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In recent years fluid approaches to the analysis of Markov populations models have been demon-
strated to have great pragmatic value. Initially developed to estimate the behaviour of the system in
terms of the expected values of population counts, the fluid approach has subsequently been extended
to more sophisticated interrogations of models through its embedding within model checking proce-
dures. In this paper we extend recent work on checking CSL properties of individual agents within a
Markovian population model, to consider the checking of properties which incorporate rewards.

1 Introduction

We currently face the scientific and engineering challenge of designing large scale systems, where many
autonomous components interact with each other and with humans in an open environment. Examples
include power generation and distribution in smart grids, bike and car sharing systems, e-vehicles and
public transportation in smart cities. In order to properly design such collective adaptive systems (CAS),
mathematical and computational modelling with predictive capabilities is essential. However, the large
scale of such systems, and of their corresponding models, exacerbates state space explosion, introducing
exceptional computational challenges. In particular, computer-aided verification of formal properties,
recognised good practice in software development, protocol design, and so on [15], is hindered by the
scalability issues. Moreover the open and uncertain nature of such CAS calls for the use of stochastic
models capable of quantifying uncertainty, which introduces further challenges in analysing large scale
models [29]. Analysis of stochastic models, in fact, is a computationally intensive procedure. Numerical
approaches [29] suffer greatly from state space explosion of models of CAS systems, and statistical
methods based on simulation also require a lot of computational effort.

A promising recent approach to modelling systems which consist of interacting populations of en-
tities is based on fluid approximation [13], in which the discrete evolution of the system is replaced by
a continuous approximation where the evolution of the state space is captured by a set of ordinary dif-
ferential equations. Whilst some predictive modelling can be carried out in terms of an approximation
in which the entire model is treated in the fluid limit, this approach does not transfer to verification of
properties of stochastic systems as all variability is lost in the continuous approximation. Instead, in [11],
the authors show how model checking properties of a single entity (or small group of entities) within a
collective system can be carried out by retaining the discreteness of the featured entity/entities but plac-
ing this in the context of a fluid approximation of the rest of the system. This offered the first possibility
to formally verify the properties of extremely large scale systems without the computational cost of sta-
tistical model checking. There is a limitation to the properties of a single entity (or small set of entities).
Nevertheless, this class of properties is quite common in performance models and in network epidemics
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[19]. For instance, in client/server systems, we may be interested in quality-of-service metrics, like the
expected service time [25]. In network epidemics, instead, we may be interested in properties connected
with the probability of a single node being infected within a certain amount of time, or in the probability
of being patched before being infected [21]. Other classes of systems can be naturally queried from
the perspective of a single agent, including ecological models [31] (survival chances of an individual or
foraging patterns), single enzyme kinetics in biochemistry [28] (performance of an enzyme), but also
crowd models [26] or public transportation models in a smart city.

In [11], however, only time bounded properties of classic CSL were considered. In this paper we
consider the extension of this approach to extended CSL which supports properties based on rewards.
Overlaying a reward structure [20] on a continuous time Markov chain (CTMC) allows more sophisti-
cated reasoning about the behaviour of the system, and CSL with rewards can assess properties related
to the accumulated or instantaneous values associated with particular states or transitions of the system.

An alternative approach to fluid model checking has also been investigated by Bortolussi and Lan-
ciani [14]. Their work is based on a second-order fluid approximation known as Linear Noise Approx-
imation [34], and allows them to lift local specification to collective ones. This can be regarded as a
functional version of the Central Limit Approximation [23]. Thus the properties that they consider are
first expressed as a property of an individual agent, specified by a deterministic timed automaton with a
single clock. A further use of mean field approximation in model checking has recently been developed
for discrete time, synchronous-clock population processes by Loreti et al. [24], although the approach
followed in this case is somewhat different as it is an on-the-fly model checker, only examining states as
they are required for checking the property.

In this paper we extend the previous work on fluid model checking to incorporate properties of single
agents expressed in extended CSL, i.e. properties with cumulative and instantaneous rewards. We also
consider reward properties at steady state when such an equilibrium exists in the studied system. This
involves adding and evaluating rewards to the inhomogeneous continuous time Markov chain (ICTMC).
Reward properties have been considered previously in the context of fluid approximation, but in a collec-
tive perspective [33], also considering hybrid approximations caused by the addition of a feedback from
the reward to the system [30].

The paper is organised as follows: in Section 2 we introduce the relevant background material,
including Markov Population Models, Fluid approximation, CSL, and fluid model checking. In Section
3, we discuss reward properties of individual agents and their fluid approximation. Conclusions are
drawn in Section 4.

2 Background

2.1 Markov Population Models

In this section, we will introduce a simple language to construct Markov models of populations of in-
teracting agents. We will consider models of processes evolving in continuous time, although a similar
theory can be considered for discrete-time models (see, for instance, [13, 24]). In principle, we can have
different classes of agents, and many agents for each class in the system. Furthermore, the number of
agents can change at runtime, due to birth or death events. Models of this kind include computer net-
works, where each node (e.g. server, client) of the network is an agent [25], biological systems (in which
molecules are the agents) [32], and so on. However, to keep notation simple, we will assume here that
the number of agents is conserved and equal to N (making a closed world assumption). Furthermore, in
the notation we do not distinguish between different classes of agents.
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In particular, let us assume that each agent is a finite state machine, with internal states taken from a
finite set S = {1,2, . . . ,n}. We have a population of N agents, and denote the state of agent i at time t, for
i = 1, . . . ,N, by Y (N)

i (t) ∈ S. Note that we make explicit the dependence on N, the total population size.
A configuration of a system is thus represented by the tuple (Y (N)

1 , . . . ,Y (N)
N ) — each agent is treated

as a distinct individual with identity conferred by the position in the vector. However, when dealing
with population models, it is customary to assume that single agents in the same internal state cannot be
distinguished, hence we can move to the collective representation by introducing n counting variables:

X (N)
j =

N

∑
i=1

1{Y (N)
i = j}. (2.1)

Note that the vector X(N) = (X (N)
1 , . . . ,X (N)

n ) has dimension independent of N; this will be referred to as
the collective, population, or counting vector. The domain of each variable X (N)

j is {0, . . . ,N}, and, by

the closed world assumption, ∑
n
j=1 X (N)

j = N. Let S (N) denote the subset of vectors of {1, . . . ,N}n that
satisfy this constraint.

In order to capture the dynamics of such models, we will specify a set of possible events, or transi-
tions, that can change the state of the system. Each such event will involve just a small, fixed, number of
agents. Events are stochastic, and take an exponentially distributed time to happen, with a rate depending
on the current global state of the system. The set of events, or transitions, T (N), is made up of elements
τ ∈T (N), which are pairs τ = (Rτ ,r

(N)
τ ). More specifically, Rτ is a multi-set of update rules of the form

i→ j, specifying that an agent changes state from i to j when the event fires. As Rτ is a multiset, we can
describe events in which two or more agents in state i synchronise and change state to j. The exact num-
ber of agents synchronising is captured by the multiplicity of rule i→ j in Rτ ; we denote this by mτ,i→ j.
Note that Rτ is independent of N, i.e. each transition involves a finite and fixed number of individuals.

In order to model the effect of event τ on the population vector, we will construct from Rτ the update
vector vτ : vτ,i = ∑(i→ j)∈Rτ

mτ,i→ je j−∑(i→ j)∈Rτ
mτ,i→ jei, where ei is the vector equal to one in position

i and zero elsewhere. Then, event τ changes the state from X(N) to X(N)+vτ .
The other component of event τ is the rate function r(N)

τ : S (N)→R≥0, which depends on the current
state of the system, and specifies the speed of the corresponding transition. It is assumed to be equal to
zero if there are not enough agents available to perform a τ transition.

Thus, the population model is X (N) = (X(N),T (N),x(N)
0 ), where x(N)

0 is the initial state. Given such a
model, it is straightforward to construct the CTMC X(N)(t) associated with it, exhibiting its infinitesimal
generator matrix. First, its state space is S (N), while its infinitesimal generator matrix Q(N) is the
|S (N)|× |S (N)| matrix defined by qx,x′ = ∑{rτ(x) | τ ∈T , x′ = x+vτ}.

2.2 Running Example: a Bike Sharing system

We consider a bike sharing system with N members, B < N bikes, and S > B bike slots. For simplicity,
we assume that the membership of the system is stable within the time period considered, so that the
number of members is constant and the closed world assumption holds. Initially members are Absent
from the system, i.e. engaged in non-transport related activities in their lives. At some point they seek to
make a journey through acquiring a bike from the system. A bike may or may not be available to them,
so they may successfully make the transition to being a Biker (acq) or they may have to search more
persistently (e.g. visit a bike station in a different location) to find a bike (fail acq); then they enter
the state SeekB. If on a second attempt the member does not acquire a bike (fail acq2) they become
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Figure 1: States and transitions of a single member in the bike sharing system (left). Comparison of
the solution of the Kolmogorov equation for z(t) with the statistical estimation (5000 runs) of the state
probabilities for Z(N)(t). Parameters are N = 300, S = 150, B = 100, kacq = 0.25, kacq2 = 2, kret = 1,
kret2 = 2, krej = 0.005, h = 0.05, q = 0.1, Xa(0) = N, Xi(0) = 0, for i 6= a.

Disaffected with probability q and stop using the system. At the end of a journey the Biker seeks to return
the bike to a vacant slot in the system. Again this is a probabilistic action with the probability of success
depending on the number of bikes currently in use. If the Biker successfully returns the bike (ret) they
again become Absent; alternatively (fail ret) they enter the state SeekS seeking out a vacant slot into
which the bike can be returned (ret2). Again, persistent failure (fail ret2) to achieve their goal can
make the member Disaffected, with a probability q. Disaffected users, after some amount of time, can
rejoin the system, entering into the Absent state (rejoin). For convenience below we refer to the states
as a,b,sb,ss and d, with the obvious mapping.

To describe the system in the modelling language we need to specify the collective variables, which
in this case are five: Xa for absent members, Xb for members using a bike, Xsb for members seeking a bike,
Xss for members seeking a slot and Xd for disaffected members. Furthermore we need nine transitions
or events whose rate and rule sets are described below. Note that the factor h, 0 < h ≤ 1 allows some
probabilities to be adjusted according to the information available (see below).

• acq: Racq = {a−→ b} r(N)
acq = kacqpbikeXa

• fail acq: Rfail acq = {a−→ sb} r(N)
fail acq = kacq (1− pbike)Xa

• acq2: Racq2 = {sb−→ b} r(N)
acq2 = kacq2ph

bikeXsb

• fail acq2: Rfail acq2 = {sb−→ d} r(N)
fail acq2 = kacq2

(
1− ph

bike

)
Xsb

• ret: Rret = {b−→ a} r(N)
ret = kretpslotXb

• fail ret: Rfail ret = {b−→ ss} r(N)
fail ret = kret(1− pslot)Xb

• ret2: Rret2 = {ss−→ a} r(N)
ret2 = kret2ph

slotXss

• fail ret2: Rfail ret2 = {ss−→ d} r(N)
fail ret2 = kret2(1− ph

slot)Xss

• rejoin: Rrejoin = {d −→ a} r(N)
rejoin = kre jXd



L. Bortolussi & J. Hillston

Each member seeking a bike has a probability of success pbike = pbike(Xb,Xss) that depends on the
number of bikes available, i.e. pbike(Xb,Xss) = (B− (Xb +Xss))/B. Then the total rate at which bikes are
acquired is thus kacqpbike(Xb,Xss), multiplied by the number of members ready to start their journey, Xa.
The probability of acquiring a bike after a first failure, instead, is pbike(Xb,Xss)

h, where h models the
fact that this probability can be increased by the presence of some information in the bike station just
visited (like a screen showing the number of free bikes in nearby stations). Similarly, the rate at which a
bike is left depends on the probability of finding a free slot, equal to the fraction of available free slots:
pslot = pslot(Xb,Xss) = (S− (B− (Xb +Xss)))/S.

2.3 Fluid limits

In this section we will introduce some concepts of fluid approximation and mean field theory. The basic
idea is to approximate a CTMC by an Ordinary Differential Equation (ODE), which can be interpreted in
two different ways: it can be seen as an approximation of the average of the system (usually a first order
approximation, see [9, 34]), or as an approximate description of system trajectories for large populations.
We will focus on this second interpretation, which corresponds to a functional version of the law of large
numbers: instead of having a sequence of random variables, like the sample mean, converging to a
deterministic value, like the true mean, in this case we have a sequence of CTMCs (which can be seen
as random trajectories in Rn) for increasing population size, which converge to a deterministic trajectory
— the solution of the fluid ODE.

First we formally define the sequence of CTMCs to be considered. Specifically we normalise the
population counts by dividing each variable by the total population N. The so-obtained normalised pop-
ulation variables X̂(N) = X(N)

N , or population densities, will always range between 0 and 1; thus the be-
haviour for different population sizes can be compared. We also impose an appropriate scaling to update
vectors, initial conditions, and rate functions of the normalised models. Let X (N) = (X(N),T (N),X0

(N))

be the non-normalised model with total population N and X̂ (N) = (X̂(N),T̂ (N), X̂(N)
0 ) the corresponding

normalised model. We require that:

• initial conditions scale appropriately: X̂(N)
0 = X0

(N)

N ;

• for each transition (Rτ ,r
(N)
τ (X)) of the non-normalised model, let r̂(N)

τ (X̂) be the rate function
expressed in the normalised variables (obtained from r(N)

τ by a change of variables). The corre-
sponding transition in the normalised model is (Rτ , r̂

(N)
τ (X̂)), with update vector equal to 1

N vτ .

We further assume, for each transition τ , that there exists a bounded and Lipschitz continuous function
fτ(X̂) : E→ Rn on normalised variables (where E contains all domains of all X̂ (N)), independent of N,
such that 1

N r̂(N)
τ (x)→ fτ(x) uniformly on E. In accordance with Subsection 2.1, we will denote the state

of the CTMC of the N-th non-normalised (resp. normalised) model at time t as X(N)(t) (resp. X̂(N)(t)).

2.3.1 Deterministic limit theorem

Consider a sequence of normalised models X̂ (N) and let vτ be the (non-normalised) update vectors. The
drift F(N)(X̂) of X̂ , the mean instantaneous increment of model variables in state X̂, is defined as

F(N)(X̂) = ∑
τ∈T̂

1
N

vτ r̂(N)
τ (X̂). (2.2)
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Furthermore, let fτ : E→Rn, τ ∈ T̂ be the limit rate functions of transitions of X̂ (N). The limit drift of
the model X̂ (N) is therefore

F(X̂) = ∑
τ∈T̂

vτ fτ(X̂), (2.3)

and F(N)(x)→ F(x) uniformly, as easily checked. The fluid ODE is

dx
dt

= F(x), with x(0) = x0 ∈ S.

Given that F is Lipschitz in E (since all fτ are), this ODE has a unique solution x(t) in E starting from
x0. Then, one can prove the following theorem:

Theorem 1 (Deterministic approximation [23, 16]) Let the sequence X̂(N)(t) of Markov processes and
x(t) be defined as above, and assume that there is some point x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T < ∞, it holds that:

P
{

sup
0≤t≤T

||X̂(N)(t)−x(t)||> ε

}
→ 0.

Note that Theorem 1 is defined with respect to a finite time horizon and does not, in general, tell us
anything about the behaviour of the system at steady state. However, there are situations in which we can
extend the validity of the theorem to the whole time domain, but this extension depends on properties of
the phase space of the fluid ODE [6, 13]. More specifically, we need to require that ODEs have a unique,
globally attracting, steady state x∗, i.e. a point such that limt→∞ x(t) = x∗ independently of x(0). In those
cases, we can prove convergence of the steady state behaviour of X̂(N)(t) to that of x(t):

Theorem 2 (Fluid approximation of steady state [6]) Let the sequence X̂(N)(t) and x(t) satisfy hy-
pothesis of Theorem 1, and let x(t) have a unique, globally attracting equilibrium x∗, and X̂(N)(t) have
a unique steady state measure X̂(N)(∞) for each N. Then limN→∞ ‖X̂(N)(∞)−x∗‖= 0 in probability.

2.3.2 Fast simulation

If we focus on a single individual when the population size goes to infinity, even if the collective be-
haviour tends to a deterministic process, the individual agent will still behave randomly. Moreover, the
fluid limit theorem implies that the dynamics of a single agent, in the limit, becomes independent of
other agents, sensing them only through the collective system state, described by the fluid limit. This
asymptotic decoupling allows us to find a simple, time-inhomogenous, Markov chain for the evolution
of the single agent, a result often known as fast simulation [17, 18]. More formally, consider a single in-
dividual Y (N)

h (t), which is a (Markov) process on the state space S = {1, . . . ,n}, conditional on the global
state of the population X̂(N)(t). Denote by Q(N)(x) the infinitesimal generator matrix of Y (N)

h , described
as a function of the normalised state of the population X̂(N) = x, i.e.

P{Y (N)
h (t +dt) = j | Y (N)

h (t) = i, X̂(N)(t) = x}= q(N)
i, j (x)dt.

We stress that Q(N)(x) describes the exact dynamics of Y (N)
h , conditional on X̂(N)(t), and that this pro-

cess is not independent of X̂(N)(t).1 The rate matrix Q(N)(x) can be constructed from the rate functions

1In fact, the marginal distribution of Y (N)
h (t) is not a Markov process. This means that in order to capture its evolution in a

Markovian setting, one has to consider the whole Markov chain (Y (N)
h (t), X̂(N)(t)), c.f. also [12] for further details.
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of global transitions by computing the fraction of the global rate seen by an individual agent that can
perform it. To be more precise, let r(N)

τ (X) be the rate function of transition τ , and suppose i→ j ∈ Rτ

(and each update rule in Rτ has multiplicity one). Then, transition τ will contribute to the i j-entry
q(N)

i j (X) of the matrix Q(N)(X) with the term g(N)
τ,i (X̂) = 1

Xi
r(N)

τ (X) = 1
X̂i

r̂(N)
τ (X̂), which converges to

gτ,i(X̂) = 1
X̂i

fτ(X̂). We define gτ,i(X̂) to be the function identical to zero if τ is not an action enabled
in state si. Additional details of this construction (taking multiplicities properly into account) can be
found in [11, 12]. From the previous discussion, it follows that the local rate matrix Q(N)(x) converges
uniformly to a rate matrix Q(x), in which all rate functions r̂(N)

τ are replaced by their limit fτ . We now
define two processes which will be used extensively later:

• Z(N)(t), which is the stochastic process describing the state of a random individual Y (N)
h (t) in a

population of size N, marginalised with respect to the collective state X̂(N)(t).

• z(t), which is a time-inhomogeneous CTMC (ICTMC), on the same state space S of Z(N), with
time-dependent rate matrix Q(x̂(t)), where x̂(t) is the solution of the fluid equation.

The following theorem can be proved [17]:

Theorem 3 (Fast simulation) For any T < ∞, P{Z(N)(t) 6= z(t), for some t ≤ T}→ 0, as N→ ∞.

This theorem states that, in the limit of an infinite population, each agent will behave independently
from all the others, sensing only the mean state of the global system, described by the fluid limit x(t).
This asymptotic decoupling of the system, which can be generalised to any subset of k≥ 1 agents, is also
known in the literature under the name of propagation of chaos [5].

2.4 Continuous Stochastic Logic

We now turn to the class of properties that we are interested in checking, which will be specified by the
time-bounded fragment of Continuous Stochastic Logic (CSL) (we will introduce reward properties in
Section 3). The starting point is a generic labelled stochastic process [3, 4], a random process Z(t), with
state space S and a labelling function L : S→ 2P , associating with each state s ∈ S, a subset of atomic
propositions L(s)⊂P = {a1, . . . ,ak . . .} true in that state: each atomic proposition ai ∈P is true in s if
and only if ai ∈ L(s). All subsets of paths considered are provably measurable.

A path of Z(t) is a sequence σ = s0
t0−→ s1

t1−→ . . ., such that, given that the process is in si at time
tσ [i] = ∑

i
j=0 t j, the probability of moving from si to si+1 is greater than zero. For CTMCs, this condition

is equivalent to qsi,si+1(tσ [i])> 0, where Q = (qi j) is the infinitesimal generator matrix and tσ [i] the time
of the i-th jump in σ . We denote by σ@t the state of σ at time t, with σ [i] the i-th state of σ .

A time-bounded CSL formula ϕ is defined by the following syntax:

ϕ ::= true | a | ϕ1∧ϕ2 | ¬ϕ | P./p(ψ) ψ ::= X[T1,T2]ϕ | ϕ1U[T1,T2]ϕ2

where a is an atomic proposition, p ∈ [0,1] and ./∈ {<,>,≤,≥}. ϕ are known as state formulae and
ψ are path formulae. The satisfiability relation of ϕ with respect to a labelled stochastic process Z(t) is
given by the following rules:

• s, t0 |= a if and only if a ∈ L(s);

• s, t0 |= ¬ϕ if and only if s, t0 6|= ϕ;

• s, t0 |= ϕ1∧ϕ2 if and only if s, t0 |= ϕ1 and s, t0 |= ϕ2;

• s, t0 |= P./p(ψ) if and only if P{σ | σ , t0 |= ψ} ./ p.
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• σ , t0 |= X[T1,T2]ϕ if and only if tσ [1] ∈ [T1,T2] and σ [1], t0 + tσ [1] |= ϕ .

• σ , t0 |=ϕ1U[T1,T2]ϕ2 if and only if ∃t̄ ∈ [t0+T1, t0+T2] s.t. σ@t̄, t̄ |=ϕ2 and ∀t0≤ t < t̄, σ@t, t |=ϕ1.

2.5 Fluid Model Checking

The basic idea to approximately check individual CSL properties on large population models is to verify
them on the time-inhomogenous CTMC (ICTMC) z(t) rather than on the process Z(N)(t). In [12], we
proved that this is a consistent operation, in the sense that:

1. time-bounded reachability probabilities computed for Z(N)(t) converge to those computed for z(t).

2. truth-values of (almost all) state formulae ϕ converge, in the sense that ϕ is true in z(t) if and only
if it is true on all Z(N)(t) for N large enough.

These convergence results hold for almost all formulae: one has to prohibit the use of some thresholds in
the probabilistic quantifier P./p(ψ) to avoid computability issues and to ensure that the property P./p(ψ)
is decidable. (Intuitively, we want the path probability of ψ to differ from the threshold p.)

We now provide a few more details of the model checking procedure for ICTMC. For simplicity, we
consider a non-nested until formula P./p(ψ), with ψ = ϕ1U[0,T ]ϕ2, in which ϕ1 and ϕ2 do not contain
any probability quantifier. In order to check it, we need to compute the probability of reaching a ϕ2-state
without passing through a ¬ϕ1 state. This can be done by a modification of the method of [4]. We start
by making ¬ϕ1 and ϕ2 states absorbing, and computing the transient probability matrix Π(0,T ) at time T
of the modified CTMC2, e.g. by solving the forward Kolmogorov equation [27] or using uniformisation
for ICTMC [2]. Note that for ICTMC generally Π(0,T ) 6= Π(t, t +T ), i.e. the reachability probability
depends on the initial time at which it is evaluated. Combining the forward and backward Kolmogorov
equations, we obtain a differential equation to compute Π(t, t +T ) as a function of the initial time t:

d
dt

Π(t, t +T ) = Π(t, t +T )Q(t +T )−Q(t)Π(t, t +T ). (2.4)

Once we have (an approximation of) the function Π(t, t +T ), we just need to compare it with the thresh-
old p, which can be done by computing the zeros of (Π(t, t + T )− p),3 producing a time-dependent
boolean signal, i.e. a function associating with each time t the truth value of P./p(ψ) at that time.

For nested formulae, one has to deal with time dependent truth, i.e. the set of ϕ1 and ϕ2 states can
change as time passes, and one has to carefully take this into account when computing reachability
probabilities by solving equation (2.4). In particular, this introduces discontinuities in such probabilites.
To see this, consider a state s which becomes a goal state (i.e. its satisfaction of ϕ2 changes from false to
true) at a certain time t∗. Then the probability of being in s at time t∗ has to be added to the reachability
probability since trajectories that are in s suddenly satisfy the path formula ψ , introducing a discontinuity.

The general approach is based on defining suitable differential equations to compute the quantities of
interest and coupling them with the fluid limit (see [11, 12] for details). We will follow a similar strategy
to deal with rewards.

3 Checking Rewards

In this section we show how to extend the fluid model checking method to compute reward properties for
individual agents. We will first define the reward structures and the reward properties we are interested

2Πs,s′(t, t ′) is the probability of being in state s′ at time t ′, given that we were in state s at time t.
3To ensure these are finite, we restrict all rate functions of the population models to (piecewise) real analytic functions [22].
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in. Then, we will show how to compute them, and provide convergence results that ensure that the values
we will compute will be consistent with the limit results of Section 2.3.

3.1 Reward Structures and CSL Reward Properties

The first step is to extend the individual agent model with a reward structure rw, which will be composed
of a state reward function ρrw

s and a transition reward function ρrw
t . As customary, the first function

gives the non-negative reward of spending one time unit in any state, while the second encodes the non-
negative reward for taking a certain transition. More specifically, let S be the state space of an individual
agent, and T be the set of transitions of the population model (where we dropped the superscript N as
we only care about the transition per se, not its N-dependent rate function):

• The state reward is ρrw
s : S→ R≥0

• The transition reward is ρrw
t : T → R≥0

Given a reward structure rw and a stochastic process Z(t) on the state space S of an individual agent,
we will consider four kinds of rewards:

• Cumulative rewards up to time T . Given a trajectory σ = s0
t0,α0−−→ s1

t1,α1−−→ . . .sn with a time span
of T (hence remaining some time in the final state sn), its cumulative reward ρrw

c (σ) is defined as

ρ
rw
c (σ) =

n−1

∑
i=0

ρ
rw
s (si)ti +ρ

rw
s (sn)(T −∑

i
ti)+

n−1

∑
i=0

ρ
rw
t (αi).

The first two terms represent the state reward accumulated by remaining in states si, while the last
term of the sum is the transition reward accumulated by the jumps in σ . The expected cumulative
reward ρrw

c (T ) is just the expectation of ρrw
c (σ) over all trajectories with time span restricted to

[0,T ]. Similarly, we define ρrw
c (T,s) as the expectation over all trajectories σ such that σ0 = s and

time span restricted as above.

• Instantaneous rewards at time T . ρrw
I (T,s) is defined as the expected value of ρrw

s at time T ,
conditional on starting from state s, i.e.

ρ
rw
I (T,s) = ∑

s′∈S
ρ

rw
s (s′)P{Z(T ) = s′ | Z(0) = s}.

• Steady state rewards. ρrw
ss is the expected reward at steady state, assuming the process Z(t) has a

unique steady state measure, independent of the initial state.

• Bounded reachability rewards. Consider a subset of states A ⊆ S, then ρreach(A,T,s) is the
cumulative reward starting from state s, until we enter an A-state, within the time-horizon T .
Formally, ρreach(A,T,s) is defined as the cumulative reward up to time T for the modified processes
Z(N)

A and zA, in which A states are made absorbing (by removing outgoing transitions), and for the
modified state reward ρs|A, defined by ρs|A(s) = ρs(s) if s 6∈ A and 0 if s ∈ A.

In the context of this paper, we will express these reward properties by extending the time-bounded CSL
fragment with the following reward operators:

ϕ::=R./r[rw,C ≤ T ] | R./r[rw, I = T ] | R./r[rw,S] | R./r[rw,F≤T ϕ],
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where we assume that ϕ is a CSL formula not containing any temporal operator.4 The semantics of these
operators is defined for a stochastic process Z(t) over S and a reward structure rw (which is made explicit
in the formula), by comparing the suitable expected reward with the threshold r ≥ 0:

• s, t |= R./r[rw,C ≤ T ] if and only if ρrw
c (T,s) ./ r;

• s, t |= R./r[rw, I = T ] if and only if ρrw
I (T,s) ./ r;

• s, t |= R./r[rw,S] if and only if ρrw
ss ./ r;

• s, t |= R./r[rw,F≤T ϕ] if and only if ρrw
reach(Sϕ ,T,s) ./ r, where Sϕ = {s ∈ S | s |= ϕ}.

Example Consider again the bike sharing model introduced in Section 2.2. First, we want to model
the fact that there is a charge for using the bike sharing system which depends on the time for which a
bike is in use. This is represented by a state reward equal to κ , which is associated with the states Biker
and SeekS. Hence, the corresponding reward structure is given by ρcost

s (Biker) = ρcost
s (SeekS) = κ , and

ρcost
s (s′) = 0 for all other states. The transition reward is set identically equal to zero. Thus the total

expenditure of the member up to a given time is given by the cumulative reward associated with the cost
reward structure, and the fact that this cost is less than r can be formally expressed by the CSL property
R≤r[cost,C≤ T ]. We can also compute the cost until an agent becomes dissatisfied, as R=?[cost,F≤T atd ].
Here the notation =? is taken from PRISM [1] and, as customary, denotes that we are interested in the
value of the reward, rather than in comparing its value with a threshold.

Dissatisfaction with the service, instead, is incurred whenever the member is not able to obtain a
bike or return a bike on the first attempt. This is captured by the reward structure diss, with a transition
reward equal to δ for the actions fail acq and fail ret and to 10×δ for the actions fail acq2 and
fail ret2. Here the instantaneous value of the reward will give the expected level of dissatisfaction of
the member. The requirement that this is below the value r is encoded by the formula R≤r[diss, I = T ].

3.2 Fluid Approximation of Individual Rewards

We now describe how to approximate the rewards of an individual agent in a large model. The idea is
simple: we will just replace the agent Z(N)(t) by the agent z(t) operating in the mean field environment.
In the following, we will sketch the algorithms to compute such rewards, and prove that the reward of
Z(N)(t) will converge to the one of z(t), as N goes to infinity. This will prove the consistency of the
approximation.

3.2.1 Instantaneous rewards

We will first consider the instantaneous reward ρI , omitting the reward structure from the notation, which
is assumed to be fixed. To further fix the notation, we will call ρI(T ) the instantaneous reward at time T
for z(t), and ρ

(N)
I (T ) the same reward for Z(N)(t).

Algorithm. Computing the instantaneous reward ρ
(N)
I (T ) for Z(N)(t) requires knowledge of the tran-

sient distribution of Z(N)(T ) at time T . This can be obtained from the Markov Chain (Z(N),X(N)), in
which the individual agent is tracked in the population model, and computing the transient distribution
of this process, then marginalising it to Z(N)(T ). Solving the larger process is necessary, because Z(N)(T )

4This is for simplicity, as the general case requires us to work with the time-dependent truth of ϕ , which makes the algorithm
more involved by introducing discontinuities in the reward, c.f. also the discussion in Section 2.3.1.
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is not Markovian: its evolution depends on X(N). It follows that, for large N, the cost of this operation
becomes prohibitive. However, we will approximate ρ

(N)
I (T ) by ρI(T ), the reward of the limit model

z(t). This is much easier to compute: we just need to compute its transient distribution at time T , which
can be done either by uniformisation for ICTMC, or by solving directly the Kolmogorov equations, cou-
pled with the fluid equations whose solution defines the rates of z(t). More specifically, we need to solve
the following initial value problem:

dx
dt

= F(x),
dP
dt

= PQ(x), with x(0) = x0, P(0) = δs, s ∈ S. (3.5)

where P(t) is the probability distribution over the state space of the agent, with initial distribution δs.
Then the instantaneous reward is computed as

ρI(T ) = ∑
s

ρs(s)P(s).

Convergence. The fact that limN→∞ ρ
(N)
I (T ) = ρI(T ) is essentially a corollary of Theorem 3. For

completeness, we sketch the proof. By standard arguments in probability theory [7], it follows from
Theorem 3 that Z(N)⇒ z weakly, when Z(N) and z are seen as random variables on the space of trajecto-
ries DS, i.e. of S-valued cadlag functions5. We can define a functional RI=T on DS that, given a trajectory
σ : [0,∞)→ S, returns the value of the state reward at time T , i.e. RI=T (σ) = ρs(σ(T )). Obviously, RI=T

is bounded by maxs∈S ρs(s), and it is furthermore continuous on all trajectories that do not jump at time
T . Since Z(N) ⇒ z weakly and this set of trajectories accumulates probability one (the probability of
jumping at T is zero), by the Portmanteau theorem6, it holds that

ρ
(N)
I (T ) = E[RI=T (Z(N))]−→N→∞ E[RI=T (z)] = ρI(T ).

3.2.2 Cumulative rewards

We now turn our attention to the cumulative reward. We will show how to compute ρc(T,s), the cumu-
lative reward for z(t), and prove that ρ

(N)
c (T,s), the cumulative reward for Z(N)(t), converges to ρc(T,s)

as N diverges.

Algorithm. The computation of ρc(T,s) can be done by augmenting the forward Kolmogorov equa-
tions (3.5) for z(t) with an additional equation for the cumulative reward. It is easy to see that we can
express the cumulative reward for the trajectory of z(t) as an integral, by introducing further random
variables cα(t) counting how many times the process jumped by taking transition α:

ρc(T,s) = E
[∫ T

0
ρs(z(t))dt +∑

α

ρt(α)cα(T )
]
=
∫ T

0
E[ρs(z(t))]dt +∑

α

ρt(α)E[cα(T )].

5DS is the space of functions σ : [0,∞)→ S that have at most a countable number of discontinuous jumps. DS can be turned
into a metric space by the Skorokhod metric, cf [8].

6 The Portmanteau theorem [8] states that for weakly convergent measures µn ⇒ µ , the expectation
∫

f dµn with respect
to µn will converge to the expectation

∫
f dµ with respect to µ for all µ-almost surely bounded continuous functions f , i.e.

continuous on a measurable subset A⊂DS such that µ(A) = 1.
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Differentiating this equation with respect to T , we get the following ODE for ρc(T,s) (with ρc(0,s) = 0):

d
dT

ρc(T,s) = E[ρs(z(T ))]+∑
α

ρt(α)
d

dT
E[cα(T )] = ∑

s′
ρs(s′)Pss′(T )+∑

α

ρt(α) ∑
s′∈S

gα,s′(x(T ))Pss′(T )

(3.6)
Here Pss′(T ) is the probability of being in s′ at time T given that the process started in state s, and
d

dT E[cα(T )] = ∑s′∈S gα,s′(x(T ))Pss′(T ) Hence, the cumulative reward ρc(T,s) can be computed by solv-
ing the initial value problem obtained by combining equations (3.5) and (3.6) up to time T .

Convergence. We will show here that the cumulative reward ρ
(N)
c (T,s) for process Z(N)(t) converges

to the reward ρc(T,s) for process z(t). As in the previous subsection, we will first define a functional
Rc≤T (σ) on the space of trajectories DS, associating the cumulative reward to each trajectory σ , taking
its expectation with respect to the measures on DS induced by Z(N) and z, respectively. Differently from
the previous section, however, we cannot rely on the Portmanteau theorem to conclude, because the
functional Rc≤T (σ) is not bounded, as the number of jumps in σ up to time T is unbounded, and so is
the functional Rc≤T , due to the term that accumulates transition rewards.

To circumvent this problem, we can reason as follows:

1. The entries of the matrix Q(N)(x) and of Q(x), defining the single agent behaviour, are bounded
functions: they are continuous functions and, due to the conservation of the population, x belongs
to a compact subset of Rn.7 Let M > 0 be an upper bound of the transition rates for both the limit
process Q(x) and Q(N)(x), for all N ≥ N0, for some N0.

2. The number of jumps of Z(N) and of z is then stochastically bounded by a Poisson process with
rate M.

3. The expected reward due to transitions, assuming ρt(s)≤ K for all s, is then bounded by KMT :

∑
m

mKe−MT (MT )m

m!
≤ KMT ∑

m
e−MT (MT )m−1

(m−1)!
≤ KMT.

Now, let us explicitly split the contributions of state and transition rewards in Rc≤T : Rc≤T (σ) =
Rstate

c≤T (σ)+Rtrans
c≤T (σ). Furthermore, let k be a number of jumps such that the probability of firing tran-

sitions more than k times is less than ε

2KMT for some ε , and let Ω≤k be the event that there have been k
jumps or less. Then

|E[Rc≤T (Z(N))]−E[Rc≤T (z)]| ≤ |E[Rstate
c≤T (Z

(N))]−E[Rstate
c≤T (z)]|+ |E[Rtrans

c≤T (Z(N))]−E[Rtrans
c≤T (z)]|

≤ |E[Rstate
c≤T (Z

(N))−Rstate
c≤T (z)]|+ |E[Rtrans

c≤T (Z(N))−Rtrans
c≤T (z) | Ω≤k]|P{Ω≤k}

+(E[|Rtrans
c≤T (Z(N))| | Ω>k]−E[|Rtrans

c≤T (z)| | Ω>k])P{Ω>k}
≤ |E[Rstate

c≤T (Z
(N))−Rstate

c≤T (z)]|+ |E[Rtrans
c≤T (Z(N))−Rtrans

c≤T (z) | Ω≤k]|+ ε.

Now, in the last inequality, the Portmanteau theorem [8] implies that the first two terms on the right go
to zero as N diverges, as the cumulative state reward functional, and the cumulative transition reward

7A similar but slightly more involved argument would apply also to the case of non-conserved populations. In this case, in
fact, one can rely on the fact that the solution of the fluid equation in [0,T ] is bounded, say by M > 0, and then invoke the fluid
limit theorem to show that, almost surely, the PCTMC is bounded by M + ε , for a fixed ε > 0 and N large enough. Then the
boundedness of Q(N)(x) and of Q(x) follows by continuity of rates.
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functional conditional on k jumps or less, are both almost surely continuous and bounded. It follows
that limN→∞ |E[Rc≤T (Z(N))]−E[Rc≤T (z)]| ≤ ε for each ε > 0, implying that limN→∞ |E[Rc≤T (Z(N))]−
E[Rc≤T (z)]|= 0.

3.2.3 Steady-State Rewards

Considering the steady state reward ρss, we start by making the assumption that we are in the hypothesis
of Theorem 2, i.e. that the fluid convergence theorem can be extended to the steady state behaviour. It
then follows that the behaviour at steady state of an individual agent converges also to the steady state
behaviour of z(t), which itself can be found by computing the invariant measure π∗(s) of the transition
matrix Q(x∞) evaluated at the steady state value x∞ of the fluid limit.

Given π∗, the reward ρss for z(t) is easily computed as ρss = ∑s ρs(s)π∗(s). By the weak convergence
of steady state measures for individual agents (an easy corollary of Theorem 2) it then follows that
ρ
(N)
ss → ρss.

3.2.4 Time-bounded Reachability Rewards

Finally, the algorithm to compute reachability rewards ρreach(Sϕ ,T,s) for Z(t) starts by constructing the
modified process zA(t) in which A-states are made absorbing, and by modifying the state reward. Then it
applies to this new process the algorithm for cumulative rewards. Convergence follows from the result for
cumulative rewards, by replacing Z(N) with Z(N)

A and z by zA, and by invoking the fact that the modified
process Z(N)

A converges weakly to the modified process zA.

3.2.5 Running Example

Finally we provide some experimental evidence of the goodness of the fluid approximation for the bike
sharing system example discussed in Section 2.2. Here we consider the CSL reward properties shown
in the table below. Figure 2 shows the value of the fluid rewards compared to a statistical estimation of
the rewards (1000 runs) in the stochastic model as a function of T , for T ∈ [0,1000], for Φ1 and Φ2, and
T ∈ [0,10000] for Φ3. The choice of the different time bound for Φ3 is determined by the fact that this
is a reachability property, requiring a modification of the underlying CTMC resulting in a longer time to
stabilise. In the table below, we report for the same properties the maximum and average error obtained
(parameters as in Figure 1), the relative error at the final time, and the computational cost of the fluid and
statistical computations. Results were obtained on a standard laptop, implementing both models in the
Java tool SimHyA [10], developed by one of the authors.

property max error mean error rel err at T = 1000 cost (stat) cost (fluid)
Φ1:=R=?[cost,C ≤ T ] 2.01 1.05 0.004 679.54 sec 0.16 sec
Φ2:=R=?[diss, I = T ] 1.16 0.51 0.005 676.77 sec 0.12 sec

Φ3:=R=?[cost,F≤T atd ] 13.22 8.85 0.023 6885.03 sec 1.10 sec

As we can see, the results are quite accurate even for a small population of N = 300, but the computa-
tional cost is 3 orders of magnitude smaller (and independent of N for the fluid case). The computational
time for Φ3 is larger both in the fluid and the statistical estimate due to the larger time bound considered
in the property. As for the quality of the approximation, the performance of the method is worse for
Φ3 likely because Φ3 is a reachability reward property, hence it is subject to two sources of errors: the
approximation of the reachability probability and that of the cumulative reward.
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Figure 2: Comparison of reward properties Φ1 (left), Φ2 (middle), and Φ3 (right), computed by the fluid
approximation (solid red line) and by stochastic simulation (1000 runs, dashed blue line). In the first two
plots, lines almost overlap, while in the third one, the fluid approximation falls within the 95% confidence
bounds of the simulation estimate.

4 Conclusion

In this paper we extended the fluid model checking framework [11] to deal with reward properties of
individual agents. We presented the algorithms and the convergence results, and we also discussed a
bike sharing example. This represents a further step to be able to tackle the full set of CSL properties in
a consistent way.

The use of time-bounded reachability reward operator is unusual, as this class of rewards is usually
specified in a time unbounded sense. Doing this for the fluid approximation, however, introduces an
additional challenge: we do not know if the time-unbounded reachability probabilities, and hence the
time unbounded reachability rewards, will converge or not, even if the conditions of Theorem 2 are satis-
fied. We conjecture that this is the case, and that such quantities can be obtained from the corresponding
time-bounded one as time goes to infinity, i.e. ρreach(Sϕ ,∞,s) = limT→∞ ρreach(Sϕ ,T,s). Extending the
framework to deal with time-unbounded temporal and reward properties, remains as work to be done.
Additional improvements of the framework may be obtained by coupling individual agents with a sec-
ond or higher order approximation of the environment process. We plan to explore these directions in
the future.
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