)
Thus a datum is a finite sequence (including the empty sequence), which can be seen as a forest of
arbitrary finite trees.

Let F = ∪iFi be a finite set of functional symbols, where Fi is a set of functional symbols of arity
i. Let v, f denote a variable and a function name correspondingly, then the monoid of the corresponding
terms may be defined as follows:
t ::= ε | c | v | f( args ) | t1 : t2 | (t)
args ::= t | t, args – where the number of the arguments of f equals its arity.

Let the denumerable variable set V be disjoined in three sets V = E ∪S ∪T , where the names
from E are prefixed with ’e.’, while the names from S – with ’s.’ and the names from T – with
’t.’. s.variables range over characters, e.variables range over the whole data set, while a t.variable
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can take as value any character or any data surrounded by parentheses. For a term t we denote the set of
all e-variables (t,s-variables) in t by E (t) (correspondingly T (t), S (t)). V (t) = E (t)∪S (t)∪T (t).

Examples of the variables are s.r, t.F1, e.cls, e.memory. I.e. a variable name may be any
identifier. We also use a syntactical sugar for representation of words (finite sequences of characters), so,
for example, the list ’b’:’a’:ε is shortened as ’ba’ and ’aba’:e.x denotes ’a’:’b’:’a’:e.x.

Let C denote a set of the characters. We denote the monoid of terms by T (C ,V ,F ). A term
without function names is passive. We denote the set of all passive terms by P(C ,V ). Let G (C ,F )⊂
T (C ,V ,F ) be the set of ground terms, i.e. terms without variables. Let O(C ) ⊂ G (C ,F ) be the
set of object terms, i.e. ground passive terms. Given a subset of the variables V1 = S1∪T1∪E1 where
S1 ⊆S , T1 ⊆T , E1 ⊆ E , a substitution is a mapping θ : V1→T (C ,V ,F ) such that θ(S1)⊆C ∪S
and θ(T1) ⊆ C ∪S ∪T ∪{(t) | t ∈ T (C ,V ,F )}. A substitution can be extended to act on all terms
homomorphically. A substitution is called object iff its range is a subset of O(T ). We use notation
s = tθ for s = θ(t), call s an instance of t and denote this fact by s� t.

A program P is a pair 〈τ,R〉, where τ is a term called initial and R is a finite set of rules of the form
f (p1, . . . , pk) = r, where f ∈Fk, for each (1 ≤ i ≤ k), pi is a passive term, r is a term containing the
function names only from R, V (r)⊆ V ( f (p1, . . . , pk)).

A program P = 〈τ,R〉with R = {li = ri | i = 1 . . .n} gives rise to a reachability relation→P on ground
terms→P as follows. For ground t1 and t2 the term t2 is one-step P-reachable from t1 if and only if there
exists a substitution θ : V (t)→D such that 1) there exists i : 1≤ i≤ n such that for all j ∈N, 1≤ j < i,
t1θ does not match against l j and it matches against li, and 2) t2 = riθ . In words, t2 is obtained from t1
by application of the first, in a given order applicable rewriting rule from R.

We denote by⇒P a one-step reachability defined similarly to→P above, but omitting the clause “for
all j ∈N, 1≤ j < i, t1θ does not match against l j“. Thus t1⇒P t2 iff t2 is obtained from t1 by application
of any rule from R. It is obvious that⇒P is an overapproximation of→P, that is→P⊆⇒P. We denote
reflexive and transitive closure of→P and⇒P by→∗P and⇒∗P, respectively.

2.2 Examples

The infinite sequence Fib of Fibonacci words is defined recursively as

w0 = b; w1 = a; wi+2 = wiwi+1;

and consists of the words: b,a,ba,aba,baaba,ababaaba,baabaababaaba, . . .

Example 1 The program 〈τ,R〉,where τ is Fib(e.n) and R given below, computes the n-th pair of con-
secutive Fibonacci words, where n is given in the input argument (the e.n variable) in the unary notation.
The result words are separated by the parenthesis constructors rather than the comma sign. For example,
Fib(’III’) = (’aba’) : (’baaba’). Note that the right side of the last rule uses associativity of the
concatenation: the length value of e.xs is unknown, e.g. it may be grater than 1.
Fib(e.n) = F(e.n, ’b’, ’a’);

F(ε, e.xs, e.ys) = (e.xs) : (e.ys);

F(’I’ : e.ns, e.xs, e.ys) = F(e.ns, e.ys, e.xs : e.ys);

The following example demonstrates using the associative constructor in the patterns (left-sides) of
the first and second rules. The example program defines a predicate testing: (1) whether or not a given
Fibonacci word postfix is ’bb’; (2) given two consecutive Fibonacci words, can the first of them end
with ’b’, while the second start with ’b’? In the positive case the predicate value is ’F’, otherwise –
’T’.
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Example 2 τ is B(Fib(e.n)) and R is from the previous example together with:
B(e.xs :’bb’, e.ys) = ’F’;

B(e.xs :’b’, ’b’ : e.ys) = ’F’;

B(e.xs, e.ys) = ’T’;

2.2.1 On Semantics of the Pattern Matching

Associativity of the concatenation creates an issue with the pattern matching, namely, given a term τ and
a rule (l = r) ∈ R, then there can be several substitutions matching τ against l. Thus we here have a kind
of non-determinism. An example is as follows:

Example 3 τ = f(’abcabc’, ’bc’) and l = f(e.x : e.w : e.y, e.w). There exist two substitutions
matching these terms: the first one is θ1(e.x) = ’a’,θ1(e.w) = ’bc’,θ1(e.y) = ’abc’, the second is
θ2(e.x) = ’abca’,θ2(e.w) = ’bc’,θ2(e.y) = ε .

To make the pattern matching unambiguous in the language L , we take the following decision
arising from Markov’s normal algorithms [35] and used in Refal [50]: (1) if there is more than one way
of assigning values to the variables in the left-side of a rule in order to achieve matching, then the one
is chosen in which the leftmost e-variable takes the shortest value; (2) if such a choice still gives more
than one substitution, then the chosen e-variable shortest value is fixed and the case (1) is applied to the
leftmost e-variable from the e-variables excluding considered ones, and so on while the whole list of the
e-variables in the left-side of the rule is not exhausted.

In the sequel we refer to this rule as the Markov’s rule and such a substitution as the Markov’s
substitution on l, matching τ .

Example 4 τ = f(’abacad’) and l = f(e.x : ’a’ : e.y : ’a’ : e.z). There exist three substitutions
matching the terms: the first is θ1(e.x) = ε,θ1(e.y) = ’b’,θ1(e.z) = ’cad’; the second is θ2(e.x) =
ε,θ2(e.y) = ’bac’,θ2(e.z) = ’d’; the third is θ3(e.x) = ’ab’,θ3(e.y) = ’c’,θ3(e.z) = ’d’.

The leftmost e-variable is e.x. Both in the first and the second substitutions the length of the e.x’s
values is zero. The next leftmost e-variable is e.y and ln(’b’)< ln(’bac’). The first substitution meets
Markov’s rule.

Given a term of the form f(t1, . . . , tn) where for all (1≤ i≤ n), ti ∈ O(C ) and a term f(p1, . . . , pn)

where all pi are passive terms, the matching f(t1, . . . , tn) against f(p1, . . . , pn) can be viewed as solving
the following system of equations in the free monoid of the object terms O(C ).

p1 = t1
. . .

pn = tn

We look for all values of the variables (i.e. substitutions θi) from V (f(p1, . . . , pn)) such that for
each i and each (1≤ j ≤ n), θi(p j) = t j and if the values’ set is not empty we choose the only Markov’s
substitution, where Markov’s rule acts on the pattern (p1) . . .(pn). Note the patterns p j may share vari-
ables and this equation system is equivalent to the following only equation (p1) . . .(pn)= (t1) . . .(tn).
This system has an important property: for all (1≤ i≤ n) ti ∈O(C ). There is a simple algorithm solving
the equation systems meeting this property.
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2.3 On Supercompilation

In this paper we are interested in one particular approach in program transformation and specialization,
known as supercompilation2. Supercompilation is a powerful semantic based program transformation
technique [49, 46] having a long history well back to the 1960-70s, when it was proposed by V. Turchin.
The main idea behind a supercompiler is to observe the behavior of a functional program p running
on partially defined input with the aim to define a program, which would be equivalent to the original
one (on the domain of latter), but having improved properties. The supercompiler unfolds a potentially
infinite tree of all possible computations of a parameterized program. In the process, it reduces the
redundancy that could be present in the original program. It folds the tree into a finite graph of states
and transitions between possible (parameterized) configurations of the computing system. And, finally,
it analyses global properties of the graph and specializes this graph with respect to these properties
(without an additional unfolding). The resulting program definition is constructed solely based on the
meta-interpretation of the source program rather than by a (step-by-step) transformation of the program.

The result of supercompilation may be a specialized version of the original program, taking into ac-
count the properties of partially known arguments, or just a re-formulated, and sometimes more efficient,
equivalent program (on the domain of the original).

Turchin’s ideas have been studied by a number of authors for a long time and have, to some extent,
been brought to the algorithmic and implementation stage [41]. From the very beginning the develop-
ment of supercompilation has been conducted mainly in the context of the Refal programming language
[50, 40, 38, 39] basing on syntax and semantics being similar to our presentation language syntax and
semantics. A number of the simplest model supercompilers for subsets of functional languages based
on Lisp data were implemented as well with an aim to formalize some aspects of the supercompilation
algorithms [46, 37, 20, 22]. The most advanced supercompiler for Refal is SCP4 [38, 39, 41].

3 Finite Countermodels and Program-State Reachability

Given a term t ∈T (C ,V ,F ), the set of instances of tθ such that the substitution θ is an object on V (t)
is called the state set of t. Given a program P = 〈τ,R〉 in L , the state set S0 of τ is called the initial
states of P. The computing system R is able to evolve, starting from a fixed state s0 ∈ S0 and producing
some states of P. Suppose that S0 is described by a predicate (characteristic function) Σ0(·) written in a
logical language M . Let B be a formal theory defined in M and φ(·) be a formula (predicate) in M ,
describing some state set of P. Assume that R satisfies the following: given two states s0,s of P, if s is
reachable from s0 then B,φ(s0) ` φ(s). Suppose that a formula ψ(·) (hypothesis in B) specifies a set of
bad states, reachability of which contradicts a safety property of the system P. Then refutation of ψ(s)
(in the theory B∧ φ(s0)) will mean the fact of safety of P – unreachability of the states satisfying the
formula ψ(·). One may refute the hypothesis ψ(s) by producing a counterexample; i.e. a countermodel
of the formula/theory B∧Σ0(s)∧φ(s)→ ψ(s).

3.1 Formal Theory of D

Recall that the data set D of our presentation language (see Sec. 2.1) is an algebraic structure – the free
monoid of concatenation with an additional free unary operation. Characters are the constants of the
monoid. In this paper we assume that the character alphabet A is finite and β ,γ /∈ A , : /∈ A . Let β

2from supervised compilation
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stands for the unary operation. In this encoding the data set D is redefined as follows:
D 3 d ::= ε | γ | d1 : d2 | β (d) , where γ ranges over A \{ε}.

Let A be {ε,’a’,’b’}, consider the following theory TD in the first-order predicate logic:

∀x,y,z.(x : y) : z = x : (y : z)
∀x.x : ε = x
∀x.ε : x = x
(¬(ε =′ a′))∧ (¬(ε =′ b′))∧ (¬(′a′ =′ b′))
R(ε)∧R(’a’)∧R(’b’)
∀x.R(x)→ R(β (x))
∀x,y.R(x)∧R(y)→ R(x : y)

The first three axioms are the free monoid axioms: the first one expresses associativity of concate-
nation, the second and third axioms say the constant ε is the identity element. The last three axioms
axiomatize the unary predicate R(·) reflecting the inductive definition of the data set.

The theory TD
3 represents the data set D as stated in the following proposition

Proposition 1 d ∈D ⇔ TD ` R(d)

4 Unfolding and L -Program-State Reachability

Given a function call st0 = fk(d0), where k ∈ N,fk ∈Fk,d0 ∈Dk, the abstract L -machine Int(p,·),
starting from the state fk(d0) by stepwise matching d0 against the left-sides li of the rules defining fk,
chooses a particular rule ρi0 of fk and constructs a next state based on the right-side of ρi0 . This matching
algorithm can be seen as an algorithm stepwise solving the following equations li = d0. That is to say,
the matching chooses a mapping (Markov’s substitution) σ(·) : V (li)→D such that σ(li) = d0, if such
a mapping exists. Let Step(st0) denote an algorithm including the successful pattern matching and the
replacement of st0 with σ(ri).

In general, Int(p,·) state-wise iterates Step(st) when the state st is a configuration from the
function stack top and input data of the state st are completely static (known). The unfolding algorithm
approximates the semantic tree of p by means of iterating a meta-extension MStep(·) of Step(·) in the
case when its input data st may be parameterized (partially unknown/dynamic). A launch of MStep(st)
results in a tree being branched with the corresponding input parameters. The parameters’ branchings
are produced by a meta-extension of the matching, i.e. by an algorithm solving the equations li = st of
general form in the term monoid T (C ,V ,F ). In particular, the algorithm has to solve word equations:
in general, this task is very nontrivial as mentioned above (see Sec. 1), although there exist several simple
algorithms solving such equations of some restricted forms.

4.1 One-Step Unreachability

Taking into account the hardness of Makanin’s algorithm one may approximate the semantic tree as
follows. Let a program rule l = r and a parameterized state st be given. Before launching a main
algorithm F trying to solve the equation l = st, MStep tries to prove that this equation has no solutions,
using a specialized algorithm UnSat. UnSat may be incomplete, i.e. sometimes it may fail in proving
unsatisfiability of the equation or even work in unbounded time on some its input. But UnSat may

3Note that if TD is used only for constructing a countermodel M in TD of a formula F , then the fourth axiom may be varied,
since existence of such an M in TD implies that M is a countermodel of F in a wider (weaker) theory as compared with TD .
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be simple enough to be implemented for an existing external computing system with respect to the
specializer unfolding the tree. One may limit the time being taken by UnSat. If UnSat does not finish
its work in the given time limit, we may think UnSat fails in proving the unsatisfiability. In the fail
case we just call F. If UnSat succeeds, then the program rule l = r being considered is unreachable from
the parameterized state st and the tree branch corresponding to this rule should be pruned away. If F
succeeds, then it, like a Prolog interpreter, may return a simple narrowing of the parameters of st and
Markov’s substitution depending on the narrowed parameters and satisfying the equation l = st. This
substitution allows us to proceed with the unfolding. Unfortunately the narrowing of the parameters may
not be expressed in the language U describing the parameterized configurations of the program being
transformed, even if the algorithm F takes a reasonable time. For example, the Markov decision set may
be recursive, while the language U is not. We now exemplify the situation.

Example 5 Consider the following program p = 〈τ,R〉, τ = f(’a’ : e.p, e.p : ’a’) and R is

f(e.x, e.x) = ’T’;

f(e.x, e.y) = ’F’ : (e.x) : (e.y);

The extended pattern matching has to solve the following system of the parameterized equations:{
e.x = ’a’ : e.q

e.x = e.q : ’a’
(?)

It is equivalent to the only relation Φ(e.q) (equation) – ’a’ : e.q = e.q : ’a’ imposed on the param-
eter e.q.4

At a naı̈ve glance, Φ(e.q) must be the predicate labeling the first branch from the semantics tree
root, while the second branch must be labeled by the negation ¬Φ(e.q). Φ(e.q) narrows the range of
e.q. But the problem is Φ(e.q) cannot be represented in the pattern language, using at most finitely
many of the patterns to define a one-step program (a result of the unfolding). Recursion should be used
to check whether a given input data belongs to the truth set of Φ(e.q). This recursion is unfolded as an
infinite tree.

The e.x-variable multiplicity µe.x(f(e.x, e.x)) > 1 causes this problem: the system (?) implies
an equation, where the parameter e.q plays the role of a variable and both sides of the equation contain
e.q.

Let us replace the initial parameterized configuration in Example 5:

τ = f(’a’ : e.q : ’a’ : e.q : ’b’, e.q : ’a’ : e.q : ’b’ : e.q)

The extended pattern matching now has to solve the following equation

’a’ : e.q : ’a’ : e.q : ’b’= e.q : ’a’ : e.q : ’b’ : e.q

It is easy to see that this equation having variable e.q both in the left and right sides is inconsistent
in D . Mace4 automated finite model finder by W. McCune [36] quickly recognizes this fact in the
context of the formal first-order theory TD (see Sec. 3.1). I.e. Mace4 finds a finite countermodel of
the following formula ∃e.q. ’a’ : e.q : ’a’ : e.q : ’b’ = e.q : ’a’ : e.q : ’b’ : e.q in the theory
D . That is unfolding the program being considered in the given context can prune away the first rule

4It is easy to see that its solution set is {θi(e.q) = ’a’i | i ∈ N}.
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of R and result in the following program (tree): p1 = 〈τ1,R1〉, τ1 = f(’a’ : e.q : ’a’ : e.q : ’b’,

e.q : ’a’ : e.q : ’b’ : e.q) and R1 is the only rule: f1(e.x, e.y) = ’F’ : (e.x) : (e.y);

Note that we did not construct any narrowing of the parameter e.q and the information on the prop-
erty of e.q (i.e. the equation above is inconsistent) is lost. The constructed tree is an approximation of
the semantic tree of 〈τ,R〉, rather than the exact semantics tree. If the right-side of the remaining rule in-
clude a function call then, in general, the lost information might be useful for further specialization. For
example, it might be ’F’ : g((e.x) : (e.y)). The configuration τ1 might be encountered in a middle
vertex of the unfolding tree.

The example above demonstrates a potential feature of using a finite countermodel finder for im-
proving the approximation of the semantics tree generated by the unfolding. An interface bundling the
supercompiler SCP4 [38, 39, 41] with Mace4 has been implemented. It allows formulating in Mace4
such a kind of unreachability problem and returning to SCP4 the result produced by Mace4 during a time
indicated by a user in a pseudo-comment of the program being transformed.

At first glance, the construction given in Example 5 can be generalized as follows. Let a program P=
〈t,R〉, t = f (u1, . . . ,uk) and R – a function f definition below, where k ∈N, f ∈Fk and for all (1≤ i≤ k)
ui ∈P(C ,V ), be given. Let #V (t) = m ∈N and #V (li) = si ∈N. Let the sets V (t),V (l1), . . . ,V (ln) be
ordered. Let q j stand for the j-th element of V (t), while wi j stand for the j-th element of V (li).

f (p11, . . . , p1k) = r1
. . .

f (pn1, . . . , pnk) = rn

Definition 1 Given i ∈ N, 1 ≤ i ≤ n, the rule li = ri of the function f is said to be one-step reachable
from the term t if there exists a substitution θ : V (t)→D such that for all j ∈ N, 1≤ j < i, tθ does not
match against l j and it matches against li. A rule is said to be one-step unreachable if it is not one-step
reachable.

Let i ∈ N, 1 ≤ i ≤ n, be given. One may suspect that refuting the following formula, expressing
reachability of a rule, leads to proving that the rule li = ri of the function f above is one-step unreachable
from the term t.
∃e.v∃q1, . . . ,qm .((e.v= (u1) . . .(uk))∧ (∀w11, . . . ,w1s1¬(e.v= (p11) . . .(p1k)))∧

. . .
(∀w(i−1)1, . . . ,w(i−1)s(i−1)

¬(e.v= (p(i−1)1) . . .(p(i−1)k)))∧
(∃wi1, . . . ,wisi(e.v= (pi1) . . .(pik)))

)
But the variables here are assumed to range over the data set D only and so (naı̈ve) application of a
generic finite model finder may lead to vacuous countremodels, refuting the formula on the domain
elements unrelated to D . One may still to try to analyse such conditions automatically, possibly using
alternating applications of the first-order model finder and a theorem prover. We will address this issue
elsewhere.

Nevertheless we can overapproximate the reachability condition. Namely, we do not take care of any
rule excluding the current rule being explored. That is to say, we approximate the L pattern matching
with the pattern matching used in non-deterministic term rewriting. The corresponding formula to be
refuted is as follows: ∃q1, . . . ,qm .∃wi1, . . . ,wisi .(u1) . . .(uk)= (pi1) . . .(pik).

So the refutation of this formula proves non-reachability by non-deterministic rewriting and therefore
original non-reachability.
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Concluding this section we emphasize that the worst-case time complexity of the program resulting
in Example 5 is O(1), while the worst-case time complexity of the original program is O(n), where n is
the input data size. Improving this complexity was done due to a launch of Mace4. There is a hidden
loop over the input data in the first rule of the original program.

5 Global Unreachability

Unlike the most known specialization techniques, by definition, supercompilation is allowed to extend
the domain of the partial function defined by the program being transformed. That makes supercompi-
lation more flexible as compared with those methods. For example, supercompilation is able to improve
the worst-case time complexity of some input programs, while partial evaluation cannot [19]. Other
transformation techniques such as distillation [17] can also improve the worst-case time complexity of
some programs. This section considers one of the supercompilation tools aiming to obtain such a kind
of transformation in connection with finite countermodels.

5.1 Online Generated Program Output Formats

Given a program P = 〈t,R〉 and a substitution θ : V (t)→ D , [[tθ ]] below denotes the result of (finite)
computation of tθ according to the program P.

Definition 2 Let a program P = 〈t,R〉 be given. A term u ∈P(C ,V ) is said to be an output format of
the program P if for any substitution θ : V (t)→ D there exists a substitution η : V (u)→ D such that
uη = [[tθ ]]. Let u1 and u2 be two output formats of P. If u1� u2, then we say u1 lesser than u2. If u1
lesser than any other output format of P, then u1 is said to be a minimal output format of P.

The minimal output format of a given program is not unique. Examples of the output formats are:
e.x is an output format of any program; s.y is the only (modulo variable renaming) minimal output
format of the program defined in Example 2; both s.z : e.x and s.z : e.x : e.y are minimal output
formats of the program given in Example 5.

The tree T being stepwise generated by unfolding is potentially infinite. As a consequence it is
an object to be somehow folded back into a finite graph representing the residual program Q. The
folding algorithm works stepwise online, i.e. given an intermediate state of T the algorithm tries to fold
a potentially infinite path in this intermediate state into a loop, using generalization of parameterized
configurations/states of the original program P. We omit the detials of the generalization algorithm.
Edges folding such paths are called references. Thus the intermediate state of T actually is a graph G
rather than a tree (see Fig. 1). Given a vertex (parameterized state of P) v of G, if all references from
the vertices on the paths originating in v are ingoing in the vertices from the same path set, then the
part of G is a self-sufficient (closed) subgraph. Such a vertex v is called the root of the subgraph. The
root is a potential entry point into one of the residual functions (sub-programs), i.e. the root is an input
format of a residual function H. Let such a root just be created by a step of the folding algorithm. The
supercompiler SCP4 analyses the subgraph H and constructs its output format. The calls of the folding
algorithm are stepwise interleaved with the calls of the unfolding algorithm. Hence G may include
both some completely folded subgraphs and still non-unfolded parameterized configurations of P. Such
configurations may include some calls of the residual function H. A non-trivial output format of H
restricts H’s image set. Therefore the information brought beyond H’s recursions (loops) might be used
for specializing the function call (g(e.z) in Fig. 1) using the call of H as an argument. That immediately
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let e.z = f(e.x) in g(e.z)

�� ++
v: f(e.x)

�� ((

v1: g(e.z)

•

��uu

♣

♣

))uu

))

uu %%
♣

oo

Figure 1: An intermediate state of an unfold-fold graph G: (1) the subgraph H rooted in v is self-
sufficient, while (2) the subgraph rooted in • is not. The configuration v1 still is not unfolded.

implies the worst-case time complexity of the residual program Q may be reduced as compared with the
worst-case time complexity of P.

Note that the non-trivial output format may be a property of the original program P in the context of
specialization (the initial configuration). In general, for example, P or its configuration being considered
per se may have only the trivial output format. Thus the online generating of the output formats does
matter.

The output format of the subgraph H is constructed by generalizing the formal exits from the re-
cursions defining H (the double-boxing ♣ leaves in Fig. 1). Hence the lesser number of such exits the
subgraph H includes the more specific output format of H may be constructed (see Def. 2 above). The
recursion exits are presented as H’s branches (edges) belonging to the paths outgoing from the root v.
Thus a problem arises as follows. Given a subgraph H representing a potential residual sub-program
one has to prove unreachability of as many of the syntactic recursion exits as possible. It is exactly the
task we propose to delegate to a finite countermodel finder. Concrete launches of the finder may take too
long times and even may not terminate. We suggest using the finder as explained in Sec. 4.1. A formal
theory for the image set (or its superset) of the partial function H needed to launch the finder might be
constructed by a compiler from the term rewriting language L into the first order logic language. The
theory and a goal hypothesis to be refuted by the finder should somehow be based on the syntax of the
subgraph corresponding to H. For the reasons explained in the previous Sec. 4.1 we can overapproximate
the L -unreachability with the non-deterministic term rewriting unreachability. The simplest hypothesis
is the assumption that several given syntactic exit-branches from the recursion defined by H are unreach-
able from the subgraph root parameterized state. Below we consider simple examples of such formal
theories and goals.

5.2 Two Simplest Output Formats

The simplest natural hypothesis is the partial (sub)function being analyzed is not the empty partial func-
tion. I.e. at least one of its syntactic exits is reachable from the subgraph root state. Refuting this
hypothesis means the subgraph root itself is unreachable from the root of T and the branch leading in
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this subgraph root is dead. Any term in P(C ,V ) is an output format of the empty partial function.
If the analysis of the hypothesis above does not lead to the empty partial function, the following

hypothesis could be raised. The second simplest output format is a datum d ∈ D . I.e. the (super)image
set of (sub)function being analyzed includes the only datum. We might prove this fact if we were able to
refute reachability of all syntactic exits excluding one, which surely returns the datum d.

Let us consider the program P given in Example 2. If the first two rules of the function B are
unreachable from the initial configuration τ = B(Fib(e.n)), then the minimal output format of P is
’T’. The supercompiler SCP4 is able to prove this fact by itself – without any call of a countermodel
finder. This fact directly implies that none of the Fibonacci words contains ’bb’ as a subword. Let us
slightly change the predicate from Example 2 as follows.

Example 6 τ is A(Fib(e.n)) and R is from Example 1 together with:
A( (e.xs :’aaa’) : (e.ys) ) = ’F’;

A( (e.xs :’aa’) : (’a’ : e.ys) ) = ’F’;

A( (e.xs) : (e.ys) ) = ’T’;

SCP4 proves unreachability of the first two of A’s rules from the configuration A(Fib(e.n)) and
generates the minimal output format ’T’. That means none of the Fibonacci words contains ’aaa’ as a
subword. Notice that a more natural encoding of the same problem is presented in Example 7. For that
encoding SCP4 fails to prove both of the properties of Fibonacci words. It cannot recognize that the first
rules of both A and B are unreachable from the corresponding initial configurations.

Example 7
A( (e.xs) : (e.ys :’aaa’ : e.zs) ) = ’F’;

A( (e.xs) : (e.ys) ) = ’T’;

B( (e.xs) : (e.ys :’bb’ :e.zs) ) = ’F’;

B( (e.xs) : (e.ys) ) = ’T’;

One may try to prove that those first two rules are unreachable from τ , using the finite coutermodel
method (see Sec. 3). For the reasons explained in the previous Sec. 4.1 we have to overapproximate the
L -reachability→∗ with the non-deterministic term rewriting reachability⇒∗. A first order theory has
to be created, in which derivability is compatible with the overapproximated reachability condition in the
program being considered.

Following [27] we here consider a simpler example of a first-order theory Fib0 demonstrating how
to establish similar properties automatically using first-order theorem disproving by finite countermodels
finding. The theory Fib0 is as follows:

TD

. . . . . .
K(’b’,’a’).
K(e.xs,e.ys)→ K(e.ys,e.xs:e.ys).
A(e.ys :’aaa’: e.zs).
B(e.ys :’bb’: e.zs).

Here the meaning of the predicate K(e.xs,e.ys) is e.xs and e.ys are two consecutive Fibonacci
words. Negation of the last two axioms correspond to the properties defined by the predicates A, B given
in Example 7. Stepwise computation of a given Fibonacci word e.xs0 corresponds to stepwise deriv-
ability of ∃e.ys(K(e.xs0,e.ys)). Mace4 is able to refute ∃e.xs∃e.ys(K(e.xs,e.ys)∧B(e.xs))
and ∃e.xs∃e.ys(K(e.xs,e.ys)∧A(e.xs)), by finding countermodels M1 and M2 of sizes 5 and 11,
respectively. Description of these models can be found in [27].
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6 Regular Invariants and Beyond

The finite models produced above can be seen as compact representations of the regular invariants (sep-
arators) sufficient to prove the safety, i.e non-reachability properties [28]. As the example above shows
enhancing the supercompilation by the ”regular verifying power’ of FCM may be beneficial for pro-
ducing non-trivial program transformations. What is interesting here is that the mechanisms for program
analysis and transformation deployed within supercompilation do not cover all the regular power of FCM
but may go beyond that.

Given a program rule l = r, obviously, using an e/t-variable v such that µv(r) > 1 may lead to
one-step computing a non-regular formal language H ⊂D . Such a language H may also be generated
by recursion. The following two examples deal with such a kind of recursion. The examples (being
variations of the rules borrowed from [3]) define the empty partial function. The programs 〈τ,R〉 below
never reach exits from recursions. The exits are defined in the two first rules (in both of the programs).
The first recursion given in the program F constructs two equal strings in the second and third arguments,
using the associative concatenation. Correspondingly the second recursion given in the program G con-
structs two equal binary trees, using the parenthesis constructor. The first arguments of the programs are
the recursion depths. Evaluation of the programs generates the following formal languages of the terms
correspondingly:

H f = f(K,’hn’:’A’, ’hn’:’A’), Hg = g(K,

n︷ ︸︸ ︷
(’h’:’A’

n︷︸︸︷
) ,

n︷ ︸︸ ︷
(’h’:’A’

n︷︸︸︷
) ), where K = (’b’ |

’c’)m and m ∈ N.

Example 8 The program F is 〈τ,R〉, where τ is f(e.ps, ’A’, ’A’) and R is
f(ε, ’h’ : e.xs, ’A’) = ’A’;

f(ε, ’A’, ’h’ : e.ys) = ’A’;

f(’b’ : e.ps, e.xs, e.ys) = f(e.ps, ’h’ : e.xs, ’h’ : e.ys);

f(’c’ : e.ps, ’h’ : e.xs, ’h’ : e.ys) = f(e.ps, e.xs, e.ys);

Example 9 The program G is 〈τ,R〉, where τ is g(e.ps, ’A’, ’A’) and R is
g(ε, (’h’ : e.xs), ’A’) = ’A’;

g(ε, ’A’, (’h’ : e.ys)) = ’A’;

g(’b’ : e.ps, e.xs, e.ys) = g(e.ps, (’h’ : e.xs), (’h’ : e.ys));

g(’c’ : e.ps, (’h’ : e.xs), (’h’ : e.ys)) = g(e.ps, e.xs, e.ys);

Proving the emptiness of the partial functions defined by F and G can be seen as safety verification,
that is non-reachability of the first two rules of F and G (i.e. the exits from the recursions). In [3] Y.
Boichut and P.-C. Heam showed that this safety property cannot be proved by safety verification tech-
niques using regular invariants. It means in particular that FCM won’t help in proving that. On the other
hand well-known specialization methods can prune away the recursion exits from the program G. Indeed,
the configuration sequence on the recursion path produced by the unfolding algorithm and outgoing from
the initial configuration g(e.ps,’A’,’A’) is: g(e.ps,’A’,’A’), g(e.ps1,(’h ’: ’A’),(’h ’: ’A’)),
g(e.ps2,(’h ’:(’h ’: ’A’)),(’h ’:(’h ’: ’A’))), . . . Generalization algorithms based on the Higman-
Kruskal relation [23] will construct one of the following configurations: g(e.ps,t.x,t.x),
g(e.ps1,(’h ’:t.x),(’h ’:t.x)), g(e.ps2,(’h ’:(’h ’:t.x)),(’h ’:(’h ’:t.x))), . . . Note that t.x
here means exactly the same as a standard variable in languages based on Lisp data. Now obviously, the
exit branches from the recursion will be pruned away from the unfolding tree.
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The associative case used in F is more difficult. The supercompiler SCP4 recognizes the empti-
ness of both of the partial functions: supercompiling the program G results in a message on the empty
partial function, while supercompiling the program F results in a program without syntactic exits from
recursions.

Thus a finite countermodel finder and a specializer have incomparable verifying and analysing power
and their joint use may strengthen both.

7 Conclusions and Future Work

From a practical point of view, use of external program tools by a program transformer lies on the stream
of software development. Indeed, that belongs to modular programming technology, where each pro-
gram module is considered as a unit of compilation. External provers were used in automated program
transformers including specializers for a long time. For instance, in 1988 Y. Futamura used such an
external tool for proving some properties of parameterized configurations/states of program being spe-
cialized [13, 12]. On the other hand, given a program specializer written in a language U , U may
include non-trivial semantics mechanisms in itself. The mechanisms may allow to implement non-trivial
basic program transformation/analysis directly by means of U -semantics, i.e. through local syntactical
construction without intricate programming. Such a kind of mechanisms may be considered as external
tools with respect to the specializer. Examples of such programming languages are Prolog and Refal
[50]. For example, F. Fioravanti, A. Pettorossi and M. Proietti [8, 9, 10] as well as several other au-
thors develop an unfold-fold based transformation technique of constraint logic programs with negation,
implementing their transformers by constraint logic programming.

The use of countermodels for the execution and analysis of logic programs has been considered in
the paper [4]. It has been noticed that the failure of a query Q for a logic program P can be established
by finding a countermodel for P→ Q. Furthermore a particular strategy using pre-interpretations (i.e.
interpretations of the predicate symbols only, ignoring constructors and data) combined with the use of
an abduction mechanism is proposed and compared with unrestricted search of countermodels. Such
a technique can be adapted for term rewriting systems and functional languages. Given a program P,
the explicit syntax composition in P does not allow to ignore all constructors used by P, but some of the
constructors can still be ignored. It is not quite clear how similar transformations affect the countermodel
search method, especially whenever one uses an external countermodel finder.

The approach we presented in this paper is related also to the work on abstract interpretations [25, 6]
and on regular types [18]. The work [14] explicitly connects both areas and demonstrates the transfor-
mations of the set of regular type definitions corresponding to the finite tree automata, into a finite
pre-interpretation for a logic program, which then is shown can be used for the program analysis and
verification. The core of the transformation is a determinization procedure for non-deterministic tree
automata. The difference with our approach, apart of obvious differences between logic and functional
programming languages considered, is that [14] deals with specific approach for pre-interpretation build-
ing, while we abstract away the details of implementation of the model building procedure, which is used
as an oracle. Still after appropriate translations the approach of [14] can be used for the tasks considered
in this paper and we plan to explore it in the future work.

In this paper we have shown that integrating a finite countermodel finder in a supercompiler may
provide new features for non-trivial program transformations, which in turn may be used for non-trivial
verification of safety properties of computing systems. In particular, global unreachability of some new
kind of regular formal languages over the systems’ state sometimes may be recognized. On the other



A.P. Lisitsa, A.P. Nemytykh 15

hand, Examples 8, 9 demonstrate that FCM may be strengthened by supercompilation tools. As regards
this matter we would like to refer to an interesting example given by the researchers mentioned above
working in the context of Prolog [9]. They derive a one-counter machine from a constrained regular
language specification. The corresponding residual program tests that a string of a given length n does
not belong to the language {’am’ : ’bn’|m = n≥ 0}.

Above we have described just the first steps and experiments in integrating FCM in a supercompiler.
The examples given in Sec. 6 motivate future development of a compiler from a functional language (in
our case, Refal) to the first-order logic language. The compiler should protect as many syntax properties
of the program 〈τ,R〉 being compiled as possible. The overapproximated reachability of the 〈τ,R〉 states
from τ should correspond to derivability in the corresponding compiled program. We conclude with
the following note: FCM may be used for recognizing unreachable intermediate subgraphs generated by
supercompilation even if the subgraphs are not self-sufficient (see Sec. 5). In such a case we have to
treat the call names of the external function as free – to be entirely interpreted by FCM.
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