
Game-based Synthesis of Distributed Controllers
for Sampled Switched Systems
Laurent Fribourg1, Ulrich Kühne2, and Nicolas Markey1

1 LSV, ENS Cachan & CNRS, France
{fribourg,markey}@lsv.ens-cachan.fr

2 Group of Computer Architecture, University of Bremen, Germany
ulrichk@cs.uni-bremen.de

Abstract
Switched systems are a convenient formalism for modeling physical processes interacting

with a digital controller. Unfortunately, the formalism does not capture the distributed nature
encountered e.g. in cyber-physical systems, which are organized as networks of elements inter-
acting with local controllers. Most current methods for control synthesis can only produce a
centralized controller, which is assumed to have complete knowledge of all the component states
and can interact with all of them. In this paper, we consider a centralized-controller synthesis
technique based on state-space decomposition [12], and use a game-based approach to extend it
to a distributed framework.

1998 ACM Subject Classification B.1.2 Automatic Synthesis

Keywords and phrases Cyber-physical systems; controller synthesis; games; robustness; partial
observation.

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Hybrid systems are a powerful formalism for modeling and reasoning about cyber-physical
systems. They mix the continuous and discrete natures of the evolution of computerized
systems. Switched systems are a special kind of hybrid systems, with restricted discrete
behaviours: those systems only have finitely many different modes of (continuous) evolution,
with isolated switches between modes. Such systems provide a good balance between
expressiveness and controllability, and are thus in widespread use in large branches of
industry such as power electronics and automotive control.

The control law for a switched system defines the way of selecting the modes during the
run of the system. Controllability is the problem of (automatically) synthezing a control
law in order to satisfy a desired property, such as safety (maintaining the variables within a
given zone) or stabilisation (confinement of the variables in a close neighborhood around an
objective point) [6].

In [12], a solution is proposed in order to achieve practical stabilization of discrete-time
switched systems. It is based on the repeated bisection of the region of interest surrounding
the objective point. Each resulting tile of the bisection is to be associated with a sequence
of modes (or pattern) that should map the tile inside the zone of interest. Upon success,
this naturally induces a control law that becomes cyclic and stabilizes the system along a
corresponding limit cycle.

However, the decomposition method is proposed in a centralized framework, and assumes
that the state of the global system is entirely known. In practice, many industrial systems,

© L. Fribourg, U. Kühne, and N. Markey;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Game-based Controller Synthesis

such as cyber-physical systems, are implemented in a distributed manner, using actuators
that are locally controlled. Furthermore, these controllers cannot observe the full state of the
system, but have only access to the partial information conveyed by local sensors.

In the distributed context, the local controllers can be seen as players: each player has
to achieve a local objective of stabilization. A sufficient condition of global stabilization is
obtained when the strategy of any player meets its local objective whatever the strategy
of the others. We will adopt this game-oriented view and modify the basic decomposition
procedure in order to account for local controllability and partial observability.

Related work. The model of hybrid automata [16] has proven very powerful for combining
discrete models issued from software and continuous models issued from the physical world.
The topic of synthesizing controllers that, by construction, enforce properties such as safety
or reachability, has soon attracted a lot of attention. In [3], a generic methodology is given for
constructing safety controllers using iterative computation of reachable states in a backward
manner. An alternative approach is proposed in [27], using a game-theoretic formulation
and theory of optimal control.

Among hybrid automata, timed automata are a very useful class of models where all the
state variables correspond to symbolic clocks evolving uniformly at the same rate [1]. In [7],
an efficient control synthesis method has been proposed, extending an algorithm for solving
games for finite-state systems [19]. It has been implemented in tool UPPAAL-Tiga and
applied to industrial case studies [8].

As mentioned above, switched systems constitute another important subclass of hybrid
systems well-suited to the modeling of many engineered systems. For this class of systems,
a paradigm based on approximate bisimulation [25, 14, 15] allows to construct an approx-
imately equivalent discrete model. The original control-synthesis problem can thus be solved
at a discrete level, which amounts to computing winning strategies in parity games [23].

Most of the work on controller synthesis in the framework of hybrid systems has focused
to the centralized framework. An exception is [20], which gives a methodology based on
optimal theory in a multi-agent setting where the agents try to make optimum use of a
common resource.

2 Background

2.1 Sampled Switched Systems and Decomposition Method
A switched system is a digital quantized control system that consists of a finite family of
continuous subsystems, together with a rule that controls the switching between subsystems.
Formally, a switched system over a set Var of variables can be described by

a differential equation of the form ẋ = fσ(x), where {fu | u ∈ U} is a family of sufficiently
regular functions from RVar to RVar that is parametrized by some finite index set U , called
the set of modes,
and a piecewise-constant function σ : [0,∞)→ U , called switching rule [18].

We assume that the system variables have no discrete jump, i.e. the solution x(·) is everywhere
continuous. We assume furthermore here that all the individual subsystems are affine, so
we obtain an affine switched system of the form ẋ = Aσx+Bσ. Finally, we suppose that σ
changes its values periodically, at times k · τ , where τ ∈ R>0 and k ranges over N. We say
that such switched systems are sampled. We regard these systems as discrete-time systems,
observing the state of the system only at the switching instants k · τ . The integration of

L. Fribourg, U. Kühne, and N. Markey 3

the continuous equation for mode u during τ still yields an affine equation of the form
x(t+ τ) = Âux(t) + B̂u.

In [12], a procedure was designed in order to synthesize a state-dependent control rule
that makes all the (discrete-time) trajectories starting from a given set R ⊆ RVar repeatedly
return to R (the set R is refered to as the target set hereafter). In our setting, we require that
each variable v ∈ Var has its own target zone Rv, so that R =

∏
v∈Var Rv is a rectangular set.

The method consists in decomposing R by iterative bisection until (possibly) finding, for
each resulting tile, a corresponding pattern (i.e., a sequence of modes) that maps it into R.
This guarantees that, starting from any tile W of R, the application of the corresponding
pattern π yields a trajectory that ends within R. The crux of the method relies on a simple
procedure that, given a tile W , enumerates by increasing length all the patterns, using
all possible combinations of modes, until one of them, say π, maps W into R (or until we
have exhausted the whole set of patterns up to a given length, in which case the system is
declared uncontrollable for the given length). Formally, we write Postπ(W) ⊆ R where Postπ
corresponds to the successive application of each mode composing the pattern π (note that
Postπ is an affine transformation, because each mode is affine). When such a π exists, we say
that the tile W is successful.

Each global decomposition ∆ of R can be written under the form (Wi, πi)i∈I where
I is a finite set of indices, Wi is a tile, and πi a pattern, such that

⋃
i∈IWi = R, and

Postπi(Wi) ⊆ R. For any such decomposition, one can then define an operator Post∆ as
Post∆(X) =

⋃
i∈I Postπi(X∩Wi), for anyX ⊆ R. Our method aims to find a decomposition ∆

of R such that Post∆(R) ⊆ R.
All along the computation of ∆, it may reveal useful to ensure not only that the

trajectories return to R after application of each pattern π of the decomposition, but also
that the intermediate points of trajectories, obtained after application of each single mode
composing π, be confined into a given rectangular set S ⊆ RVar containing R. Such a set S
is called safety set. In order to achieve this additional objective, we strengthen the condition
for being successful by requiring the existence of a pattern satisfying:

Postπ(W) ⊆ R and Intermπ(W) ⊆ S (1)

where Intermπ refers to the union of all the intermediate sets obtained by the application of
the successive prefixes of π. Again, upon success, the resulting decomposition ∆ enforces

Post∆(R) ⊆ R and Interm∆(R) ⊆ S, (2)

where Interm∆ is defined by Interm∆(X) =
⋃
i∈I Intermπi(X ∩Wi) for all X ⊆ R. In other

terms, it corresponds to a controller enforcing that the global system never leaves the safety
zone S, and repeatedly visits the target zone R.

The decomposition method has been implemented in the tool Minimator [21]. This tool
makes use of zonotopes [17], and has been written in Octave [22]. At the top-level, the
procedure Decomposition recursively bisects the target set R until, for each tile, a pattern has
been found. It calls the procedure Find_Pattern, which implements the search for a correct
pattern for a given tile W of the current decomposition. Upon success, the tool constructs a
successful decomposition ∆. The tool has been used on various case studies [11, 13].

I Example 1. In this paper, we consider as a running example a two-room house equipped
with a heating system (a more refined example is described in Section 4). There are heat
exchanges between the rooms (characterized by parameters αi,j), and heat losses to the
outside (with parameters αe,i), as schematically depicted on Fig. 1.

4 Game-based Controller Synthesis

αe1 αe2α21 α12

Te Tf Tf

T1 T2

αf αf

Figure 1 Two-room heating system

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2

〈(1
0)〉 〈(0

0)〉

〈(0
0)〉〈(1

1)〉

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2 〈(0

0) , (0
0) , (0

1) , (1
0) , (0

0)〉

Figure 2 Two valid global controllers for Example 1

Each heater has two modes (on and off). When turned on, a heater immediately gets hot
(to temperature Tf) and heats the room with heat transfer coefficient αf . The system has
two variables T1 and T2, which correspond to the temperatures in rooms 1 and 2. Writing
X = (T1;T2)T for the global state of the system, and writing u1 and u2 for the modes of the
corresponding heaters (assuming u1 and u2 belong to {0, 1}), we get the following equation1
representing the evolution of the temperatures:

Ẋ = f(u1
u2)(X) =

(
−αe1 − α21 α21

α12 −αe2 − α12

)
·X +

(
u1αfTf
u2αfTf

)
The objective of our controller is to try to maintain the temperatures in both rooms

within a comfort zone R = [20; 22] × [20; 22], and to ensure that both values never leave
the safety zone S = [19; 23]× [19; 23]. Using Minimator, we are able to compute a correct
controller for this problem, as depicted in Fig. 2. In fact, the two controllers in the figure
represent different trade-offs: The left controller has four different tiles with patterns of
length 1, while the controller on the right hand side uses a single uniform pattern of length 5.

2.2 Game-based controller synthesis
Games provide another approach to controller synthesis: in that setting, the controller is
seen as one protagonist, playing against other components of the system. A strategy for
a player in such a game dictates how the corresponding component must behave, and her
winning condition represents the conditions under which the component is said to behave
properly.

1 For this example, we use Te = 10, Tf = 50, αe1 = 0.005, αe2 = 0.0033, αf = 0.0083, α12 = α21 = 0.05
and τ = 5.

L. Fribourg, U. Kühne, and N. Markey 5

There is a huge literature on game-based techniques for synthesis [26, 2]. A very large part
of these work considers two-player zero-sum games: zero-sum games are purely antagonist
games, where the objectives of the two players are opposite. This setting corresponds to
worst-case controller synthesis: the controller must behave correctly whatever the other
players do. Winning strategies then correspond to correct controllers, ensuring correct
behavior against any behavior of the environment. In various settings, notably for finite-state
systems and ω-regular winning conditions, winning strategies can be computed.

Non-zero-sum games have been considered less intensively: in non-zero-sum games, the
objectives are not opposite, and the players may then be interested in cooperating. Such games
can be used to reason about the synthesis of distributed systems, where several components
have their own objectives. In this setting however, winning strategies need not exist (and they
would not take into account the possible cooperation between components). Instead, various
notions of equilibria can be defined and studied, including the most famous Nash equilibrium.
Several results exist in this setting; for instance, the existence of pure-strategy Nash equilibria
is in general decidable in finite-state games with ω-regular objectives [5], but their existence
is undecidable when considering randomized strategies.

An interesting feature of game-based controller synthesis is the ability to take partial
observability into account. Indeed, in most applications (and especially for distributed
control), the components are not able to observe the exact state of the whole system. In the
game-based model, this can be taken into account in the definition of strategies, requiring
them to return the same action for any two situations that are observationally equivalent.

Partial observation can be dealt with when considering zero-sum games with ω-regular
objectives [24, 9], but it makes the problem undecidable in more complex settings [10, 4].

3 Distributed control of sampled switched systems

The invariant-based approach to controller synthesis (depicted in Section 2.1) generates a
centralized controller, that is, a unique global strategy for the whole system, selecting a global
mode u at each time interval τ . This approach assumes full control and full observability of
the whole system. This is due to the structure of the synthesized control algorithm, where
the mode switching depends on the local tile to which the system state belongs. Furthermore,
we assume that at any switching instant, the controller can choose an arbitrary u from the
set of modes U . In many applications, these assumptions are not realistic or would result in
an overly complex communication and control infrastructure.

In our running example of a heating system, the controller computed in Example 1 using
Minimator selects the mode of the thermostats in both rooms, based on the global state of
the system. Such a centralized controller might be fragile, in the sense that it is only (or at
least was only proven) correct in the case where both thermostats obey the controller strategy.
If for some reason the mode selected in one of the rooms is not the expected one (imprecision
of the temperature sensor) or is not applied correctly (failure of some component), we have
no guarantee about the behavior of the rest of the system.

We address these problems by combining the invariant analysis implemented in Minim-
ator with a game-based view, in order to generate (whenever possible) individual controllers
that are correct even if the other components of the system do not behave as expected (but
still achieve their objectives2), hence adding robustness to the whole system. This approach

2 Notice that if we do not require the other components to meet their obligations, there is no way of
ending up in the target set R.

6 Game-based Controller Synthesis

〈(0
1) , (1

0)〉〈(0
0) , (1

0)〉 〈(0
0) , (1

1)〉 〈(0
1) , (1

1)〉

0

1

0 1 1

0
1

1

0

(a) Single global pattern

〈(0
0) , (1

0)〉 〈(0
0) , (1

1)〉 〈(0
1) , (1

0)〉 〈(0
1) , (1

1)〉

0
0 1

1 1

0 01 1

(b) Individual pattern correct in any completion

Figure 3 Finding successful patterns

still assumes full observation of the system, and requires some technical restrictions that we
explain below. We will then propose a second approach, which assumes partial observation
of the system, ending up with robust and fully distributed controllers. Notice that both
approaches mainly amount to modifying the notion of being successful for a tile of the
decomposition.

Figure 3 illustrates the difference between our approach and the classical approach of Min-
imator. The left-hand part of the figure represents the behavior of Minimator: it looks for
a pattern (of length 2 in this example) that maps the current set of the decomposition into R
(represented in green), and such that at all intermediary steps remain in S (in orange). In this
example, a valid pattern is 〈(0

1), (1
0)〉, since the corresponding branch ends up in a green state

(representing R) and visits an orange state (corresponding to S) at the intermediate position.
The right-hand part depicts what our algorithm does for checking if pattern π = 〈0, 1〉

is correct: it has to check that, for any completions of the pattern π with modes for the
other components, the image of the original set by this completion is in R, and that it is
in S at all intermediary steps. The pattern 〈0, 1〉 is then a correct pattern here, as all the
completions lead to green configurations (meaning that the taregt zone of the considered
player is reached), while all intermediary configurations are orange (corresponding to states
in the safety set of the considered player).

3.1 Problem Statement
Consider a sampled switched system as defined in Section 2.1. Distributed control of such
a system involving m agents is based on m sets of local modes Up, with 1 ≤ p ≤ m, which
are related to the global modes U by means of a function γ : U1 × . . . × Um → U . In its
most simple form, this setting can be implemented by considering that U =

∏
1≤p≤m Ui, and

that γ(u1, ..., um) = (u1, ..., um). Since each of the agents has only limited control over the
system’s behavior, we define local objectives that need to be fulfilled. In this work, we only
consider projections on sub-spaces of the problem domain. For this purpose, we assume that
the set Var of variables is divided among the players: Var =

⋃
1≤p≤mGp. We write Γp for

the set RGp of valuations of the variables of agent p. We denote the projection of X on the
dimensions in Γp by X ↓ Γp. Each agent p then has to take care of the variables in their
set Gp, maintaining them in S ↓ Γp and visiting R ↓ Γp infinitely often. Notice that since R
is a rectangular set, and since for each variable in Var is in some Gp, the following holds:
whenever a set X satisfies (X ↓ Γp) ∈ (R ↓ Γp) for all 1 ≤ p ≤ m, then X ⊆ R. The same
holds of S.

L. Fribourg, U. Kühne, and N. Markey 7

3.2 Robust Local Control with Global Observation
In this first approach, the control will be localized, while each controller still has the ability to
measure the global system state. A straightforward solution would be the simple decomposition
of a standard controller: this boils down to synthesizing a global controller using the approach
of [12], which gives a decomposition and global patterns for each tile of this decomposition.
Then each pattern can be projected into m local patterns. Since all agents are acting
simultaneously, this results again in a valid controller.

As already explained, this results in a very fragile solution: each controller depends on
all other agents in the system. If one agent deviates from this strategy, no guarantees can be
made on the global and local objectives (even if the new strategy of the deviating agent is a
valid one). A central goal in the synthesis of distributed control is robustness: each agent
should be able to enforce its own local objective, regardless (to a certain extent) of what the
other agents are doing. Thus, we assume that each agent has no knowledge of the strategies
of the other agents.

In order to test if a local pattern π is robust, we need to take into account any possible be-
havior of all other agents. For this purpose, the notion of completion of a local pattern is used:

I Definition 1. Given a player p and a local mode u ∈ Up, the completion of u is defined as

Complp(u) = {w ∈ U | ∃u1, ..., um s.t. ui ∈ Ui, up = u, and w = γ(u1, . . . , um)}

This notion can easily be extended to patterns. Given a local pattern π ∈ U+
p with |π| = k,

it is completed to the set of global patterns

Complp(π) = {φ ∈ Uk | ∀1 ≤ j ≤ k. φj ∈ Complp(πj)}.

In fact, computing the completion of a local pattern naturally corresponds to exploring
a game tree, as explained in the previous section. The leaf nodes of the tree in Fig. 3b
correspond to the completion of the local pattern 〈0, 1〉 of Player 1. Now, using this definition,
we can state what it means for a local pattern π to be robust for a tile W :

I Definition 2. Player p has a robust strategy for a tile W ⊆ R if there exists a pattern π ∈
U+
p such that, for all global patterns ψ ∈ Complp(π), the following holds:

1. Postψ(W) ↓ Γp ⊆ R ↓ Γp,
2. Intermψ(W) ↓ Γp ⊆ S ↓ Γp.
We then say that a tile W is successful if all the agents have a robust strategy for W .

A procedure to compute a robust pattern is shown in Algorithm 1. It can be used to
compute a distributed control of a sampled switched system based on the basic procedure
from [12]. In Algorithm 1, the outer loop searches for a tuple of patterns of uniform length `.
It does so by enumerating all valid local patterns and checking them for robustness. The pro-
cedure terminates successfully if for all agents, a robust pattern of some uniform length `
has been found. In order to find a successful decomposition, Algorithm 1 is embedded in the
top-level procedure Decomposition, which upon success returns a decomposition (Wi)i∈I
of R and, for each i ∈ I and each 1 ≤ p ≤ m, a pattern πpi . Due to space limitations, this
procedure is not shown here, and we refer to [12] for more details.

The fact that we are searching for patterns with uniform length needs to be explained. If
we consider the resulting distributed control system in action, then each agent will behave as
follows: at some time instant t, it will measure the global system state X ∈ R. According to
its local control table and to the tile containing X, each agent will select a pattern of some
length `. After ` · τ time units, this procedure will be repeated. Now, due to the robustness

8 Game-based Controller Synthesis

Algorithm 1: Find_Pattern_Simul(W,R, S,K,m, (Γp)p)
Input: Sets W ,R,S; maximum length K; number of players m; sub-spaces (Γp)p
Output: Patterns (π1, . . . , πm) of uniform length, where each pattern πp robustly

satisfies the objective of agent p, or ⊥ if no such patterns exist
for ` = 1 . . .K do1

for p = 1 . . .m do2

Π := U `p; // set of local patterns of length `3

πp := ⊥;4

for π ∈ Π do5

Ψ := Complp(π); // set of global completions of π6

for ψ ∈ Ψ do7

if Postψ(W) ↓ Γp * R ↓ Γp then next π;8

if Intermψ(W) ↓ Γp * S ↓ Γp then next π;9

πp := π; break; // valid pattern for agent p10

if πp = ⊥ then next ` ; // no pattern of length ` for agent p11

return (π1, . . . , πm);12

return ⊥;13

property of each local control, it is guaranteed that the resulting global system state at t+ ` ·τ
will again be in R, hence in some tile W of the decomposition, and thus each agent will
find a suitable entry in its control table. However, consider a situation where some agent p
would play a pattern π of length `′ < ` (say). Then, after `′ · τ time units, when agent p
measures the system state again in order to find the next pattern to play, it may happen that
X ∈ S \R, since the other agents have not finished applying their patterns. Thus, agent p
would not be able to choose a new pattern, because the control is limited to R.

Overall, Algorithm 1 computes local patterns that are successful in the sense of Def. 2.
Regarding the global controller obtained by this approach, we can definitely assert that it
is correct (in the sense of Equation (2)): indeed, the individual patterns computed by our
algorithm above can be combined (as they have the same length), and the global pattern
obviously satisfies Equation (1), by construction. Given our construction, we would like
to assert that each individual pattern is correct against any deviation of the other agents.
However, for the same reasons as above, this is only correct w.r.t deviations that use the
same pattern lengths, and as long as they achieve their objectives:
I Proposition 3. Assume that our procedure returns a successful decomposition ∆ =
(Wi, (πpi)1≤p≤m)i∈I of R. Then

for any agent p, for any i ∈ I, any X ∈Wi, and any completed pattern φ ∈ Complp(π
p
i),

it holds

Postφ(X) ↓ Γp ∈ R ↓ Γp Intermφ(X) ↓ Γp ⊆ S ↓ Γp
for any i ∈ I and any X ∈Wi, for the pattern φ obtained by combining the patterns πpi
of all the agents (which is a valid completion of each individual patterns, as they all have
the same length), it holds

Postφ(X) ∈ R Intermφ(X) ⊆ S.

Finally,

Post∆(R) ⊆ R Interm∆(R) ⊆ S.

L. Fribourg, U. Kühne, and N. Markey 9

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2

〈0〉 〈0〉

〈1〉 〈0〉
〈0〉

〈0〉〈1〉

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2

〈0〉 〈0〉

〈0〉 〈0〉
〈0〉

〈0〉〈1〉

Figure 4 Distributed robust controllers for Example 1 for Players 1 (left) and 2 (right)

I Example 1 (Contd). Consider again the heated rooms from Example 1. A distributed
control could be synthesized by separating the problem into a two-player game: the first player
controls variable u1, and has G1 = {T1}; the second player controls u2, and his objective
is on G2 = {T2}. Possible controllers computed by our algorithm are shown in Fig. 4.

3.3 Local Observation
We now extend the above approach to local observation. We assume that each agent can
only observe a dedicated sub-space, and can make his decisions only on the basis of this local
observations. Compared to the previous approach, this will have two advantages:

each agent measures only a sub-space, which is more realistic in many cases and allows
for simpler (low-dimensional) controllers;
as a side effect, the patterns can now be desynchronized (and have different lengths),
which allows for more admissible controllers.

Some changes are necessary with respect to Algorithm 1. First of all, the local observations
allow us to decouple the computation of valid patterns and the decomposition of the target
set R: instead of one common decomposition for all m agents, the procedure will compute,
for each agent, a successful decomposition of its observed space. In each run, the target set R
will only be decomposed along the observed dimensions, according to the following definition:

I Definition 4. Given a variable w ∈ Var and a rectangular set R ⊆ RVar, writing R(v) =
[av, bv] for all v ∈ Var, the split of R along variable w is the set SplitRw (R) = {Rleft, Rright},
where

Rleft(v) =
{

[av, bv] if v 6= w

[av, av+bv

2] otherwise
Rright(v) =

{
[av, bv] if v 6= w

[av+bv

2 , bv] otherwise

This notion is easily extended to a set of variables V ⊆ Var, resulting in a set SplitRV (R) of
2|V | boxes covering R.

For each agent p, we define its set Op ⊆ Var of observed variables. We require that
the set Op of observed variables be included in his set Gp of variables defining
his objective: for all 1 ≤ p ≤ m, we must have Op ⊆ Gp. This condition is needed for
the correctness of our procedure: as we explain below, this is precisely the condition that
allows us to drop the uniform-length requirement. We write Ωp for the set ROp . We also

10 Game-based Controller Synthesis

W

S
R

RelaxΩ1(W)y

x

Figure 5 The set RelaxΩ1 (W) (dashed area), where agent 1 observes only variable x

write Ωp̄ = RVar\Op . As previously, we write X ↓ Ωp for the projection of the set X on Ωp.
Our algorithm will precisely try to compute a successful decomposition of R ↓ Ωp. In order
to reconstruct the set of possible states that correspond to a given observation, we define the
converse of the projection on Ωp, as follows:

I Definition 5. Consider a tile W ⊆ R ↓ Ωp observed by an agent p. Its relaxation is the set

RelaxΩp
(W) = W × (S ↓ Ωp̄).

The above definition is visualized in Fig. 5. By relaxing all non-observed dimensions to
the invariant set S, we guarantee that the local controller can start a new pattern even if one
or several of the other agents have not finished their current pattern (provided their patterns
enforce their safety constraints). With these modifications, the patterns that we are looking
for can be characterized as follows:

I Definition 6. Agent p has a strongly-robust strategy for a tile W ⊆ R ↓ Ωp if there exists
a pattern π ∈ U+

p such that, for all global patterns ψ ∈ Complp(π), the following holds:
1. Postψ(RelaxΩp

(W)) ↓ Γp ⊆ R ↓ Γp,
2. Intermψ(RelaxΩp(W)) ↓ Γp ⊆ S ↓ Γp.
In this setting, we say that a tile W is successful if all the agents have a strongly robust
strategy for W .

The procedure for finding a strongly-robust pattern for some tile W and agent p is shown
in Algorithm 2. The top-level procedure, which computes a successful decomposition of a
tileW for some agent p, is shown in Algorithm 3. It tries to find a pattern for the whole tileW
by calling Find_Pattern_Local. If no such pattern can be found, it recurses by splitting the
tile W wrt. the observed dimensions. When invoked at some level D of decomposition, the
next finer decomposition is called with level D − 1, and the recursion stops as soon as the
finest decomposition has been reached at D = 0 without finding a valid pattern. Computing
local controllers for m agents boils down to calling Decomposition(R,R, S,K,D, p,Γp) for
each agent p ∈ {1, ...,m}.

In comparison to the strategy described in the previous section, we can establish stronger
guarantees for the overall system’s robustness, while slightly relaxing the guarantees wrt. to
the target set. Each agent p only measures variables in Op, while guaranteeing the local
objective that the system will return to the projection of R on the variables in Gp. Since
Op ⊆ Gp, the subsequent measure of the variables in Op will be in R ↓ Ωp. The only
assumption on the other dimensions is their continuous containment inside S. Thus, the

L. Fribourg, U. Kühne, and N. Markey 11

Algorithm 2: Find_Pattern_Local(W,R, S,K, p,Γp,Ωp)
Input: Sets W ,R,S; maximum length K; agent p; sub-spaces Γp, Ωp
Output: Pattern π robustly satisfying objective of agent p; ⊥ if no such pattern exists
W ′ := RelaxΩp

(W,S)1

for ` = 1 . . .K do2

Π := U `p; // set of local patterns of length `3

for π ∈ Π do4

Ψ := Complp(π); // set of global completions of π5

for ψ ∈ Ψ do6

if Postψ(W ′) ↓ Γp * R ↓ Γp then next π;7

if Intermψ(W ′) ↓ Γp * S ↓ Γp then next π;8

return π;9

return ⊥;10

Algorithm 3: Decomposition(W,R, S,K,D, p,Γp,Ωp)
Input: Sets W ,R,S; maximum length K; depth D; agent p; sub-spaces Γp, Ωp
Output: Successful decomposition ∆, or ⊥ if no such decomposition exists
π := Find_Pattern_Local(W,R, S,K, p,Γp,Ωp);1

if π 6= ⊥ then2

return (W,π);3

else4

if D = 0 then5

return ⊥; // finest decomposition reached6

else7

Dec := SplitΓp
(W); ∆ := ∅; // decompose and recursive call8

for V ∈ Dec do9

∆V = Decomposition(W,R, S,K,D − 1, p,Γp,Ωp);10

if ∆V = ⊥ then return ⊥ else ∆ := ∆ ∪∆V ;11

return ∆;12

global control resulting from the cooperation of the local controllers will remain valid even if
any of the controllers are replaced by any strategy that guarantees containment in S.

On the other hand, since the patterns of the distributed controllers can now be played
in a decoupled manner, we can no longer guarantee that the global state will return to R.
However, a slightly weaker property can be established for each infinite run of the global
control system: for each player p, the local objective—the state viewed in the player’s
sub-space returns to the projection of R—will hold infinitely often.

I Proposition 7. Assume that our procedure returns successful decompositions ∆p =
(W p

i , π
p
i)i∈Ip

of R ↓ Ωp, for each agent p. Then
for any agent p, for any i ∈ Ip, any X ∈ RelaxΩp

(W p
i), and any completed pattern

φ ∈ Complp(π
p
i), it holds

Postφ(X) ↓ Γp ∈ R ↓ Γp Intermφ(X) ↓ Γp ⊆ S ↓ Γp

fix an agent p, an index i ∈ Ip, and some state X ∈ RelaxΩp
(W p

ip
). We define the tree Tp,X

inductively as follows:

12 Game-based Controller Synthesis

its root is labelled with X, and with the (non-empty) pattern πpi ;
pick a node n with no descendant in the currently-constructed tree; assume that it is
labelled with some state Y , and with some non-empty pattern ρ = u · ρ′, where u is
the first mode of ρ. We then extend the tree by adding sons to n as follows: for each
completion w of u, we add a son mw. We label mw with Z = Postw(Y). We also label
it with a pattern, selected as follows:
∗ if Z /∈ S, we label mw with the empty pattern ε;
∗ if Z ∈ S and ρ′ is not empty, mw is labelled with ρ′;
∗ if Z ∈ S and ρ′ is empty, and if Z ↓ Ωp ⊆ W p

j for some j ∈ Ip, then we label mw

with πpj ;
∗ finally, if Z ∈ S and ρ′ is empty, but Z ↓ Ωp 6⊆ R ↓ Ωp, mw is labelled with the

empty pattern ε.
We claim that this tree is infinite (i.e., it contains infinite branches), and any infinite
branch visits only states in S, and it visits R ↓ Γp infinitely many times.

Proof. The first claim is straightforward. The second claim can be proven by noticing that
when ρ′ becomes empty, agent p has completed his pattern, and provided that the other agents
have maintained their variables in their safety sets, the corresponding state Z is in S and
is such that Z ↓ Γp ⊆ R ↓ Γp. Since Op ⊆ Gp, it follows3 that Z ↓ Ωp ⊆ R ↓ Ωp, so that the
node mw will be labelled with a non-empty pattern, and the construction can continue. J

In the end, let ∆ = (Wi, (πpi)1≤p≤m)i∈I be the decomposition obtained by merging the
individual decompositions (∆p)1≤p≤m. From Prop. 7, we deduce that if all the agents follow
the strategy given by decomposition ∆, then the outcome from any state X will be infinite,
it will visit only safe states in S, and each individual target set R ↓ Γp will be visited infinitely
many times. Again notice that since patterns may have incompatible lengths, we cannot
ensure that R itself is visited infinitely many times.

I Example 1 (Contd). We consider our example of the heating system in this setting of
local observation, with Op = Gp for 1 ≤ p ≤ 2. The controllers obtained in this setting are
depicted on Fig. 6.

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2 〈1〉 〈0〉 〈0〉

20.0 20.5 21.0 21.5 22.0
20.0

20.5

21.0

21.5

22.0

T1

T
2

〈1〉

〈0〉

〈0〉

Figure 6 Local controllers for Example 1 for Players 1 (left) and 2 (right)

3 If some variable v were in Op but not in Gp (then it would be in Gp′ for another agent p′), we would
need that agents p and p′ play patterns of the same length, in order to ensure Z ↓ Ωp ⊆ R ↓ Ωp when
agent p terminates his pattern.

L. Fribourg, U. Kühne, and N. Markey 13

4 A more realistic case study

The distributed local controllers obtained for our running example (Fig 6) are very simple:
following the natural intuition, their strategy amounts to turning the heater on when the
temperature is too low, using only patterns of length one. The only interesting information
we get is the exact temperature at which we should turn the heater on or off. In this section,
we develop this example a bit further, by assuming that the heaters are reacting slowly.

I Example 2. Consider a water underfloor heating system: hot water circulates in pipes
under the floor, and the controller can open or close the valves. Hot water will first heat the
floor, which then in turn transfers heat to the room. The heaters will start to heat up to
temperature Tf when switched on. The state X = (H1, T1, H2, T2)T of this model is formed
by the temperatures of the two rooms (T1, T2) and the heaters (H1, H2). The dynamics of
the model can be described4 by the equation Ẋ = A(u1

u2)X +B(u1
u2) with

A(u1
u2) =

−β1 − u1αf β1 0 0

γ1 −αe1 − γ1 − α21 0 α21
0 0 −β2 − u2αf β2
0 α12 γ2 −αe2 − γ2 − α12

 B(u1
u2) =

u1αfTf
αe1Te
u2αfTf
αe2Te

where u1, u2 ∈ {0, 1} indicate the state of the heaters (0 = off, 1 = on). By discretization
with sample time τ , we obtain a switched system X(t+ τ) = Âu ·X(t) + B̂u.

αe1 αe2α21 α12

H1 H2
Te

T1 T2

γ1

β1

γ2

β2

Figure 7 Two-room water underfloor heating system

20 22 24 26 28 30
20.0

20.5

21.0

21.5

22.0

H1

T
1

〈0〉 〈0, 0〉

〈1, 0〉〈1, 1, 0〉

20 22 24 26 28 30
20.0

20.5

21.0

21.5

22.0

H2

T
2

〈0〉 〈0, 0, 0, 0〉

〈1, 0〉〈1, 0〉

Figure 8 Local controllers for 4-dimensional case study (left: Player 1; right: Player 2)

4 For this example, we use the following parameters: Te = 10, Tf = 40, αe1 = 0.005, αe2 = 0.0033,
αf = 0.12, α12 = α21 = 0.006, β1 = β2 = 0.083, γ1 = γ2 = 0.0083, and τ = 5.

14 Game-based Controller Synthesis

The global objective of a controller is to keep both rooms at a temperature between 20°
and 22°, and the heaters in the comfort zone between 20° and 30°. There are safety margins
for the room temperature of 1°. The heaters should not be colder that 15° and should not
exceed the maximum of 40°. In other words, the target set is given by R = ([20, 30]×[20, 22])2,
while the safety set is given by S = ([15, 40]× [19, 23])2. Obviously, R ⊆ S.

In order to construct a distributed control for the two rooms, the global state space
is projected to the respective dimensions G1 = O1 = {H1, T1} for the first room and
G2 = O2 = {H2, T2} for the second room. For all experiments, we used a maximum pattern
length of K = 6 and a maximum decomposition depth of D = 3.

The original implementation of Minimator computes a global controller with a decom-
position into 16 tiles (corresponding to a single split in all four dimensions) and patterns of
up to three steps. The computation time is 10.45 s, where most of the time is spent on the
(failing) attempt to find a single pattern for the whole target set. The approach described in
Section 3.2 results in two controllers of similar complexity: 16 tiles with pattern length up
to 3. The computation time is slightly higher (13.43 s) due to the more complex exploration
of the completed local patterns. Finally, using the approach based on local observations
described in Section 3.3, we obtain two simple controllers, each with four (2-dimensional)
tiles, as shown in Fig. 8. The computation time was 27.75 s.

5 Conclusion

We proposed an extension of the decomposition method for the control of sampled switched
systems. The improvement is two-fold: first, we synthesize robust, distributed controllers,
which are able to cope with changes in the behaviors of the other controllers of the system;
second, our approach can deal with partially observable systems, where controllers may only
observe (and base their decisions on) part of the system. We illustrated our approach on
two examples of heating systems, for which we were able to effectively synthesize individual
controllers, each having partial observation of the whole system.

This works opens many directions for future research: following classical results in game
theory, it would be natural to make the controller reconstruct information about the global
state of the system from the evolution of the variables it can observe. This however would
require that we introduce memory in our strategies, and seems to be more than a simple
extension of our current approach. Another relevant direction would be to try to use the
same controller (with partial observation) in all the rooms. This would preserve the partial-
observation part of our present approach, but would drop the robustness aspect as the
controllers would certainly make use of the fact that all components follow the same strategy.
Finally, as another exciting direction, we would like to extend our approach with costs, in
order to look for cheap controllers. Notice that just considering the cheapest pattern would
only optimize “locally”, while it might be more profitable to take a more expensive pattern
in order to reach a zone from which control might be cheaper.

References
1 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 K. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge

University Press, 2011.
3 E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective Synthesis of Switching

Controllers for Linear Systems. Proc. of the IEEE, 88(7):1011–1025, 2000.

L. Fribourg, U. Kühne, and N. Markey 15

4 P. Bouyer, N. Markey, and S. Vester. Nash equilibria in symmetric games with partial
observation. In SR’14, EPTCS 146, p. 49–55, Grenoble, France, 2014.

5 R. Brenguier. Nash equilibria in concurrent games – Applications to timed games. Thèse
de doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France, 2012.

6 R. W. Brockett. Asymptotic stability and feedback stabilization. Differential geometric
control theory, 27:181–191, 1983.

7 F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly algorithms
for the analysis of timed games. In CONCUR’05, LNCS 3653, p. 66–80. Springer, 2005.

8 F. Cassez, J. J. Jessen, K. G. Larsen, J. Raskin, and P. Reynier. Automatic synthesis
of robust and optimal controllers - an industrial case study. In HSCC’09, LNCS 5469, p.
90–104. Springer, 2009.

9 K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-regular
games with imperfect information. In CSL’06, LNCS 4207, p. 287–302. Springer, 2006.

10 C. Dima and F. L. Ţiplea. Model-checking ATL under imperfect information and perfect
recall semantics is undecidable. Research Report 1102.4225, arXiv, 2011.

11 G. Feld, L. Fribourg, D. Labrousse, B. Revol, and R. Soulat. Correct-by-design control
synthesis for multilevel converters using state space decomposition. In FSFMA’14, EPTCS
156, p. 5–16, 2014.

12 L. Fribourg, U. Kühne, and R. Soulat. Finite controlled invariants for sampled switched
systems. Formal Methods in System Design, 45(3):303–329, 2014.

13 L. Fribourg and R. Soulat. Control of Switching Systems by Invariance Analysis: Applica-
tion to Power Electronics. Wiley-ISTE, 2013. 144 pages.

14 A. Girard. Synthesis using approximately bisimilar abstractions: state-feedback controllers
for safety specifications. In HSCC’10, p. 111–120. ACM Press, 2010.

15 A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incre-
mentally stable switched systems. IEEE Trans. on Automatic Control, 55:116–126, 2010.

16 T. A. Henzinger. The theory of hybrid automata. In LICS ’96, p. 278–292. IEEE, 1996.
17 W. Kühn. Zonotope dynamics in numerical quality control. In Mathematical Visualization,

p. 125–134. Springer, 1998.
18 D. Liberzon and A. S. Morse. Basic problems in stability and design of switched systems.

IEEE Control Systems Magazine, 19:59–70, 1999.
19 X. Liu and S. A. Smolka. Simple linear-time algorithms for minimal fixed points (extended

abstract). In ICALP’98, LNCS 1443, p. 53–66, London, UK, 1998. Springer.
20 J. Lygeros, D. N. Godbole, and S. Sastry. Multiagent hybrid system design using game

theory and optimal control. In CDC’96, p. 1190–1195, 1996.
21 Minimator Web page. https://bitbucket.org/ukuehne/minimator/wiki/Home.
22 Octave Web page. http://www.gnu.org/software/octave/.
23 P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proc. of the

IEEE, 77(1):81–98, 1989.
24 J. H. Reif. The complexity of two-player games of incomplete information. J. Computer

and System Sciences, 29(2):274–301, 1984.
25 P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer

Publishing Company, Incorporated, 1st edition, 2009.
26 W. Thomas. On the synthesis of strategies in infinite games. In STACS’95, LNCS 900, p.

1–13. Springer, 1995.
27 C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game theoretic approach to controller design

for hybrid systems. Proc. IEEE, 88:949–970, 2000.

https://bitbucket.org/ukuehne/minimator/wiki/Home
http://www.gnu.org/software/octave/

	Introduction
	Background
	Sampled Switched Systems and Decomposition Method
	Game-based controller synthesis

	Distributed control of sampled switched systems
	Problem Statement
	Robust Local Control with Global Observation
	Local Observation

	A more realistic case study
	Conclusion

