Construction of Thompson’s Automaton from a Regular Tree
Expression *

Ahlem Belabbaci Hadda Cherroun
LIM - University of Laghouat, Algeria LIM - University of Laghouat, Algeria
ah.belabbaci@lagh-univ.dz h.cherroun@lagh-univ.dz
Djelloul Ziadi Loek Cleophas
LITIS - University of Rouen, France Umea University, Sweden and
FASTAR Research Group,

Djelloul.ZiadiCuniv-rouen.fr Stellenbosch University, South Africa

loek@fastar.org

In this paper we deal with tree automata, particularly the construction of a tree automaton from a
regular tree expression. In the late 1960s, Ken Thompson proposed an algorithm for the construction
of an automaton from a regular expression over strings. In this work we try to generalize the former
algorithm to trees. For this, we modify the general form of the tree automaton in order to facilitate
the operations of union, closure and concatenation. This construction allows us to perform pattern
matching over trees.

1 Introduction

Trees are widely used in applications nowadays, hence the importance of dealing with tree automata.
Among the fields of handling of tree automata appears tree pattern matching, term rewriting, model
checking, XML, ...

In the case of words, several algorithms were proposed in order to convert a regular expression into an
automaton. The most common construction is the standard or position automaton (7, [12]]. Brzozowski’s
construction [2]] of a deterministic finite automaton uses derivatives of regular expressions. This approach
was modified by Antimirov [1]] who defined partial derivatives to construct a non-deterministic automaton
from a regular expression E. Another construction was proposed by Thompson [13]] based on induction
over the structure of a regular expression.

By analogy to words, some algorithms were proposed for trees. Among these works is the one
of Sebti and Ziadi [9], who gave an algorithm to compute the position tree automaton. The work of
Kuske and Meinecke [8]] consists of the definition of partial derivatives for regular tree expressions and
then building a non-deterministic finite tree automaton recognizing the language denoted by such an
expression. They adapt and modify the approach of Champarnaud and Ziadi [3. 4] in the word case.
Tree derivatives were introduced by Levine in [10, [L1]] and extend the concept of Brzozowski’s string
derivatives. He used tree derivatives for minimizing and characterizing tree automata. Tree derivatives
are used as a basis of inference of tree automata from finite samples of trees.

In this paper we present the construction of Thompson’s automaton for the case of trees. In the next
section, preliminaries about trees, tree automata and regular tree expressions are presented. Afterwards
we recall the process of the construction of the Thompson’s automaton for strings in Section [3] Our

*This work is supported by a South Africa-Algeria Cooperation Project funded by the South African National Research
Foundation and the Algerian MESRS-DGRSDT.

Submitted to:
TTATT 2015

2 Thompson’s Automaton for Trees

construction of the Thompson’s automaton for trees is detailed with illustrations in Section[d] with a dis-
cussion about the size and features of the proposed construction. The proofs of the equivalence between
the different constructions and regular tree expressions are presented in appendices.

2 Preliminaries

A ranked alphabet is a set of symbols provided with an arity (rank) function: #X:— N. Fora € X, #ais
called the arity (rank) of a. A symbol of arity 0 is called a constant, terminal node or leaf. We denote by
X, the set of all symbols of arity n of X. X is the set of leaves. We consider € € X; as the empty node.

An ordered labeled tree ¢ with arity over an alphabet X can be a constant or of the form g(z1,%...,),
such that#;, 1 < i <#g, is itself a tree.

A tree automaton (TA) <7 is a tuple (Q,Qy, Oy,,A) such that Q is a finite set of states, Oy, is the
set of initial states, Qy C Q is the acceptance state and A is the set of transition rules. A transition
rule is a triplet ((¢1,...,¢n),a,q) where qi,...,q, € O, a € X and #a = n. We use a(qi,...,q,) — q and
a(q) — (q1,-..,qn) to denote respectively bottom-up or top-down automaton transition rules. For n =0
leaves rules are represented by a — g or ¢ — a. The notation 6*(t) = Qy is used to indicate that there
is a sequence of transitions in the automaton recognizing the tree t. The language recognized by an
automaton is the set of all trees that can be recognized using this automaton.

The graphical representation of the tree automaton is similar to the one of strings. The states are
represented by circles with double circles for the final states, and transitions between states by edges
labeled with a symbol of the alphabet X or € [5]. For tree automata, some changes are made in the
representation of transitions. A transition from state g to states ¢1,q>,...,g, With a symbol or an &-
transition is represented by i) an edge connecting the state gg to a small circle unlabeled with a symbol or
€, ii) n edges connecting the small circle to the state g; labeled by i where i : 1..n. In the case of directed
automata (top-down or bottom- up) edges are directed.

A regular tree expression over a ranked alphabet ¥ is inductively defined by E = ¢, E € Xy, E =
g(El,...,En), E = (El +E2), E = (EI_CEZ), E = (El*’c), where c€ Yo, n € N, g€ X, and E|,E>,....E,
are any regular tree expressions over X. ||E|| is the number of occurrences of symbols from the ranked
alphabet X in a regular tree expression E.

3 Thompson’s Automaton for Strings

In his 1968 article [13], Ken Thompson describes a technique for the construction of a deterministic
finite automaton from a given regular expression.

According to this technique, the regular expression must first be converted into post-fixed notation.
Then the automaton is built by successive composition of automata. These automata are assembled
according to the basic operations of regular expressions, namely concatenation, union and closure. A
Thompson’s automaton has the following properties:

* only one initial state and one final state; these two states are distinct;
* there are neither incoming transitions to the initial state nor outgoing transitions to the final one;
* any state is the origin of at most one transition labeled by a letter and of at most two e-transitions.

Formally, there are five sorts of regular expression: the empty string €, any character a, the union
E + F, the concatenation E | F and the closure E*. Figure [3|illustrates the different constructions.

Ah. Belabbaci, H. Cherroun , D. Ziadi, & L. Cleophas 3

E

m

Y O

Automaton of union E + F

1

o

Automaton of a single character a

m

O B POD F DO ©OF E O,

it v

Automaton of concatenation E_F

Automaton of closure E*

Figure 1: Thompson’s Automata for Strings

4 Thompson’s Automaton for Trees

Given the difference between strings and trees concerning the concatenation and closure operations, we
should take care when constructing the tree automaton. Indeed, we have designed a special form of tree
automaton that allows us to inductively construct tree automata in a straightforward way from a regular
tree expression.

The basic idea of our construction is to build from a given regular tree expression E, a finite bottom-
up tree automaton which has the form illustrated by Figure[2] The main characteristic of this automaton
is that it contains one initial state for each element of X (the frame Qy,). This condition makes more
sense in the operation of concatenation, since we have to perform concatenation just in one state.

In order to keep this form, some €-transitions are added during the inductive constructions.

[
o

o0 O
Q0O O

Figure 2: General form of a Thompson tree automaton.

Formally, a (bottom-up) TA Thg for a regular expression E is a tuple (QE , qJ@ , ng ,AE), where:

OF . setofall states of Thg

g% : final state of Thg

Qf, : setof initial states of Thg, Qf = {qala €Zo}
AE: setof transition rules of Thg, AF:(QF)"—QF.

4.1 Construction

In this section, the different constructions of Thompson’s tree automata are presented with a formal
definition and graphical representation of each automaton.

4 Thompson’s Automaton for Trees

Elementary Automaton, Leaf Tree Automaton: It is a one-state automaton that consists of an initial
state which is itself the accepting state (Figure 3). O = ¢f = g7 and A* = {a — ¢}

Automaton of Arity £ = g(E;,E»,...,E,): The automaton is built from n other automata E; by adding
a new final state Q’fg (Figure 4). To keep the basic structure of Thompson’s tree automata, we merge sets

Qg This is done by:

« adding k initial states ¢g£ as k = |Xo| and a € Xy,
» adding the transition a — ¢£ for all a € Xy,
e removing transitions a — g%, such thata € £y and i : 1...n,

» adding e-transitions between ¢£ and ¢%i.

This way of merging sets Qy, is also used for the union and concatenation operations. So:

0" = (U 2")U{gf}tU{dqlaeo}
i=1..n
AE = {|J A" \{a—qfaezyi=1...n}
i=1..n
U{a— ¢flac Zo}uU {g(q?,q?z, ...,q]b;") — q?} u{e(¢t) — ¢kilac Zo,i=1...n}
Automaton of Union E = F + G: The union of two Thompson’s automata F and G is built by adding a
new final state connecting the final states of the two automata qjlf and qjcf with e-transitions and merging
Oy, sets. See graphical representation for Thg in Figure 5.

Formally:
0" = 0"UQEYU{gi}u{g]lacZo}
AP = {A"}\{a— qf,a € Do U{A}\{a — ¢, a € Xo}

U{e(qs) — gfla e Zo} U{e(gh) — g5 la € Zo} U{e(qf) — 41}
U{e(q?) = g1} U{a — qfla € o}
Automaton of Concatenation £ = F .G: The construction of the concatenation automaton (Figure 6) is
a little bit different. We remove the transition ¢ — g, (for ¢ the concatenation symbol) from AF | then we
add a e-transition from the final state of G to g.. Finally, we merge sets Oy, of F and G.
Then:

0" = 0"UQEU{q;}u{g;lacXo}
A = (A"} \{a—qf,ac B} U{A}\ {a — ¢f,a € X}

U{a — g la € Toy U{e(ql) — qfla € Zo} U{e(ql) — gqfla € o\ {c})} U{e(dF) — g5}
of = of

Automaton of Closure £ = F*“ For the construction of Thompson’s automaton of the closure operation
(%), we extend the basic automaton with three e-transitions like in Figure 7:

* atransition from the final state of F to the state representing the concatenation symbol in F,
* atransition from the state representing the concatenation symbol in E to the final state of E,

¢ and another transition from the final state of F to the final state of E.

Formally:
0 = 0"u{¢f}u{qllacxo}
AP = {AP\{a—qq,a € X0}

U{a — gfla e 2o} U{e(qF) — g} U{e(ql) — gy u{e(dh) — 4%}

Ah. Belabbaci, H. Cherroun , D. Ziadi, & L. Cleophas 5

~.
9 ° Or=, Ox,
' Lo F Qo
Figure 3: The leaf tree automaton. el O
AT
: o —O**d;/ Or
0O & O/
O OHet
O— F+ Oy
P4 o
%ﬂé/ ! Figure 5: The automaton for £ = F + G.
_)\ O+
\‘\ O— E O
u\ O e = Qfo
\\ o ———_p-for—
\ O @ F O] PO
O £, OH Ot 6 Ol O o
oA

Figure 4: The Automaton for E = f(E|,Ea, ..., E,).

Figure 7: The automaton for E = F*°,

4.2 Validity of the Construction

We should prove the equivalence between the regular language of the constructed Thompson’s automaton
and the regular language recognized by E.

Definition 1. Let t be a tree, we define the function €-closure(t) that removes €-nodes from t as follows:
e-closure(a) = a for each a € ¥
e-closure(e(t)) =t
e-closure(g(t1,t2,...,tn)) = g(€-closure(t,), €-closure(ta), ..., €-closure(t,))

From the definition of e-closure(t) we can deduce the following properties:

Property 1. For each trees two ty, ty, we have €-closure(t)..ty) = [€-closure(t))] . €-closure(t).

This property can be extended to sets of trees.

Property 2. e-closure(t..{t, t,... ty, }) = [€-closure(t)] .{€-closure(ty),e-closure(ty),...€-closure(ty) }

Theorem 1. Let E be a regular tree expression, Thg is Thompson’s automaton created for E, [E] is the
regular language recognizing E and £ (Thg) is the regular language recognized by Thg.
Then, we have g-closure(L(Thg)) = [E].

In order to prove this theorem, we prove the two next lemmas (in Appendices[A]and [B).
Lemma 1. For eacht € [E], there exists a tree t' € £(Thg) so that €-closure(t') =1.
Lemma 2. Ift € £(Thg), then e-closure(t) € [E].

Thompson’s Automaton for Trees

We now consider features and size of our construction of a tree automaton from a regular tree ex-
pression. The number of states and transitions generated for each construction in section [4.1]is around
IE||, since we can consider each regular tree expression as a tree where leaves represent symbols of the
alphabet and internal nodes represent regular tree operators (arity, union, concatenation and closure).

5

Conclusion

In this paper, we have presented a method for the construction of Thompson’s automaton from a regular
tree expression: we have proposed a general form of the automaton to facilitate the operations of closure
and concatenation. Proofs of the equivalence between the automaton generated and the original regular
expression are provided for the different operations on the automaton. Future work will be focused on
tree pattern matching using this automaton.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Valentin Antimirov (1995): Partial Derivatives of Regular Expressions and Finite Automata Constructions.
Theoretical Computer Science 155, pp. 291-319.

Janusz A. Brzozowski (1964): Derivatives of Regular Expressions. J. ACM 11(4), pp. 481-494.

Jean-Marc Champarnaud & Djelloul Ziadi (2001): From C-Continuations to New Quadratic Algorithms for
Automaton Synthesis. IJAC 11(6), pp. 707-736.

Jean-Marc Champarnaud & Djelloul Ziadi (2002): Canonical derivatives, partial derivatives and finite au-
tomaton constructions. Theor. Comput. Sci. 289(1), pp. 137-163.

Loek Cleophas (2008): Tree Algorithms: Two Taxonomies and a Toolkit. PhD thesis, Technische Universiteit
Eindhoven, Department of Mathematics and Computer Science.

H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (2008):
Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-1ille3.fr/tata.
Release November, 18th 2008.

Victor M. Glushkov (1961): The Abstract Theory of Automata. Russian Mathematical Surveys 16(5), pp.
1-53.

Dietrich Kuske & Ingmar Meinecke (2008): Construction of Tree Automata from Regular Expressions. In:

Developments in Language Theory, 12th International Conference, DLT 2008, Kyoto, Japan, September
16-19, 2008. Proceedings, pp. 491-503.

Eric Laugerotte, Nadia Ouali Sebti & Djelloul Ziadi (2013): From Regular Tree Expression to Position Tree
Automaton. In: Language and Automata Theory and Applications - 7th International Conference, LATA
2013, Bilbao, Spain, April 2-5, 2013. Proceedings, pp. 395-406.

Barry Levine (1981): Derivatives of Tree Sets with Applications to Grammatical Inference. Pattern Analysis
and Machine Intelligence, IEEE Transactions on PAMI-3(3), pp. 285-293.

Barry Levine (1982): The Use of Tree Derivatives and a Sample Support Parameter for Inferring Tree Sys-
tems. Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-4(1), pp. 25-34.

R. McNaughton & H. Yamada (1960): Regular Expressions and Finite State Graphs for Automata. IRE
Trans. on Electronic Comput EC-9(1), pp. 38—47.

Ken Thompson (1968): Programming Techniques: Regular Expression Search Algorithm. Commun. ACM
11(6), pp. 419-422.

http://www.grappa.univ-lille3.fr/tata

Ah. Belabbaci, H. Cherroun , D. Ziadi, & L. Cleophas 7

Appendix A: Proof of Lemmal{l|

The proof is accomplished by induction on the construction of the tree automaton.

Leaf Tree

E = a. This case is obvious because: .Z(Thg) = {a}, [E] = {a}, so £ (Thg) = [E], so for all 7 € [E],
there exists ' € .Z(Thg) such as e-closure(t') =1. O
Arity

E =g(E,Ey,...,E,). where n is the arity of the function f.
Lett € [E],sot = g(ey,en,...,e,), such as e; € [E1], ez € [E2], ..., e € [E,].

According to the induction hypothesis, there exists #; € .2 (Thg,) such as
e-closure(t!) = t; with i = 1...n.
Let us construct a term ¢’ = g(¢,t5,...,1;) and replacing each symbol x of arity 0 by £(x). This means
that /' = (g(t],8},...,1})) .a€(a)... c€(C)....
We now show that ¢’ € Z(Thg) and that e-closure(t') =1t.

According to the construction of Thompson s automaton for the arity, transition @ — g% in the path of
recognizing t! in Thy, is replaced by a — ¢£ and €(g£) — g% foreachi=1...nand a € Xy.
As we have AE C AF and 1] € Z(Thg,), it means o, (1) = q?

So: o (1)) = qf,l—l M.

Moreover we have g(qf N ,...,q?”) — g% € A, s0: o (1) = 4f.

Therefore ¢’ is recognized by .Z(Thg).

On the other hand we have:
e-closure(t') = e-closure(g(t,t}, ...

)
= e-closure(g(t],t},...,t),)
)

(g(r)
(g(e-closure(g(a)))... .€(e-closure(g(c)))...
e-closure(g(t],15, ...
(8(
(1

= 7tr/1 _aa7 5.cC

= g&-closure(g tl,tz,...,t,’l))

= g(e-closure(t}),e-closure(t}), ..., e-closure(t,))

= g(ti,ta,..ty) =1.
Thus there exists ¢’ € . (Thg) such that e-closure(t') =1. O
Union

E =F+G. Wehave [E] =[F] U [G].
Let ¢ € [E]. Without loss of generality, we suppose that ¢t € [F].

According to the induction hypothesis, there exists . € £ (Thg): e-closure(t;) =t.
Let us construct a term ¢’ = €(r;), Then we replace each symbol x of arity 0 by €(x), that is to say:

1= (tp) q€(a)...c€(c)....

Let us show that /' € £ (Thg) and that e-closure(t')=t

8 Thompson’s Automaton for Trees

According to the construction of Thompson for the union, we replace each transition a — g% by a — ¢
and £(q%) — qf such as a € Xo.
As A" C AP ans 1] € Z(Thg), ie. o5 (1) = ¢}
So: o5 () = qf.

Moreover we have £(¢) — ¢ € AF, then: o (1) = ¢, which means that ¢’ is recognized by .#'(Thg).
Furthermore we have:

e-closure(t') = e-closure(e(t) 4€(a)... c€(c)...)
= e-closure(ty) ,a,...,ccC.
= ée-closure(ty) =t.
Thus there exists 1’ € .Z(Thg) such that e-closure(t') =1. O

Concatenation

E=F.G. Lett € [E],t € [F]..[G], it means z € {(tr) o{t1,....tx} }, such that t; € [G], i = 1...k.

According to the induction hypothesis, there exists 5,11, ..., with 7. € £ (Thg) and 7] € Z(Thg),
i = 1...k, such as e-closure(t;)= ty and €-closure(t;)= t;.

Let us build two terms #; and ¢} by replacing each symbol x of arity 0 by £(x), ie.
th = (1) 4€(a)... ;£(C)....
17 = (1)) a€(a)... c€(C)....
i e{e(ty) At 1y, ...t }}

Let us prove that /' € 2 (Thg).

According to the construction of Thompson’s automata of concatenation we replaced the transition
a — q% dans Thg by a — qF and €(¢f) — ¢% in Thg by a € X.
And as we have A® C AF and o(1}) = ¢, then o (1)) = 4.

According to the same construction, we replaced the transition @ — ¢ by a — ¢£ and €(¢%) — g% for
a # ¢, where c is the symbol of concatenation.
If a = c, this transition (c — ¢¥) is replaced by e(q?) —qF.

Since t}, is recognized by Thr by the induction hypothesis, then: o} (t;) = q?.
As we have €(qy;) — qi, € A" fora # cand €(qF) — g € A" otherwise (if a = ¢) and (A" \ {c = ¢ }) C
AF, alors nous avons oz (') = g

Therefore o (e(t)) = qj@ because e(qJIf) — q? € AE. So ¢’ is recognized by .Z(Thg).

Ah. Belabbaci, H. Cherroun , D. Ziadi, & L. Cleophas 9

Furthermore we have:
e-closure(e(t')) = e-closure(t').
e-closure(t') € {e-closure(e(ty) . (t,....,t}))}
€ {e-closure(ty) .e-closure(t}), ..., e-closure(t;)}

Let us replace terms ¢ and rf. respectively by e-closure(t}) 4€(a), ..., . €(c) and e-closure(ty) 4€(a), ..., €(c).

we will have: e-closure(t') € e-closure(t,) {e-closure(t)), ..., e-closure(t})}.

Sot e {(tr) c{t1,-, 1k} }- d

Closure

E =F*. Lett € [F*]:
e [F%<] if n=0,
[F™“],n € N* otherwise.

We will show that for all ¢ € F*¢, there exists ¢’ € £ (Thg), such as
e-closure(t')=1.

For the case n =0, 1 € [F%¢], ¥ = ¢, this case is obvious because we have:
{c—qf,e(qf) — qf} € AR
Then 0 = £(1°).

So " is recognized by the automaton Thy and &-closure(t 1.

/O)
Forn=1,r€ [F'<], t' =c..[F], we demonstrate that there exists

t'! € Z(Thg) and e-closure(t'')=1t'.
't e {e. 'Y/t € IF1} then ! € {c..{r],... 1} }}.

According to the induction hypothesis {c,#/'} € #(Thg), it means oj(/!) = qu- . And depending
on the construction of Thompson’s automata for the closure operation, we have 8((1?) — q]@ € Af, so
oyt = q? . Therefore, t'! € #(Thg).

Furthermore, we have:
e-closure(t]') € {e-closure(c..{t]!, ...,t}l)}
€ {e-closure(c)..{e-closure(t]!, ...,t}])+
e {ecft],1}}}
For the case (1 < k < n), the closure operation comes down to a concatenation. =1 F].
Thus there exists t* € .#(Thg) such that e-closure(t'’*) = t*. O

10 Thompson’s Automaton for Trees

Appendix B: Proof of Lemma 2

We remind that proofs are accomplished by induction on the construction of the tree automaton.

Leaf tree

E = a. This case is obvious because t = a and e-closure(t) = [E]. O

Arity

E =g(Ei,En,....,E,). We have t € Z(Thg) wich means thatt = g(1;,12,...,1,).
According to the induction hypothesis, there exists #1,1, ...,#, such as:

t1 € Z(Thg,) and e-closure(t;) € [E].

t € Z(Thg,) and e-closure(t;) € [E-].

tn € £ (Thg,) and e-closure(t,) € [E,].

We have:
g(e-closure(ty),e-closure(ty), ...,e-closure(t,)) € [g(E1,Ea,....E,)].
According to the definition |1 of the function €-closure(t), we have:
g(e-closure(ty),e-closure(ty),...,€-closure(t,)) = €-closure(g(t1,t1,...,1,)).
So, e-closure(g(t1,t1,...,t,)) € [g(E1,Ea,...,En)].
Therefore, e-closure(g(t1,t1,....t,)) € [E].

Furthermore, we have: t = g(t,1,...,1,), then:
e-closure(t) € [E]. O
Union
E =F+G. We have t € Z(Thg) wich means thatt =t7 or t = t,, where
tr € Z(Thg) and t, € Z(Thg).

According to the induction hypothesis:
tr € Z(Thg) and e-closure(ty) € [F].
t, € Z(Thg) and e-closure(t,) € [G].
Without loss of generality, we suppose that t = ;.

We have e-closure(ty) € [F], then e-closure(ty) € [F + GI.

So, e-closure(t) € [F + G].
As we have E = F + G, then &-closure(t) € [E]. O

Concatenation

E=F.G. Ift € Z(Thg) thent is of the form ¢ =t .t,.

Ah. Belabbaci, H. Cherroun , D. Ziadi, & L. Cleophas

According to the induction hypothesis:
tr € ZL(Thg) et e-closure(tf) € [F].
t, € Z(Thg) et e-closure(t,) € [G].

We have e-closure(ts) . €-closure(t,) € [FG].
According to the property [2| we have
e-closure(ty..t,) = €-closure(ts) . €-closure(ty).
So, e-closure(t) € [F.G].

Then e-closure(t) € [E].

Closure

E =F*. Ift € Z(Thg), then ¢ is of the form: r = ¢/, ty € [F] and

tfo’c = c sin=0,
tfn,c = lfl’c = (tfo’c)_ctf sin= 1,
l‘fi’c = (l‘fi_l’c),cl‘f sin>2.

According to the induction hypothesis, we have t; € .Z(Thg) and
e-closure(ty) € [F].

For the case t = 1, = ¢, we have e-closure(t;) = e-closure(c) = c.
We also have ¢ € [F], then ¢ € [F%].

Therefore, e-closure(t) € [E].

Fort = t§1¢ = (1/9¢) .ty = ty, we have e-closure(t) = e-closure(ty).
e-closure(ty) € [F] according to the induction hypothesis, then

11

s—closure(tf) € [F'<], because [F'<] = [F%] U [F g’CF] according to the closure property of

regular languages.

Therefore, e-closure(t) € [E].

For ;"< with n > 1, closure is a special case of the concatenation, and this was proven before.

Then, fort =t/ and E = F*, e-closure(t) € [E].

	Introduction
	Preliminaries
	Thompson's Automaton for Strings
	Thompson's Automaton for Trees
	Construction
	Validity of the Construction

	Conclusion
	Proof of Lemma 1
	Proof of Lemma 2

