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There exist several methods of computing an automaton recognizing the language denoted by a given
regular expression: non exhaustively. The position automaton P due to Glushkov, the c-continuation
automaton C due to Champarnaud and Ziadi, the follow automaton F due to Ilie and Yu and the
equation automaton E due to Antimirov. It has been shown that P and C are isomorphic and that E
(resp. F ) is a quotient of C (resp. of P). In this paper, we define from a given regular tree expression
the k-position tree automaton P and the follow tree automaton F . Using the definition of the
equation tree automaton E of Kuske and Meinecke and our previously defined k-C-continuation tree
automaton C , we show that the previous morphic relations are still valid on regular tree expressions.

1 Introduction

Regular expressions are used in numerous domains of applications in computer science. They are an easy
and compact way to represent potentially infinite regular languages, that are well-studied objects lead-
ing to efficient decision problems. The first approach of the computation of an automaton from regular
expression is to determine particular properties over the syntactic structure of the regular expression E.
Glushkov [7] proposed the computation of an automaton with (n+ 1)-states. Ilie and Yu showed in [8]
how to reduce it by merging similar states. Another method is to compute the transition function of the
automaton as follows. Basically, it is a computation that tries to determine what words w′ can be accepted
after reading a prefix w. The first author that introduced such a process is Brzozowski [2]. He showed
how to compute a regular expression denoting w−1(L(E)) from the expression E: this expression, denoted
by dw(E), is called the derivative of E with respect to w. Furthermore, the set of dissimilar derivatives,
combined with reduction according to associativity, commutativity and idempotence of the sum, is finite
and can lead to the computation of a deterministic finite automaton. Antimirov [1] computed the partial
derivatives. These so-called derived terms produce the equation automaton. Finally, by deriving expres-
sions after having them indexed, Champarnaud and Ziadi [4] computed the c-continuation automaton.
The different morphic links between these four automata have been studied too: Ilie and Yu showed that
the follow automaton is a quotient of the position automaton; Champarnaud and Ziadi proved that the
position automaton and the c-continuation automaton are isomorphic and that the equation automaton is
a quotient of the position automaton. Finally, using a join of the two previously defined quotients, Garcia
et al. presented in [6] an automaton that is smaller than both the follow and the equation automata.

In this paper, we recall the study of these already known morphic links between different tree au-
tomata. We recall two tree automata constructions, the k-position automaton [14] and the follow au-
tomaton [14], and we recall their morphic links with two other already known automata constructions,
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the equation automaton of Kuske and Meinecke [10] and our k-C-continuation automaton [12, 13, 14].
Notice that a position automaton and a reduced automaton have already been defined in [11]. How-
ever, they are not isomorphic with the automata we define in this paper. This study is motivated by the
development of a library of functions for handling rational kernels [5] in the case of trees. The first
problem consists in converting a regular tree expression into a tree automaton. In Section 2, we recall the
definitions of k-position automaton, follow automaton, equation automaton and of the k-C-continuation
automaton; we also present the morphic links between these four automata in this section. It is proved
that there is no morphic link between the follow automaton and the equation automaton. Moreover, we
recall the computation of the Garcia et al. equivalence leading to a smaller automaton in Section 3. Then,
in Section 4 we give the algorithms and the complexity of the computation of different tree automata.
Finally, the different results described in this paper are given in the conclusion.

2 Tree Automata from Regular Expressions

In the following we use the definitions of a ranked alphabet, a tree, a finite tree automaton, a tree
substitution, a c-product, an iterated c-product, a c-closure, a regular tree expression and its denoted
language, a set of positions, a quotient of a tree automaton and a mapping h defined in [12, 13, 14]. A
regular expression E is linear if every symbol of rank greater than 1 appears at most once in E.

In this section, we show how to compute from a regular expression E several tree automata accepting
JEK: we introduce two new constructions, the k-position automaton and the follow automaton of E,
and then we recall two already-known constructions, the equation [10] and the k-C-continuation [12]
automata. Regular languages defined over the ranked alphabet Σ are exactly the languages denoted by a
regular expression on Σ. In what follows we only consider expressions without 0 or reduced to 0. The
set of symbols in Σ that appear in an expression F is denoted by ΣF .

2.1 The k-Position Tree Automaton

In this section, we show how to compute the k-position automaton of an expression E, recognizing JEK.
This is an extension of the well-known position automaton [7] for regular word expressions. In what
follows, for any two trees s and t, we denote by s 4 t the relation ”s is a subtree of t”. Let t = f (t1, . . . , tn)
be a tree. We denote by root(t) the root of t, by k-child(t) the label of the kth child of f in t, that
is the root of tk if it exists, and by Leaves(t) the set of the leaves of t, i.e. {s ∈ Σ0 | s 4 t}. Let E
be a regular expression, 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set First(E) is the
subset of Σ defined by {root(t) ∈ Σ | t ∈ JEK}; The set Follow(E, f ,k) is the subset of Σ defined by
{g ∈ Σ | ∃t ∈ JEK,∃s 4 t, root(s) = f ,k-child(s) = g}; The set Last(E) is the subset of Σ0 defined by
Last(E) =

⋃
t∈JEK Leaves(t). Let us first show that the position functions First and Follow are inductively

computable.
Let E be linear. The set First(E) can be computed as follows:

First(0) = /0, First(a) = {a}, First( f (E1, · · · ,Em)) = { f},
First(E1+E2) = First(E1)∪First(E2), First(E1

∗c) = First(E1)∪{c},

First(E1 ·c E2) =

{
(First(E1)\{c})∪First(E2) if c ∈ JE1K,
First(E1) otherwise.

Let 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set of symbols Follow(E, f ,k) can be
computed inductively as follows:

Follow(0, f ,k) = Follow(a, f ,k) = /0,
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Follow(g(E1, . . . ,En), f ,k) =


First(Ek) if f = g,
Follow(El, f ,k) if ∃l | f ∈ ΣEl ,
/0 otherwise .

Follow(E1+E2, f ,k) =


Follow(E1, f ,k) if f ∈ ΣE1 ,
Follow(E2, f ,k) if f ∈ ΣE2 ,
/0 otherwise .

Follow(E1 ·c E2, f ,k) =


(Follow(E1, f ,k)\{c})∪First(E2) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) if f ∈ ΣE1 ∧ c /∈ Follow(E1, f ,k),
Follow(E2, f ,k) if f ∈ ΣE2 ∧ c ∈ Last(E1),
/0 otherwise,

Follow(E∗c
1 , f ,k) =

{
Follow(E1, f ,k)∪First(E1) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) otherwise,

The two functions First and Follow are sufficient to compute the k-position tree automaton of E. The
k-position automaton PE is the automaton (Q,Σ,QT ,∆) defined by

Q = { f k | f ∈ Σm∧1≤ k ≤ m}∪{ε1} with ε1 a new symbol not in Σ, QT = {ε1}
∆ = {( f k,g,g1, . . . ,gn) | f ∈ Σm∧ k ≤ m∧g ∈ Σn∧g ∈ Follow(E, f ,k)}
∪{(ε1, f , f 1, . . . , f m) | f ∈ Σm∧ f ∈ First(E)}

Theorem 1. If E is linear, then L (PE) = JEK.

2.2 The Follow Tree Automaton

In this section, we define the follow tree automaton which is a generalisation of the Follow automaton
introduced by L. Ilie and S. Yu in [8] and that it is a quotient of the k-position automaton. Notice that in
this automaton, states are no longer positions, but sets of positions and that we extend the definition of
the function Follow to the position ε1 by Follow(E,ε1,1) = First(E).
Definition 1. Let E be linear. The Follow Automaton of E is the tree automaton FE = (Q,Σ,QT ,∆)
defined as follows:

Q = {First(E)}∪
⋃

f∈ΣE m
{Follow(E, f ,k) | 1≤ k ≤ m}, QT = {First(E)}

∆ = {(Follow(E,g, l), f ,Follow(E, f ,1), . . . ,Follow(E, f ,m) | f ∈ ΣE m
∧ f ∈ Follow(E,g, l)∧g ∈ Σn∧ l ≤ n}∪{(I,c) | c ∈ I∧ c ∈ Σ0}

Let us show that FE is a quotient of PE w.r.t. a similarity relation ; since this kind of quotient
preserves the language, this method is consequently a proof of the fact that the language denoted by E is
recognized by FE.

A similarity relation over an automaton A = (Q,Σ,QT ,∆) is an equivalence relation ∼ over Q such
that for any two states q and q′ in Q: q ∼ q′ ⇒ ∀ f ∈ Σn, ∀(q1, . . . ,qn) ∈ Qn, (q, f ,q1, . . . ,qn) ∈ ∆ ⇔
(q′, f ,q1, . . . ,qn) ∈ ∆. In other words, two similar states admit the same predecessors w.r.t. any symbol.
Proposition 1. Let A be an automaton and∼ be a similarity relation over A . Then L (A/∼) =L (A ).
Proposition 2. Let E be linear. The relation ∼F is the largest similarity relation over PE .
Proposition 3. Let E be linear. The finite tree automaton PE�∼F is isomorphic to FE.
Theorem 2. Let E be linear. Then L (FE) = JEK.

2.3 The Equation Tree Automaton

In [10], Kuske and Meinecke extend the notion of word partial derivatives [1] to tree partial derivatives in
order to compute from E a tree automaton recognizing JEK. Due to the notion of ranked alphabet, partial
derivatives are no longer sets of expressions, but sets of tuples of expressions.
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Let N = (E1, . . . ,En) be a tuple of regular expressions, F and G be some regular expressions and c ∈ Σ0.
Then N ·c F is the tuple (E1 ·c F, . . . ,En ·c F). For a set S of tuples of regular expressions, S ·c F is the
set S ·c F = {N ·c F |N ∈S }. Finally, SET(N ) = {E1, · · · ,Em} and SET(S ) =

⋃
N ∈S SET(N ).

Let f be a symbol in Σ>0. The set f−1(E) of tuples of regular expressions is defined as follows:
f−1(0) = /0, f−1(F +G) = f−1(F)∪ f−1(G), f−1(F∗c) = f−1(F) ·c F∗c ,

f−1(g(E1, · · · ,En)) =

{
{(E1, · · · ,En)} if f = g,
/0 otherwise,

f−1(F ·c G) =

{
f−1(F) ·c G if c /∈ JFK
f−1(F) ·c G∪ f−1(G) otherwise.

The function f−1 is extended to any set S of regular expressions by f−1(S) =
⋃

E∈S f−1(E).
The partial derivative of E w.r.t. a word w ∈ Σ∗≥1, denoted by ∂w(E), is the set of regular expressions

inductively defined by: ∂w(E) =


{E} if w = ε,
SET( f−1(∂u(E))) if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) 6= /0,
{0} if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) = /0.

The Equation Automaton of E is the tree automaton AE = (Q,Σ,QT ,∆) defined by Q = {∂w(E) | w ∈
Σ∗≥1}, QT = {E}, and

∆ = {(F, f ,G1, . . . ,Gm) | F ∈ Q, f ∈ Σm,m≥ 1,(G1, . . . ,Gm) ∈ f−1(F)}
∪ {(F,c) | F ∈ Q∧ c ∈ (JFK∩Σ0)}

2.4 The k-C-Continuation Tree Automaton

In [10], Kuske and Meinecke show how to efficiently compute the equation tree automaton of a regular
expression via an extension of Champarnaud and Ziadi’s C-Continuation [3, 4, 9]. In [12, 13, 14], we
show how to inductively compute them. In this section, we prove that this automaton is isomorphic to
the k-position tree automaton and we consider the following quotient: 0 ·c E = 0. As we consider only
regular expressions without 0 or reduced to 0 then if after the computation of k-C-Continuation we obtain
expression of the form 0 ·c E we reduce it to 0.

Definition 2 ([12, 13, 14]). Let E 6= 0 be linear. Let k and m be two integers such that 1≤ k ≤ m. Let f
be in (ΣE∩Σm). The k-C-continuation C f k(E) of f in E is the regular expression defined by:

C f k(g(E1, · · · ,Em)) =

{
Ek if f = g
C f k(E j) if f ∈ ΣE j

C f k(E1+E2) =

{
C f k(E1) if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

C f k(E1 ·c E2) =


C f k(E1) ·c E2 if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

and c ∈ Last(E1)
0 otherwise

C f k(E1
∗c) =C f k(E1) ·c E1

∗c .

By convention, we set Cε1(E) = E.

Lemma 1. Let E be a regular expression without occurrences of 0 or reduced to 0. Then, C f k(E) is a
regular expression without occurrences of 0 or reduced to 0.

Let us now show how to compute the k-C-Continuation tree automaton.

Definition 3 ([12, 13, 14]). Let E 6= 0 be linear. The automaton CE = (QC ,ΣE ,{Cε1(E)}, ∆C ) is defined:
QC = {( f k,C f k(E)) | f ∈ Σm,1≤ k ≤ m}∪{(ε1,Cε1(E))},
∆C = {((x,Cx(E)),g,((g1,Cg1(E)), . . . ,(gm,Cgm(E)))) | g ∈ ΣE m,

m≥ 1,(Cg1(E), . . . ,Cgm(E)) ∈ g−1(Cx(E))} ∪{((x,Cx(E)),c) |,c ∈ JCx(E)K∩Σ0}
Theorem 3 ([12, 13, 14]). The automaton CE accepts JEK.

Let ∼e be the equivalence relation over the set of states of CE defined for any two states ( f k
j ,C f k

j
(E))

and (gp
i ,Cgp

i
(E)) by ( f k

j ,C f k
j
(E))∼e (g

p
i ,Cgp

i
(E))⇔ h(C f k

j
(E)) = h(Cgp

i
(E)).
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Proposition 4 ([12, 13, 14]). The automaton CE�∼e is isomorphic to AE.

Proposition 5. The Follow tree automaton and the Equation Tree Automaton are incomparable though
they are derived from two isomorphic automata, i.e. neither is a quotient of the other.

3 A smaller automaton

In [6] P. Garcı́a et al. proposed an algorithm to obtain an automaton from a word regular expression.
Their method is based on the computation of both the partial derivatives automaton and the follow au-
tomaton. They join two relations, the first relation is over the states of the word follow automaton and
the second relation is over the word c-continuations automaton, in one relation denoted by ≡V . What we
propose is to extend the relation ≡V to the case of trees as follows:

C f k
j
(E)≡V Cgp

i
(E)⇔

{
(∃Chl

m
(E)∼F C f k

j
(E) | Chl

m
(E)∼e Cgp

i
(E))

∨ (∃Chl
m
(E)∼F Cgp

i
(E)) | Chl

m
(E)∼e C f k

j
(E))

The idea is to define the follow relation ∼F over the states of the k-c-continuation automaton CE
as follows: C f k

j
(E)∼F Cgp

i
(E)⇔ Follow(C f k

j
(E), f j,k) = Follow(Cgp

i
(E),gi, p) such that we keep all the

equivalent k-c-continuations in the merged states. The obtained automaton is denoted by CE�∼F . Then
apply the relation ∼e (apply the mapping h) over the states of the automaton CE�∼F and merge the
states which have at least one expression in common.

4 Complexity of the computation of the tree automata

In [10], Kuske and Meinecke extend the algorithm based on the notion of word partial derivatives [1]
to tree partial derivatives in order to compute from a regular expression E a tree automaton recognizing
JEK with a complexity O(|E |2). Laugerotte et al. proposed an algorithm for the computation of the
position tree automaton and the reduced tree automaton with an O(||E || · |E |) space and time complexity
in [11] with ||E || is the alphabetic width of E and |E | is its size. In [12, 13] Mignot et al. gave an
efficient algorithm for the computation of the equation automaton using the k-c-continuations with an
O(||E || · |Q|) space and time complexity where |Q| is the set of k-c-continuations of E. The algorithm
proposed in [11] for the computation of the function Follow can be used in different constructions such
us the equation automaton [10], k-c-continuation automaton [12, 13, 14] and Follow Automaton [14].

5 Conclusion

In this paper we define and recall different constructions of tree automata from a regular expression. The
different automata and their relations (quotient, isomorphism) defined in this paper are represented in
Figure 1, where our extension of Garcı́a et al. construction is denoted by ≡V -NFA. We have shown that
the k-position automaton and the k-c-continuations automaton are isomorphic, and that both the equation
automaton and the follow autolaton are different quotients of the k-position automaton.

Looking for reductions of the set of states, we applied the algorithm by Garcı́a et al. [6] which
allowed us to compute an automaton the size of which is bounded above by the size of the smaller of the
follow and the equation automata.
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k-C-Continuation k-Position

Equation Follow≡V-NFA

∼e

≡
∼F

≡V

Figure 1: Relations between the automata.
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