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We generalise a search algorithm by Mohri and Riley from strings to trees. The original algorithm
takes as input a weighted automaton M over the tropical semiring, together with an integer N, and
outputs N strings of minimal weight with respect to M. In our setting, M defines a weighted tree
language, and the output is a set of N trees with minimal weight. We prove that the algorithm is
correct, and that its time complexity is a low polynomial in NV and the relevant size parameters of M.

1 Introduction

Tree automata are useful in natural language processing (NLP), not least to describe the derivation trees
of context-free grammars in an automata-theoretic way. To allow analyses to be computed together with
an associated confidence level or a probability, we can choose to equip transitions and final states with
weights, i.e., to work with weighted tree automata (wta) [4]. This is convenient when there is a set of
competing analyses to choose from, and we want to find an analysis that optimises some objective func-
tion f. Huang and Chiang [3]] observe that even when it is not tractable to compute f for every possible
analysis, we may still obtain a satisfactory approximation by first ranking the candidate analyses accord-
ing to a simpler function, such as can be computed by a wta, and then finding an N-best list ay,...,ay
according to this ranking, and finally optimising f over {ay,...,ay}. Examples include reranking the hy-
potheses produced by parsers or translation systems, where the reranking is based on auxiliary language
models or evaluation scores orthogonal to the first round of analysis; see, e.g. 13} 8]].

There are other situations in which an N-best analysis can be used for approximation. Suppose for
instance that the analysis is computed by a cascade of computational modules, a common architecture
for NLP systems [5]. Each module typically comes with its own objective function, and the goal is to
optimise these jointly. Although it might not be possible to compute the full set of outputs from each
module, we may again settle for the N best outputs from each module, and propagate them downstream.
In their paper, Huang and Chiang provide several examples of this technique, including (i) joint parsing
and semantic role labeling, and (ii) combined information extraction and coreference resolution.

In the majority of the above-mentioned applications, the weights represent probabilities and are
as such taken from the interval of real values between zero and one. However, for the sake of nu-
merical precision, negative log likelihoods are used in the actual computations, and the min opera-
tion is used to find the most likely analysis. This makes the min-plus semiring (or tropical semiring)
(R4 U{e}, min,+,00,0) an appropriate structure for transition weights. Alternatively, the max-plus
semiring (R U{—oco}, max, +, —c0,0) may be used.

In this paper, we focus on the case where trees are associated with weights by means of a weighted
tree automaton (wta) over the tropical semiring. Thus, the weight of a computation, called a run, is the
sum of the weights of the rules applied, and the weight of a tree is the minimum of the set of all runs
on that tree. Note that the latter is only relevant if the automaton is nondeterministic. In [5] Huang
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2 A Best-Trees Algorithm for WTA

and Chiang give an O(m+ D-NlogN) algorithm for (essentially) finding a set S of N best runs in an
acyclic wta, where m is the number of transitions and D is the size of the largest run in S. However, as
pointed out by Mohri and Riley [[7], one would usually rather determine the N best trees, because the
trees correspond to the analyses and it is not very useful to obtain the same analysis twice in an N-best list
just because it corresponds to several distinct runs of the nondeterministic automaton that implements the
weight assignment. Unfortunately, determining the N best trees is a harder problem. Part of the difficulty
lies in the fact that weighted automata are not closed under determinisation. In fact, both in the string
and in the tree case the set of weighted languages recognisable by deterministic weighted automata is a
proper subset of those recognisable by nondeterministic weighted automata.

Mohri and Riley [7] solve the problem of finding the N best strings, where the input is a weighted
string automaton (wsa) over the tropical semiring (and the number N). To avoid computing redundant
paths, they apply Dijkstra’s N-shortest paths algorithm to a determinised version of the input automaton.
Their algorithm applies the determinisation algorithm under a lazy evaluation scheme to guarantee termi-
nation and keep the running time polynomial. We generalise this algorithm to weighted tree languages,
while simplifying the technique by working directly with the input automaton rather than an on-the-fly
determinisation. The frontier is no longer a set of paths, but rather a set of trees that are combined and
recombined into new trees to drive the search. This increased dimensionality creates an efficiency prob-
lem which we solve by a pruning technique. Owing to space limitations, the proofs have been left out,
but a detailed treatment is given in [[1] and available as a technical reportﬂ

2 Preliminaries

We write N for the set of non-negative integers and R for the set of non-negative reals; R% denotes
R U{e}. Forn €N, [n] ={1,...,n}. In particular, [0] = 0. The number of elements of a (possibly
infinite) set S is written |S|. The empty string is denoted by A.

The estimation of the running time of our algorithm contains the factor log r, where r is the maximum
rank of symbols in the ranked alphabet considered (see below for the definitions). To avoid the technical
problem that log I = 0 we use the convention that, throughout this paper, log r abbreviates max(1,logr).

For a set A, an A-labelled tree is a function t: D — A where D C N* is such that, for every v € D,
there exists a k € N with {i € N | vi € D} = [k]. We call D the domain of t and denote it by dom(t). An
element v of dom(t) is called a node of t, and k is the rank of v. The subtree of t € Ty rooted at v is the
tree ¢/v defined by dom(t/v) = {u € N* | vu € dom(t)} and t /v(u) = t(vu) for every u € N*. If (1) = f
and /i = t; for all i € [k], where k is the rank of 4 in 7, then we denote ¢ by f]t1,...,%]. If k =0, then f]]
is usually abbreviated as f. In other words, a tree t with domain {4} is identified with #(1).

A ranked alphabet is a finite set of symbols ¥ = ey Zx), partitioned into pairwise disjoint subsets
X (). For every k € N and f € L), the rank of f is rank(f) = k. The set Ty of all trees over X contains
all X-labelled trees ¢ such that the rank of every v € dom(t) coincides with the rank of #(v). For a set T
of trees we denote by X(T') the set of all trees f[t1,...,#] such that f € ) and 11,...,5 € T.

Let ¥ be a ranked alphabet and let [J ¢ X be a special symbol of rank 0. The set of contexts over ¥
is the set Cy consisting of all ¢ € Ty such that there is exactly one v € dom(c) with ¢(v) = [J. The
substitution of a tree ¢ for [ in ¢ is defined as usual, and is denoted by c[t].

A weighted tree language over the tropical semiring is a mapping L: Ty — R%, where X is a ranked
alphabet. Such languages can be specified by the use of so-called weighted tree automata (wta), of which
there exist variants with final weights and with final states. As shown by Borchardt [2]] these two variants
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are equivalent, and going from final weights to final states only requires a single additional state (which
becomes the unique final state) and, in the worst case, twice as many transitions. This means that all
results shown in this paper, including the running time estimations, hold for both types of wta.

Formally, a weighted tree automaton is a system M = (Q,X,0,Q¢) where Q is a finite set of states
which are considered as symbols of rank 0; ¥ is a ranked alphabet of input symbols disjoint with Q;
0: X(Q) x Q — R? is the transition function; and Qr C Q is the set of final states. Note that the transition
function § can be specified as the set of all transition rules f[q,. .., q] — g suchthat §(flq1,...,q],q) =
w # oo, In particular, transition rules whose weight is oo are not represented explicitly.

For convenience, we define the behaviour of M on trees in Ty o as opposed to just 7y, where states
are considered to be symbols of rank 0: The set of runs of M on t € Ty o is the set of all Q-labelled trees
m: dom(t) — Q such that w(v) =1(v) for all v € dom(t) with#(v) € Q. A run 7 is accepting if (L) € Or.

The weight of arun 7w on a tree t = f[t,...,t] is defined as

w(m) = Y S(t(v)[m(1)---w(vh)], m(v)) -

vedom(t),t(v)E€X )

Now, let M(¢) = min{w(x) | 7 is an accepting run of M on ¢} for every tree t € Typ. This defines
the weighted tree language #4;: Tz — R recognised by M, namely #y(t) = M(t) for all ¢ € Ts.

The problem we are concerned with in this paper is to compute N trees such that, according to
M, there are no tress outside this set with smaller weight. For N € N, an acceptable solution is a set
T ={t,...,ty} C Ty such that M(1;) < M(t) for alli € [N] and ¢t € Tz \ T Similarly, for N = oo, we seek
an infinite set 7 = {t1,tp,...} C Ty with M(t;) <M(¢) foralli > 1 andr € Tz \ T.

3 The Algorithm

We now present our algorithm for computing N minimal trees with respect to a given wta. This is done
in two steps: First a basic version is developed, which is later turned into a more efficient one by means
of a pruning strategy. Correctness and efficiency are studied in Section f] Throughout the paper, let
M = (0,X%,8,0r) be the wta given as input to the search algorithm. The letters m, n, and r denote the
number |§| of transition rules, the number |Q| of states, and the maximum rank of symbols in X.

Our algorithm explores its search space recursively. The frontier of the explored part is organised
as a priority queue. The algorithm iteratively selects a promising tree ¢ from the queue, considers ¢ for
output, puts it into a set T of explored trees, and finally expands the frontier by all trees in £(7) which
have at least one occurrence of ¢ as a direct subtree. Fort € T C Ty this expansion is defined as

expand(T,t) = {f[t1,...,t] € X(T) | t; =t for at least one i € [k} .

To define our algorithm, it is convenient to consider two wtas M9 and M,, for every g € Q. The wta
M¢? is simply given by MY = (Q,X,0,{q}), i.e. g becomes the unique final state. The wta M, is given by

M, = (Q,2u{0},8U{0->% g}, 0r). Note that M,(c) = M(c[q]) for all ¢ € Cs and g € Q.

The priority of a tree 7 in our queue is primarily decided by the minimal value of M(c[t]), where ¢
ranges over all possible contexts. To determine this, we compute for every ¢ € Q the minimal value
of M,(c) +M?9(t). Since M? denotes the wta obtained from M by taking ¢ as the unique final state,
M?4(t) is the minimal weight of all runs on ¢ whose root state is g. Since M,(c) is independent of 7, a ¢
that minimises it can be calculated in advance using, e.g., Knuth’s extension of Dijkstra’s algorithm [6]]
(which, roughly speaking, computes the best derivation in a weighted context-free grammar). This yields
the following lemma.
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Lemma 1 A family of contexts (c4)qeo such that My(cy) = min{M,(c) | ¢ € Cs} for each q € Q, can be
computed in time O(mr - (logn+r)).

In the rest of the paper, we frequently make use of the contexts c,, assuming that they have been
computed for all ¢ € Q. For a tree ¢ in the frontier of our search space we are, intuitively, interested in
the tree c[r] that has the least possible weight. Clearly, ¢ can be assumed to be one of the contexts ¢,.
Thus, our aim has to be to determine the state ¢ that minimises the weight of ¢, [t].

Definition 1 (Optimal state) The mapping optset: Tx — pow(Q), where pow(Q) is the powerset of Q,
is defined by
opiset(1) = g € Q| My(cy) + (1) = minM(c[1])}
ceCx

In addition, let opt(t) denote an arbitrary but fixed element of optset(t), for every t € Ts.

We can now give our basic algorithm, which we formulate only for wta computing monotone weighted
tree languages. Here, a weighted tree language L is called monotone if, for all trees ¢t € Ty and all
c € Ce\{O}, L(t) # o implies L(c[t]) > L(t). To see that this does not diminish the usefulness of the al-
gorithm, notice that an arbitrary input wta M can be made monotone as follows: Introduce a new symbol
out of rank 1 and turn M into M’ such that M’ (1) = co and M’ (out[t]) = M(t) for all 7 € Tx. This can easily

be achieved by adding a new state gf, which becomes the unique final state, and transitions out[q] A qs
for g € Q. Then M’ is monotone and if out[t|],. .., out|ty] are N trees of minimal weight with respect to
M’, then ty, ...ty are minimal with respect to M.

Our basic algorithm is presented in Algorithm [I| It maintains three data structures: 7 is a set of
trees that represents the explored search space, K is a priority queue of trees in £(7), and C is a table
containing the value M4(t), for all g € Q and r € T UK. The table C can easily be updated whenever new
trees are added to K. The priority order <y of K is given by

t<gt' = At) <A{')or A(t) = A(t') and t <jer t'
where A(s) = M(cyp(s) [s]) for all s € Ts.

Here, <, is any lexiographical order that orders trees first by size and then lexiographically. Note that
the output condition in Line [§cannot be replaced by the more intuitive M(t) < oo because it has to cover
the case where A(f) = oo (which happens if there are fewer than N trees of finite weight).

Unfortunately, Algorithm [T] builds a large number of trees and is thus not very efficient. Therefore,
we now give a more efficient version that works by repeatedly pruning the priority queue.

The idea of the pruning step is that a tree s can be discarded from the queue if we already have,
for every state g € optset(s), at least N other trees 1 <k s such that g € optset(t). Intuitively, in this
case we have sufficiently many good alternatives to s in the formation of a set of minimal trees, so that
s will not be needed. A polynomial runtime is thus obtained through the addtion of a new procedure
Prune (see Algorithm 2). In Algorithm 1} we replace Line [3|by Prune(T,enqueue (K, X)), and Line
by Prune(T,enqueue(K,expand(T,t))), thereby obtaining Algorithm [3| BestTrees (not listed explicitly,
again due to space limitations).

4 Correctness and Efficiency

Let us now establish the correctness of Algorithms (1| and [3} and then study the efficiency of the latter.
For this, we assume that £ # ), so that 75 is infinite and hence N trees of minimal weight can always
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Algorithm 1 Enumerate N trees of minimal weight for a wta M such that #), is monotone
1: procedure BestTreesBasic(M,N)
2: T<—0;K<+0

3: enqueue (K, %)

4: i+ 0

5: while i < N A K nonempty do
6: t < dequeue(K)

7: T+ TU{t}

8: if M(t) = A(r) then

9: output(r)
10: i+—i+1

11: end if
12: enqueue (K, expand(T,t))
13: end while

14: end procedure

Algorithm 2 Prune the priority queue
1: procedure Prune(T,K)

2: for s € K do

3 if [{t e TUK | g € optset(t) and t <k s}| > N for all g € optset(s) then
4: discard(K,s)

5: end if

6 end for

7: end procedure

be found. It is clear that Algorithmis correct if ¥ = X o) and terminates within O(m) steps in this case.
Throughout this section we will write BestTreesBasic(M,N) = t,t,,...,t; or BestTreesBasic(M,N) =
t1,b,... (and similarly for BestTrees) if running Algorithm |1| with the inputs M and N results in the
(finite or infinite) sequence t,t,...,t; Or t,17, ... of output trees.

Using the following simple lemma, we can prove the correctness of Algorithm I]

Lemma 2 Algorithm[l|never dequeues the same tree twice. Furthermore, if Algorithm[l|dequeues a tree
t in Ty, then it has previously dequeued all trees s in Ty such that s < t. In particular, if a tree int € Ty
is dequeued, then all trees s € Ty with A(s) < A(t) have been dequeued earlier.

Theorem 1 (Correctness of Alg.[T) For all N € N, BestTreesBasic(M,N) terminates and returns N
trees of minimal weight according to the wta M. Moreover, BestTreesBasic(M,o) = t|,t,... consists
of pairwise distinct trees such that, for each i € N and every tree t € Tz \ {t1,...,t;}, M(t) > M(t;).

In the following, let us say that a tree s € Ty is discarded in a run of BestTrees(M,N) if it, at some
stage, is considered in Line 2] of Algorithm 2] fulfills the pruning condition in Line[3] and is consequently
removed from the queue in Line [Z_f} Further, a tree ¢ € Ty is active (with respect to the considered run of
BestTrees(M,N)) if it contains no discarded subtrees.

Lemma 3 Let BestTreesBasic(M,o) =t},t2,. .. and consider the execution of BestTrees(M,N) for some
N > 0. Let 1 € NU{eo} be the number of active trees among ty, 2, ..., and let ij be such that t;, is the jth

active tree inty,ty, ..., for all j <1. Then BestTrees(M,N) =t;,,t;,,. .. i)
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Using this, the correctness of Algorithm[3]is established.

Theorem 2 (Correctness of Alg.[3) For all N € N, BestTrees(M,N) terminates and returns N trees of
minimal weight according to the input wta M. Moreover, BestTrees(M,) =111, ... consists of pairwise
distinct trees such that, for each i € N and every tree t € Tz \{t1,...,t;}, M(t) > M(t;).

Let us now discuss the worst-case efficiency of BestTrees. A consequence of the pruning is that T
can only grow to contain N - n trees, since at this point, the pruning will discard everything that is left in
the queue. Since each execution of the ‘while’ loop increases the size of T, the body of the ‘while’ loop
in BestTrees is executed at most N - n times. Using Lemma [I] together with Lemma ] below, as well as
the fact that the main loop of Algorithm 3]is executed at most Nn times, we obtain Theorem 3]

Lemma 4 Prune(K,Expand(T,t)) is computable in time O(max(m- (Nr+ rlogr+NlogN), Nn?)).
Theorem 3 BestTrees(M,N) runs in time O(max(Nmn - (Nr+ rlogr+NlogN), N*n*,mr?)).

It may be worthwhile to notice that the set 7 of Algorithm[3]is subtree closed, meaning thatz,,...,5 €
T for every tree f[t1,...,#] € T. Since all output trees of Algorithm are in 7', this means that the output
of Algorithm [3|can be represented as a packed forest with || nodes, i.e., of size <N -n.

5 Conclusion and future work

Future work includes the implementation and integration of the algorithm into an open-source library
for formal tree languages. On the theoretical side, we are interested in seeing further generalisations of
the search algorithm, for example, from trees to directed acyclic graphs, or from the tropical semiring to
some encompassing family of extremal semirings.
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