
Tuning PI controller in non-linear uncertain
closed-loop systems with interval analysis∗

Julien Alexandre dit Sandretto1, Alexandre Chapoutot1, and
Olivier Mullier1

1 Unité d’Informatique et d’Ingénierie des Systèmes,
ENSTA ParisTech, Université Paris-Saclay,
828 bd des Maréchaux, 91762 Palaiseau cedex France
alexandre@ensta.fr, chapoutot@ensta.fr, mullier@ensta.fr

Abstract
The tuning of a PI controller is usually done through simulation, except for few classes of problems,
e.g., linear systems. With a new approach for validated integration allowing us to simulate
dynamical systems with uncertain parameters, we are able to design guaranteed PI controllers.
In practical, we propose a new method to identify the parameters of a PI controller for non-
linear plants with bounded uncertain parameters using tools from interval analysis and validated
simulation. This work relies on interval computation and guaranteed numerical integration of
ordinary differential equations based on Runge-Kutta methods. Our method is applied to the
well-known cruise-control problem, under a simplified linear version and with the aerodynamic
force taken into account leading to a non-linear formulation.

1998 ACM Subject Classification B.5.2 Simulation; I.6.6 Simulation Output Analysis; G.1.7
Initial Value Problem; G.1.0 Interval Arithmetic

Keywords and phrases PID Tuning, Guaranteed numerical integration, non-linear ordinary dif-
ferential equations.

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Recently [2], we developed a new tool for validated simulation [17, 6, 14, 15] of Ordinary
Differential Equations (ODE). This tool, by using affine arithmetic [9], is able to handle
ODEs with uncertain (and bounded) parameters. This new capability allows us to simu-
late a dynamical system controlled by a proportional integral (PI), whose parameters Kp

(proportional gain), Ki (integral gain) are not well-known. The direct advantage is to use
the simulation process to validate or reject some parameter values. This approach is, in
philosophy, similar to Ziegler–Nichols approach [20]. Another method, the model of Broida
[7], is also based on identification of parameters but works only for a linear problem in
open loop. All the existing methods are empirical and do not provide any guarantee on the
behavior of the system, and cannot consider uncertainties on the physical part. Interval
analysis is often used in applications like robust control [13]. Indeed, the methods provided
by the interval formalization are able to consider any kind of bounded uncertainties, manage
with non-linear models and offer a guarantee on the numerical computation.

∗ This research benefited from the support of the «Chair Complex Systems Engineering - Ecole Polytech-
nique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA ParisTech, Télécom
ParisTech, Fondation ParisTech and FDO ENSTA».

© J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

Until now, to the best of our knowledge, interval analysis for robust control only considers
linear systems [19, 4]. Indeed for this class of problems, robust control problem is cast into a
problem of stability and performance based on the characteristic polynomial associated to
the transfer function of the closed-loop system. Unfortunately, for non-linear closed-loop
systems this approach is no longer possible.

The paper is organized as followed. Main interval analysis tools are recalled in Section 2.
The tuning algorithm is presented in Section 3 including also a remainder of the PI controller
theory. Some experimental results are presented in Section 4 before concluding in Section 5.

2 Interval analysis tools

We recall in this section the main tools coming from interval analysis and particularly affine
arithmetic to tighten the issue of interval arithmetic used in our work.

2.1 Interval arithmetic
The simplest and most common way to represent and manipulate sets of values is interval
arithmetic [16]. An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi.
IR denotes the set of all intervals. The size or the width of [xi] is denoted by w([xi]) = xi−xi.

Interval arithmetic [16] extends to IR elementary functions over R. For instance, the
interval sum (i.e., [x1] + [x2] = [x1 + x2, x1 + x2]) encloses the image of the sum function
over its arguments, and this enclosing property basically defines what is called an interval
extension or an inclusion function.

I Definition 1 (Extension of a function to IR). Consider a function f : Rn → R, then
[f] :IRn → IR is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f]([x]) ⊇ {f(x), x ∈ [x]} .

2.2 Affine arithmetic
Interval arithmetic provides a good solution to manage with uncertainties. Nevertheless, this
representation usually produces too much over-approximated results in particular because of
the dependency problem. An iterative scheme, such as a mathematical series or an integration
scheme, leads typically to a dependency problem: each step depends on the previous ones.

I Example 2. Consider the ordinary differential equation ẋ(t) = −x solved with the Euler’s
method with an initial value ranging in the interval [0, 1] and with a step-size of h = 0.5.
For one step of integration, we have to compute with interval arithmetic the expression
e = x+h× (−x) which produces as a result the interval [−0.5, 1]. Rewriting the expression e
such that e′ = x(1−h), we obtain the interval [0, 0.5] which is the exact result. Unfortunately,
we cannot in general rewrite expressions with only one occurrence of each variable. More
generally, it can be shown that for most integration schemes the width of the result can only
grow if we interpret sets of values as intervals [18]. �

To avoid this problem we use an improvement over interval arithmetic named affine
arithmetic [9] which can track linear correlation between program variables. A set of values
is represented by an affine form x̂, i.e., a formal expression of the form x̂ = α0 +

∑n
i=1 αiεi

where the coefficients αi are real numbers, α0 being called the center of the affine form,
αi, i > 1, are called partial deviations and the εi, called noise symbols, are independent
components of the total uncertainty on x̂ with unknown values ranging over the interval

J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier 3

[−1, 1]. Obviously, an interval a = [a1, a2] can be seen as the affine form x̂ = α0 + α1ε with
α0 = (a1 + a2)/2 and α1 = (a2 − a1)/2.

Affine arithmetic extends usual operations on real numbers in the expected way. For
instance, the affine combination of two affine forms x̂ = α0+

∑n
i=1 αiεi and ŷ = β0+

∑n
i=1 βiεi

with a, b, c ∈ R, is an affine form given by

ax̂± bŷ + c = (aα0 ± bβ0 + c) +
n∑
i=1

(aαi ± bβi)εi . (1)

However, unlike the addition, non linear operations create new noise symbols. Multiplication
for example can be defined by

x̂× ŷ = α0α1 +
n∑
i=1

(αiβ0 +α0βi)εi+νεn+1 with ν =
(

n∑
i=1
|αi|

)
×

(
n∑
i=1
|βi|

)
. (2)

Operations as sin or exp are translated into affine forms with Chebyshev polynomials [9].
For practical details on soundness w.r.t. floating-point computations and the performance of
this arithmetic w.r.t. the number of noise symbols see [5].

I Example 3. Consider again e = x+h×(−x) with h = 0.5 and x = [0, 1] which is associated
to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine arithmetic without rewriting the
expression, we obtain [0, 0.5] as a result. �

Note that the set-based evaluation of an expression only consists in substituting all the
mathematical operators, like + or sin, by their counterpart in affine arithmetic. We denote
by Aff(e) the evaluation of the expression e using affine arithmetic.

2.3 Guaranteed numerical integration with Runge-Kutta methods
In this section, we recall our previous work [5] on which the extension in [2] is based on.

I Definition 4 (Initial Value Problem (IVP)). Consider an Ordinary Differential Equation
(ODE) with a given initial condition

ẏ(t) = f (t, y(t), d) with y(0) ∈ Y0, (3)

with f : R× Rn × Rm → Rn assumed to be continuous in t and d and globally Lipschitz in
y. We assume that parameters d are constant and bounded. An IVP consists in finding a
function y(t) described by the ODE for all d and satisfying the initial condition.

A numerical integration method computes a sequence of approximations (tn, yn) of the
solution y(t; y0) of the IVP defined in Equation (3) such that yn ≈ y(tn; yn−1).

The simplest method is Euler’s method in which ti+1 = ti + h for some step-size h
and yi+1 = yi + h × f(ti, yi, d); so the derivative of y at time ti, f(ti, yi, d), is used as an
approximation of the derivative on the whole time interval to perform a linear interpolation.
This method is very simple and fast, but requires small step-sizes. More advanced methods
coming from the Runge-Kutta family use a few intermediate computations to improve the
approximation of the derivative. The general form of an explicit s-stage Runge-Kutta formula,
that is using s evaluations of f , is

yn+1 = yn + h

s∑
i=1

biki , (4a)

k1 = f
(
tn, yn, d

)
, ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj , d
)
, i = 2, 3, . . . , s . (4b)

4 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

The coefficients ci, aij and bi fully characterize the method. To make Runge-Kutta validated,
the challenging question is how to compute a bound on the distance between the true solution
and the numerical solution, defined by y(tn; yn−1)− yn. This distance is associated to the
local truncation error (LTE) of the numerical method.

To bound the LTE, we rely on order condition [12] respected by all Runge-Kutta methods.
This condition states that a method of this family is of order p iff the p+ 1 first coefficients of
the Taylor expansion of the solution and the Taylor expansion of the numerical methods are
equal. In consequence, LTE is proportional to the Lagrange remainders of Taylor expansions.
In previous work [5], LTE is defined by

y(tn; yn−1)− yn = hp+1

(p+ 1)!

(
f (p) (ξ, y(ξ; yn−1, d))− dp+1φ

dtp+1 (η)
)

ξ ∈]tk, tk+1[and η ∈]tn, tn+1[. (5)

The function f (n) stands for the n-th derivative of function f w.r.t. time t that is dnf
dtn and

h = tn+1−tn is the step-size. The function φ : R→ Rn is defined by φ(t) = yn+h
∑s
i=1 biki(t)

where ki(t) are defined as Equation (4b).
The challenge to make Runge-Kutta integration schemes safe w.r.t. the true solution of

IVP is then to compute a bound of the result of Equation (5). In other words we have to
bound the value of f (p) (ξ, y(ξ; yn−1), d) and the value of d

p+1φ
dtp+1 (η). The latter expression is

straightforward to bound because the function φ only depends on the value of the step-size
h, and so does its (p+ 1)-th derivative. The bound is then obtain using the affine arithmetic.

However, the expression f (p) (ξ, y(ξ; yn−1), d) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution y(ξ; yn−1) at an unknown time
ξ ∈]tn, tn+1[. The solution used is the same as the one found in [17, 6] and it requires to
bound the solution of IVP on the interval [tn, tn+1]. This bound is usually computed using
the Banach’s fixpoint theorem applied with the Picard-Linedöf operator, see [17]. This
operator is used to compute an enclosure of the solution [ỹ] of IVP over a time interval
[tn, tn+1], that is for all t ∈ [tn, tn+1], y(t; yn−1) ∈ [ỹ]. We can hence bound f (p) substituting
y(ξ; yn−1) by [ỹ].

The main drawback of the previous approach is that implicit Runge-Kutta methods cannot
be validated because φ is defined implicitly as a function of ki. Implicit Runge-Kutta methods
are important to deal with stiff ordinary differential equations and they have very good
stability properties that make them suitable for validated numerical integration. Moreover,
as function φ is defined over f then dp+1φ

dtp+1 involves time derivatives of f . Hence computing
separately dp+1φ

dtp+1 and f (p), without taking into account shared intermediate computation,
increases the simulation time. In [2], we define a new formula for LTE for any Runge-Kutta
methods based on Fréchet derivatives, see [8] for more details. The new result in [2] is the
definition of new validated numerical integration methods based on implicit Runge-Kutta
methods.

I Example 5. Here we present an example coming from the System 61 in the Vericomp
database [3], which is defined by:

 ẋ0
ẋ1
ẋ2

 =

 1
x2

1
6x

3
1 − x1 + 2 sin (d · x0)

 (6)

with d = [2.78, 2.79] and the initial condition is x0(0) = x1(0) = x2(0) = 0. Using
our guaranteed integration method to compute the value of x(10), we obtain x(10) =

J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier 5

([10, 10], [−1.6338, 1.69346], [−1.55541, 1.4243])T , with 4 rejected Picard-Linedöf and 196
accepted ones. The minimum step-size is hmin = 0.00636859 and the maximum step-size
hmax = 0.070553. Finally the maximum truncature error of the method is 8.9278 × 10−8.
Figure 1 presents the complete simulation of Equation (6). �

Figure 1 Complete simulation of System 61, see Eq. (6), in the Vericomp database over the time
interval [0, 10].

2.4 Paving

Figure 2 Paving of x2 + y2 ∈ [1, 2], in blue boxes included in S and in red boxes which do not
intersect S.

We call paving of a set S ⊂ Rn the list of non-overlapping1 boxes [xi] with a non null
width, such that each boxes [xi] ⊂ S [13]. This tool can be used to describe a set, by a list

1 This is true in Rn but no longer stands with a floating point representation due to rounding preserving
over approximations.

6 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

of inner boxes ([xi] ⊂ S), the outer boxes ([xi] 6⊂ S) and the frontier, i.e. a list of boxes for
which we cannot conclude of the membership to S in an acceptable computation time. For
example, if the set S describes a ring such as S = {(x, y) | x2 + y2 ∈ [1, 2]}, the paving of S
in the box [−2, 2]× [−2, 2] gives the Figure 2.

3 Validated tuning method for PI controllers

3.1 PID controllers
PID controllers are widely used in industrial setting for integrating processes (see, e.g., this
survey [10]). Therefore many techniques for their design and tuning have been proposed. In
the next section we deal with the design of guaranteed PID controllers.

I Definition 6. A proportional-integral-derivative controller (PID), see [1] for more details,
is represented by a tuple of tuning parameters (Kp,Ki,Kd) ∈ R3 designed to compute an
error value

e(t) = r(t)− y(t) (7)

with r(t) a desired setpoint and y(t) a measured process. The general mathematical descrip-
tion of PID is

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (8)

where τ is the integration variable, u(t) is the input signal of the plant model, the controller
parameters are the proportional gain (Kp), the integral gain (Ki), and the derivative gain
(Kd).

The choice of the tuple (Kp,Ki,Kd) is directed by the desire of obtaining a trade-off
between fast response (convergence to the desired value) and good stability (no unbounded
oscillation) of the control system.

3.2 Contribution
For our methods we restrict ourselves to the case where the derivative of the error is not
taken into account. In this case we want to compute the set of validated PI parameters
(Kp,Ki) ∈ [P]× [I] for a given control system. A dynamical system controlled by a PI can
be written as

ẏ(t) = f(y,Kp,Ki, r), (9)

with r the constant setpoint. Our method then consists on the computation of a paving of
the set of validated PI parameters. For that, we simulate the dynamical system controlled
by a PI whose parameters are in an interval. A PI controller defined by (Kp,Ki) is validated
if it satisfies{

y(tend) ∈ [r − α%, r + α%], 100 > α > 0 (the desired setpoint is reached);
ẏ(tend) ∈ [−ε, ε], ε > 0 (the system reached the stability zone).

(10)

Algorithm 1 describes the computation of the paving of validated PI controllers. It
produces two stacks of guaranteed boxes, the one of the accepted parameters and the one
of the rejected parameters using a branch algorithm. For a given box [x] of PI controller

J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier 7

Algorithm 1 Compute the paving of PI parameters
Require: Stack = ∅, Stackaccepted = ∅, Stackrejected = ∅, [x]0 = ([P], [I])
Push [x]0 in Stack
while Stack 6= ∅ do
Pop a [x] from Stack

Compute y(tend), ẏ(tend) using validated simulation of controlled plant with [x]
if (y(tend) ∈ [r − α%, r + α%]) && (ẏ(tend) ∈ [−ε, ε]) then
Push [x] in Stackaccepted

else if (width([x]) > tol) && (y(tend) 3 setpoint) then
([x]left, [x]right) = Bisect([x])
Push [x]left in Stack
Push [x]right in Stack

else if width([x]) > tol then
Push [x] in Stackrejected

else
[x] forgotten (cannot conclude)

end if
end while

parameters, if the constraints defined in Equation (10) are satisfied then [x] is put in the
stack of guaranteed boxes, otherwise if the diameter of [x] is greater than a given tolerance,
[x] is split into two boxes that are to be treated in the same way [x] was. If [x] does not meet
the tolerance, it is rejected.

4 Experiments

In this section, we apply our PI tuning tool on the classic problem of cruise control. Our
algorithm is developed with the IBEX library2. We developed a validated IVP solver inside
this library, which will be released soon. This solver is the main brick of a quite classical
branch and prune algorithm, already available in the library.

4.1 Modeling of the cruise-controller
To demonstrate the computation of PI controller parameters, our method is applied to the
problem of automatic cruise control of a vehicle. The goal of this control is to maintain a
constant vehicle speed despite external disturbances, such as change in wind or road grade.
Action on the throttle has to be made if the vehicle speed is not the desired one.

4.1.1 In simplified form
The first considered example is the modeling of the cruise-controller with a simplified form
of the vehicle dynamics. The vehicle to be controlled has a mass m, a velocity v, and is
acted by a control force u representing the force generated at the road/tire interface. It is
assumed that control on u can be done directly, that neglects the dynamics of the powertrain,
tires, etc. In this simplified form is also considered that the resisting forces bv of the rolling

2 IBEX is a C++ library for constraint processing based on interval arithmetic: http://www.ibex-lib.org/.

8 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

resistance and wind drag vary linearly with v and act in the opposite direction of the vehicle’s
motion. The vehicle system is described by mv̇ + bv = u which can be rewritten as the ODE

v̇ = (u− bv)
m

The setpoint vset on the speed is defined and corresponds to the particular velocity we
want for the vehicle. So the error e(t) = vset − v and the force needed to make the vehicle go
with a velocity in vset is given by the PI

u = Kp(vset − v) +Ki

∫
(vset − v)ds,

and then the controlled ODE is

v̇ =
(Kp(vset − v) +Ki

∫
(vset − v)dt− bv)

m
. (11)

Let interr =
∫

(vset − v)dt then ODE in Equation (11) can be written as the system
v̇ = (Kp(vset − v) +Kiinterr − bv)

m
dinterr
dt

= vset − v

4.1.2 With aerodynamic force
The case where aerodynamic force is not neglected is also considered here. Air particles flow
over the hood of the vehicle causing the aerodynamic drag which can be modeled by

Fdrag = (1/2)ρCdAv2

where ρ is the density of air, CdA is the coefficient of drag for the vehicle times the reference
area, and v is the velocity of the vehicle. Here the density of the air is considered equal to
1.2041 kg/m3 obtained with a temperature of 20◦C and an atmospheric pressure of 101kPa.
The consideration of aerodynamic drag leads to a non-linear differential system

v̇ = (kp(vset − v) + kiinterr − bv − (1/2)ρCdAv2)
m

dinterr
dt

= vset − v

4.2 Results of paving of PI parameters
Results on the application of our method on the previously described problem are now
discussed. The values taken into account for the problem are m ∈ [990, 1010], vset = 10,
v0 = 0,b = 50, tend = 10, α = 2% and ε = 0.2, (1/2)ρCdA = 0.4, PI0 = ([1, 4000], [1, 120]),
tol = 1.

Simulation with interval parameters

Firstly, to validate our simulation tool, we integrate the dynamical system with the simplified
form of the vehicle dynamics with interval parameters for the PI controller. We start a
simulation with Kp = [900, 950] and Ki = [35, 45], from t = 0 to t = 15. The result is shown
in Figure 3. On this figure, we can see the boxes computed by each steps of integration, and
that a part of them cross the limit at t = 10. It means that some of the parameters are not
satisfying for the purpose. During the paving computation, the interval parameters would be
split and two new simulations would start.

J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier 9

Figure 3 Simulation of the cruise-controller with linear dynamics and interval PI parameters.

Complete paving

Figure 4 presents the result of paving for the guaranteed PI parameters for the linear and
non linear modeling of the automatic cruise controller.

Figure 4 Paving of PI parameters for the linear (on the left) and non-linear (on the right)
cruise-controller – in blue accepted and in red rejected

4.3 Response of controller along time
To verify our results, we plot the response of the cruise controller along time, that is to say
the validated simulation of speed of the vehicle from 0 to 40 seconds. We recall that the
setpoint is 10km/h and that we would like to attain this value at 10s. Figure 5 gathers the
responses for the linear model of the cruise controller, with a validated set of parameters (a),
a rejected set of parameters (b) and a set of parameters found in the literature [11] (c). The
results of our tool clearly match the constraints for setpoint and stability. The latter set of
parameters, if it is correct for an infinite time, does not lead to the setpoint at an acceptable
response time.

10 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

(a) (b)

(c)

Figure 5 Response of controller for linear plant with parameters validated (Kp = 1400 and
Ki = 35, in (a)), rejected (Kp = 900 and Ki = 40, in (b)) and from literature [11] (Kp = 600 and
Ki = 1, in (c)) – in blue the guaranteed response, in red the supervision of the objective, and in
black the deadline

Figure 6 gathers the responses for the non linear model of the cruise controller (considering
the aerodynamic force), with a validated set of parameters (a), a rejected set of parameters
(b) and two sets of parameters found in the literature [11] (c-d). The results of our tool
clearly match the constraints for setpoint and stability. For the set of parameters coming
from literature (c), if it is correct for an infinite time, does not lead to the setpoint at an
acceptable response time. And for the set (d), the response is correct in term of objective, but
this set of parameters leads to a large overshoot, and a strong instability. We can conclude
from these results and the current literature that our tool can provide guarantees on sets of
parameter for a controller of a non-linear system.

5 Conclusion

We presented a new method for the tuning of PI controllers. Our approach is based on the
guaranteed simulation of controlled systems and on the paving of the Kp and Ki parameter
space. We can then guarantee a set of parameters for which the response validates two
conditions: reach the setpoint and reach the stability zone after a given time lapse. Our tool
used to simulate the plant allowing us to perform non-linear integration, we applied it to

J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier 11

(a) (b)

(c) (d)

Figure 6 Response of controller for non-linear plant with parameters validated (Kp = 1400 and
Ki = 35, in (a)), rejected (Kp = 900 and Ki = 40, in (b)) and from literature [11] (Kp = 55 and
Ki = 2, in (c) and Kp = 232.58 and Ki = 1000 in (d)) – in blue the guaranteed response, in red the
supervision of the objective, and in black the deadline

the non-linear cruise controller. Our results are compared with some values found in the
literature and lead to think that our approach is promising. This work may be improved in
many ways. We can extend the kind of properties a PI controller must satisfy as a maximum
overshoot. Moreover, we will consider PID controllers in the future.

References

1 K. J. Ãström and T. Hägglund. PID controllers: theory, design, and tuning. Instrument
Society of America, Research Triangle Park, NC, 1995.

2 J. Alexandre dit Sandretto and A. Chapoutot. Validated Solution of Initial Value Problem
for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes.
Research report, ENSTA ParisTech, January 2015.

3 E. Auer and A. Rauh. Vericomp: a system to compare and assess verified IVP solvers.
Computing, 94(2-4):163–172, 2012.

4 J. Bondia, M. Kieffer, E. Walter, J. Monreal, and J. Picó. Guaranteed tuning of PID
controllers for parametric uncertain systems. In Decision and Control, page 2948–2953.
IEEE, 2004.

12 Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

5 O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evolution of dynamical
systems using numerical methods. In NASA Formal Methods, number 7871 in LNCS,
pages 108–123. Springer, 2013.

6 O. Bouissou and M. Martel. GRKLib: a Guaranteed Runge Kutta Library. In Scientific
Computing, Computer Arithmetic and Validated Numerics, 2006.

7 V. Broida. Extrapolation des résponses indicielles apériodiques. Automatisme, XVI, 1969.
8 J. C. Butcher. Coefficients for the study of Runge-Kutta integration processes. Journal of

the Australian Mathematical Society, 3:185–201, 5 1963.
9 L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Applications.

Brazilian Mathematics Colloquium monographs. IMPA/CNPq, 1997.
10 L. Desborough and R. Miller. Increasing customer value of industrial control performance

monitoring - Honeywell’s experience. In AIChE Symposium Series, pages 169–189, 2002.
11 A. Dowling. Modeling and PID controller example - cruise control for an electric vehicle.
12 E. Hairer, Syvert P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I:

Nonstiff Problems. Springer-Verlag, 2nd edition, 2009.
13 L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer, 2001.
14 Y. Lin and M. A. Stadtherr. Validated solutions of initial value problems for parametric

odes. Applied Numerical Mathematics, 57(10):1145–1162, 2007.
15 R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems.

Computer Arithmetic, pages 255–286, 1987.
16 R. Moore. Interval Analysis. Prentice Hall, 1966.
17 N. Nedialkov, K. Jackson, and G. Corliss. Validated solutions of initial value problems for

ordinary differential equations. Appl. Math. and Comp., 105(1):21 – 68, 1999.
18 A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence regions.

Computing Supplementum, 9, 1993.
19 J. Vehì, I. Ferrer, and M. À. Sainz. A survey of applications of interval analysis to robust

control. In IFAC World Congress, 2002.
20 J.G. Ziegler and N.B. Nichols. Optimum settings for automatic controllers. Journal of

dynamic systems, measurement, and control, 115(2B):220–222, 1993.

	Introduction
	Interval analysis tools
	Interval arithmetic
	Affine arithmetic
	Guaranteed numerical integration with Runge-Kutta methods
	Paving

	Validated tuning method for PI controllers
	PID controllers
	Contribution

	Experiments
	Modeling of the cruise-controller
	In simplified form
	With aerodynamic force

	Results of paving of PI parameters
	Response of controller along time

	Conclusion

