
Submitted to:
QAPL 2015

c© Latella, Massink & De Vink
This work is licensed under the
Creative Commons Attribution License.

A Definition Scheme for Quantitative Bisimulation

Diego Latella & Mieke Massink
Formal Methods and Tools

CNR/ISTI, Pisa, Italy

Erik de Vink∗

Department of Mathematics and Computer Science, TU/e
Eindhoven, the Netherlands

Centrum voor Wiskunde en Informatica
Amsterdam, the Netherlands

Abstract FuTS, state-to-function transition systems are generalizations of labeled transition systems
and of familiar notions of quantitative semantical models as continuous-time Markov chains, interac-
tive Markov chains, and Markov automata. A general scheme for the definition of a notion of strong
bisimulation associated with a FuTS is proposed. It is shown that this notion of bisimulation for a
FuTS coincides with the coalgebraic notion of behavior equivalence associated to the functor on Set
given by the type of the FuTS. For a series of concrete quantitative semantical models the notion of
bisimulation as reported in the literature is proven to coincide with the notion of quantitative bisim-
ulation obtained from the scheme. The comparison includes models with orthogonal behaviour, like
interactive Markov chains, and with multiple levels of behavior, like Markov automata. As a conse-
quence of the general result relating FuTS bisimulation and behavioral equivalence we obtain, in a
systematic way, a coalgebraic underpinning of all quantitative bisimulations discussed.
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1 Introduction

State-to-Function Labeled Transition Systems (FuTS) have been introduced in [11] as a general frame-
work for the formal definition of the semantics of process calculi, in particular of stochastic process
calculi (SPC), as an alternative to the classical approach, based on labelled transition systems (LTS).
In LTS, a transition is a triple (s, α, s′ ) where s and α are the source state and the label of the transi-
tion, respectively, while s′ is the target state reached from s via a transition labeled with α. In FuTS, a
transition is a triple of the form (s, α, ϕ ). The first and second component are the source state and the
label of the transition, as in LTS, while the third component ϕ is a continuation function (or simply a
continuation in the sequel), which associates a value from an appropriate semiring with each and every
state s′. If ϕ maps s′ to the 0 element of the semiring, then state s′ cannot be reached from s via this
transition. A non-zero value for a state s′ represents a quantity associated with the jump of the system
from s to s′. For instance, for continuous-time Markov chains (CTMC), the model underlying promi-
nent SPC, this quantity is the rate of the negative exponential distribution characterizing the time for
the execution of the action represented by α, necessary to reach s′ from s via the transition. It is worth
noting that for the coalgebraic treatment itself of FuTS we propose here it is not necessary for the co-
domain of continuations to be semirings; working with monoids would be sufficient. However, the richer
structure of semirings is convenient, if not essential, when using continuations and their operators in the
formal definition of the FuTS semantics of SPC. The use of continuations provides a clean and simple
solution to the transition multiplicity problem and makes FuTS with R>0 as semiring particularly suited
for SPC semantics. We refer to [11] for a thorough discussion on the use of FuTS as the underlying
semantics model for SPC—including those where (continuous-time) stochastic behaviour is integrated
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with non-determinism as well as with discrete probability distributions over behaviours—and for their
comparison with other recent approaches to a uniform treatment of SPC semantics, e.g. Rated Transition
Systems [18], Rate Transition Systems [10], Weighted Transition Systems [17], and ULTraS [6].

In [23] we proposed a coalgebraic view of FuTS involving functors FS( ·,R ), for R a semiring,
in place to deal with quantities. Here, for a set of states S, we use FS(S,R ) to denote the set of
all finitely supported functions from S to R. Discrete probability distributions are a typical example
of such a function space. Note, the functor FS( ·,R ) over a monoid or semiring R, unifies the finite
subsets functor Pω (·) and the discrete probability distributions functor Distr(·), choosing the semirings
B and R>0, respectively (and requiring embedding for the latter). Coalgebras, also built from the finite
support functor, are of interest because they come equipped, under mild conditions, with a canonical
notion of ‘bisimulation’ known as behavioral equivalence [27]. Our earlier work presented a notion of
bisimulation for FuTS and we proved a correspondence result stating that FuTS bisimilarity coincides
with the behavioral equivalence of the associated functor. We applied the framework to prominent SPC
like PEPA [16] and a language for Interactive Markov Chains (IMC) of [14], thus providing coalgebraic
justification of the equivalences of these calculi. In [25] an approach similar to ours has been applied to
the ULTraS model, a model which shares some features with simple FuTS. In ULTraS posets are used
instead of semirings, although a monoidal structure is then implicitly assumed when process equivalences
are taken into consideration [6].

An interesting direction of research combining coalgebra and quantities studies various types of
weighted automata, including linear weighted automata, and associated notions of bisimulation and lan-
guages, as well as algorithms for these notions [7, 17]. Klin considers weighted transition systems,
labelled transition systems that assign a weight to each transition and develops Weighted GSOS, a meta-
syntactic framework for defining well-behaved weighted transition systems. For commutative monoids
the notion of a weighted transition system compares with our notion of a FuTS, and, when cast in
the coalgebraic setting, the associated concept of bisimulation coincides with behavioral equivalence.
Weights of transitions of weighted transition systems are computed by induction on the syntax of pro-
cess terms and by taking into account the contribution of all those GSOS rules that are triggered by the
relevant (apparent) weights. Note that such a set of rules is finite. So, in a sense, the computation of
the weights is distributed among (the instantiations of) the relevant rules with intermediate results col-
lected and integrated in the final weight. In [25] a general GSOS specification format is presented which
allows for a ‘syntactic’ treatment of continuations involving so-called weight functions. A comparison
of a wide range of probabilistic transition systems focusing on coalgebraic bisimulation is reported in
[5, 29], which provide hierarchy relating types of transition systems via natural embeddings. In [21]
the investigation on the relationship between FuTS bisimilarity and behavioural equivalence, and also
coalgebraic bisimilarity is presented. In particular, it is shown that the functor type involved preserves
weak pullbacks when the underlying semiring satisfies the zero-sum property.

So far, all the unifying approaches to modeling of SPC discussed above restrict to a single layer of
quantities. Although for IMC, orthogonal transition relations, hence products of continuation sets need
to be considered, overall no nesting of the construction with finitely supported functions is allowed. The
problem appears to lie, at least for FuTS, in identifying an appropriate notion of bisimulation. Bisim-
ulation for probabilistic systems is traditionally based on equivalence classes [20, 3, 9] with a lifting
operator from states to probability distributions as a main ingredient. In the present paper, we extend the
results reported in [23] by taking this ingredient of lifting into account systematically, thus also catering
for repeated lifting. In line with the coalgebraic paradigm, the type of the FuTS, hence not its transition
structure, decides the way equivalence classes need to be lifted. The generalization paves the way to deal
with more intricate interactions of qualitative and quantitative behaviour. For instance, now we are capa-



Latella, Massink & De Vink 3

ble to deal uniformly with Probabilistic Automata (PA), see e.g. [28, 13], and Markov Automata (MA),
cf. [12], which do not fit in the unifying treatments mentioned above. Thus, the present paper consti-
tutes an additional step forward to implementing the aim of a uniform treatment of semantic models for
quantitative process calculi and associated notion of strong bisimulation, but avoiding implicit transition
multiplicity and/or explicit transition decoration (see [11]). In addition, we have coalgebra interpretations
and bisimulation correspondence results at our disposal as a yardstick for justifying particular process
equivalence as being the natural ones.

The paper is structured as follows: Section 2 introduces notation and concepts related to the nesting
of constructs of the form FS( ·,R ), for a semiring R, and briefly discusses coalgebraic notions. Section 3
recalls the notion of a FuTS, distinguishing simple, combined, nested and general FuTS. The notion of
bisimulation for a FuTS, the scheme of defining quantitative bisimulation and the comparison of the
latter with behavioral equivalence is addressed too. Section 4 presents the treatment of LTS, of CTMC
and of IMC with FuTS. In particular, the concrete notions of strong bisimulation for these semantical
models are related to FuTS bisimulation. Section 5 continues this, now for PA and MA, semantical
models that involve the nesting. Also for these models concrete bisimulation and FuTS bisimulation, as
obtained from the general scheme, are shown to coincide. Section 6 wraps up with concluding remarks.

2 Preliminaries

A semiring R is tuple (R,+,0, ·,1) with (R,+,0) a commutative monoid with zero element 0, (R, ·,1)
a monoid with identity element 1 such that the multiplication · distributes over the addition +, and the
zero element 0 annihilates R, i.e. 0 · r = 0 = r · 0. A function f : X → R from a set X to the carrier of
a semiring R is said to be of finite support if the set { x ∈ X | f (x) , 0 } is finite. We use FS( X,R )
to denote the set of all functions from X to R of finite support. The shorthand FS( X,R1 , . . . ,Rn ), for
a set X and semirings R1 , . . . ,Rn , for n > 0, is given by FS(X ) = X , and FS( X,R1 , . . . ,Rn ,Rn+1 ) =
FS( FS( X,R1 , . . . ,Rn ) ,Rn+1 ). We let FS( X,R )L denote the set of functions from L to FS( X,R )
and we extend the notation to FS( X,R1 , . . . ,Rn )L in the obvious way.

For a set X , a semiring R, a set of finitely supported functions F ⊆ FS( X,R ), and an equivalence
relation E on X , we define the relation lift(E) with respect to F by lift(E)(ϕ,ψ) ⇐⇒ ϕ[B] = ψ[B]
for all B ∈ X/E, for ϕ,ψ ∈ F. Here χ[A] denotes

∑
a∈A χ(a), for χ ∈ FS( X,R ) and A ⊆ X . Note

that lift(E) is an equivalence relation on F. We use FS(E ,R ) to denote the lifting of E with respect
to FS( X,R ) itself. For a sequence of semirings R1 , . . . ,Rn , we define the relation FS(E ,R1 , . . . ,Rn )
on FS( X,R1 , . . .Rn ) by FS(E) = E, and FS(E ,R1 , . . . ,Rn+1 ) = lift

(
FS(E ,R1 , . . . ,Rn ), Rn+1

)
. By

induction on n one establishes that FS(E ,R1 , . . . ,Rn ) is an equivalence relation too.
If E and F are binary relations of the sets X and Y , respectively, we define the relation E × F ⊆

(X × Y ) × (X × Y ) by E × F = { (〈x1 , y1〉, 〈x2 , y2〉) | E(x1 , x2) ∧ F (y1 , y2) }. It holds that E × F is an
equivalence relation if E and F are.

For a commutative monoid, hence for a semiring or a field, the functor FS( ·,R ) :Set→ Set, on the
category Set of sets and functions, assigns to a set X the set of all finitely supported functions FS( X,R ),
and to a function f : X → Y the function FS( f ,R ) :FS( X,R )→ FS(Y,R ) given by

FS( f ,R )(ϕ)(y) =
∑

x∈ f −1 (y) ϕ(x)

Note, since ϕ is assumed to have a finite support, the summation at the right side in R may be infinite,
but is still well-defined because of commutativity of + on R. Also note, only addition of R is used above.
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However, in concrete situations, in particular when modeling the parallel operator for SPC, multiplication
of R is needed as well, cf. [23, 21].

A pair of a set and a mapping (X, α) is a coalgebra of a functor F on Set if α : X → FX . A mapping
f : X → Y is a coalgebra homomorphism for two coalgebras (X, α) and (Y, β), if F f ◦α = β ◦ f . A
final coalgebra of F is a coalgebra (Ω,ω) of F such that for every coalgebra X there exists a unique
coalgebra homomorphism [[·]]XF : X →Ω. A Set functor F is accessible, if it preserves κ-filtered colimits,
for some regular cardinal κ. Typically, one uses the following characterization of accessibility: every
element of FX , for any set X , lies in the image of some subset Y ⊆ X of less than κ elements [1]. In
essence, familiar functors like the finite powerset functor Pω (·) and the discrete probability distribution
functor Distr(·) are accessible. Also, their generalization used in this paper, viz. the finitely supported
functions functor FS( ·,R ) [17, 7] on the category Set is accessible as well. Accessibility is preserved
by exponentiation and products. Therefore, all functors appearing in the sequel are accessible.

The appealing feature of an accessible functor on Set is that it possesses a final coalgebra. For
an accessible Set functor F it follows that the mapping [[·]]XF : X → Ω is well-defined, for each F-
coalgebra (X, α). Now, two elements x , y ∈ X are called behavioral equivalent for the functor F, no-
tation x ≈F y, if [[x]]XF = [[y]]XF . In a way, x and y can be identified according to F. Although [[·]]XF
is an F-coalgebra homomorphism, i.e. ω ◦[[·]]XF = F ([[·]]XF ) ◦α, one can argue that in fact the functor F
determines which elements of X are behavioral equivalent.

3 State-to-function transition systems

We start off with a formal definition of a state-to-function transition system (FuTS), we introduce the
scheme for defining the notion of bisimulation of a FuTS, and we relate FuTS bisimulation to behavioral
equivalence for the type functor of a FuTS.

Definition 1. A FuTS for a sequence of label sets L1 , . . . ,Ln and a sequence of sequences of semirings
(R1, j )

m1
j=1 , . . . , (Rn , j )

mn

j=1, for n,m1 , . . . ,mn > 0, is a pair X = (X, θ) of a set X and a mapping

θ : X → FS( X,R1,1 , . . . ,R1,m1)
L1 × · · · × FS( X,Rn ,1 , . . . ,Rn ,mn)Ln

In the sequel, when n> 1, we usually represent the mapping θ as a tuple of mappings 〈θ1 , . . . , θn〉 with
θi : X → FS( X,Ri ,1 , . . . ,Ri ,mi )Li . In the present paper we focus on the class of deterministic FuTS,
namely models where the transition relation is a function, as in Definition 1. Note, this excludes by no
means the treatment of non-deterministic systems. Below and in [11, 23] it has been shown that the class
of FuTS given by the definition above is sufficiently rich to deal with all the major stochastic process
description languages and their underlying semantic models.

In the next two sections we will discuss several examples of FuTS coming in various flavors. In
particular we distinguish the cases of a simple FuTS, of a combined FuTS, and of a nested FuTS. A FuTS
of the form X = (X, θ) with θ : X → FS( X,R )L, thus n = 1, m1 = 1, is called a simple FuTS. We will see
that the familiar labeled transition systems (LTS) over an action set A are simple FuTS for label set A and
semiring B, i.e. an LTS with set of states S over A corresponds to a simple FuTS with transition function
θ : S→ FS(S,B )A. Likewise, discrete-time and continuous-time Markov chains (DTMC, CTMC) are
simple FuTS over a degenerate label set ∆ and semiring R>0. Putting ∆ = {δ}, a Markov chain with set
of states S can be identified with a simple FuTS with transition function θ : S → FS(S,R>0 )∆. For a
DTMC we will have θ(s)(δ)[S] = 1.
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A FuTS of the form X = (X, θ) with θ = 〈θ1 , . . . , θn〉 and θi : X → FS( X,Ri )Li , for i = 1 . . .n, thus
m1 , . . . ,mn = 1, is called a combined FuTS. Interactive Markov chains (IMC, cf. [14]) are prominent
examples of combined FuTS. An IMC with states from S and action set A can be seen as a combined
FuTS for the label sets A and ∆, and semirings B and R>0 with a pair of transition functions 〈θ1 , θ2〉. Here
θ1 : S→ FS(S,B )A captures the interactive component of the IMC and θ2 : S→ FS(S,R>0 )∆ captures
the Markovian component.

Finally, a FuTS of the form X = (X, θ) with θ : X → FS( X,R1 , . . . ,Rm )L is called a nested FuTS.
Below we will argue that probabilistic automata (PA, cf.[28, 13]) over an action set A are nested FuTS
for the label set A and semirings R>0 and B. A PA with states from S and actions from A induces
a two-level nested FuTS with transition function θ : S → FS(S,R>0 ,B )A, or more explicitly θ : S →
FS( FS(S,R>0 ) ,B )A. For continuations π ∈ FS(S,R>0 ) involved, it will hold that π[S] = 1.

Most automata in the setting of quantitative process languages fall in the three special types of FuTS
mentioned (simple, combined or nested). An important semantic model not captured is that of Markov
automaton (MA, cf. [12, 31]). A Markov automaton can be seen as a ‘general’ FuTS, i.e. a FuTS that is
not of one of the distinguished types. More precisely, an MA with set of states S and action set A can
be represented as a FuTS for the label sets A and ∆ and sequences of the two semirings R>0 ,B and of
only one semiring R>0, thus having a pair of transition functions 〈θ1 , θ2〉 : S→ FS( FS(S,R>0 ) ,B )A ×
FS(S,R>0 )∆. Here, θ1 represents the so-called immediate transition relation, while θ2 represents the
so-called timed transition relation.

Next we define a notion of (strong) bisimulation for a FuTS X = (X, θ ). By the definition below, a
bisimulation relation E is an equivalence relation on the set of states X . The relation E on X is then
lifted to an equivalence relation T(E) on T(X ), invoking the so-called type T of the FuTS (formally
given in Definition 3). For E to be a FuTS bisimulation we require, that E(x , y) for states x and y

implies T(E)(θ(x), θ(y)).

Definition 2. Let X = (X, θ) be a FuTS with transition function

θ : X → FS( X,R1,1 , . . . ,R1,m1)
L1 × · · · × FS( X,Rn ,1 , . . . ,Rn ,mn)Ln

An equivalence relation E ⊆ X × X is called a bisimulation for X if

E(x , y) =⇒ FS(E ,R1,1 , . . . ,R1,m1)
L1 × · · · × FS(E ,Rn ,1 , . . . ,Rn ,mn)Ln ( θ(x), θ(y) )

for all x , y ∈ X . Two states x , y ∈ X are X-bisimilar, written x 'X y, if E(x , y) for a bisimulation E for X.

Recall, since E is assumed to be an equivalence relation on X , we have that FS(E ,Ri ,1 , . . . ,Ri ,mi)
Li

is an equivalence relation on FS( X,Ri ,1 , . . . ,Ri ,mi)
Li , for all i. Moreover, by Definition 1 we have

mi > 0 for all i. Expanding the definition of the outer FS( ·,Ri ,mi ) for the relation involved, yields
that if two states are equivalent, i.e. E(x , y), then evaluating θi (x)(` )[C] and θi (y)(` )[C] amounts to
the same, for all labels ` ∈ Li and equivalence classes C of FS(E ,Ri ,1 , . . . ,Ri ,mi−1 ), for all i, i.e.
θi (x)(` )[C] = θi (y)(` )[C], for i = 1, . . . ,n.

For simple or combined FuTS the scheme is all straightforward since FS(E ,Ri ,1 , . . . ,Ri ,mi−1 ) is
just E, cf. [23]. However, when the codomain of the FuTS involves nested applications of the FS( ·,R )
operator, FS( X,Ri ,1 , . . . ,Ri ,mi−1 ) is of a higher functional level than the set X itself. Therefore, we
need to push the relation E up, so to speak pushing it through the component operators of the codomain.

In the sequel we will see several examples of quantitative automata and their notion of bisimulation
from the literature to coincide with their FuTS representation and FuTS bisimulation of Definition 2.
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However, the point is that FuTS bisimulation can also be captured coalgebraically. In fact, FuTS bisim-
ulation and so-called behavioral equivalence [19, 30] are the same. Therefore, by relating a quantitative
execution model like a CTMC, IMC, or MA with a suitable FuTS, immediately provides coalgebraic
justification of the specific notion of bisimulation as the natural (strong) process equivalence.

Definition 3. A FuTS X = (X, θ) with transition function

θ : X → FS( X,R1,1 , . . . ,R1,m1)
L1 × · · · × FS( X,Rn ,1 , . . . ,Rn ,mn)Ln

is called a FuTS of type T, for the Set-functor T given by

T = FS( . . .FS( ·,R1,1 ) . . . ,R1,m1)
L1 × · · · × FS( . . .FS( ·,Rn ,1 ) . . . ,Rn ,mn)Ln

Thus, if a functor T is of the type of a FuTS X, then, in turn, X is a coalgebra of T. Note, T is a com-
position of Set-functors: ‘finite support’ functors FS( ·,R ), exponentiation functors (·)L, and product
functors (·) × (·). This restricted form gives rise to the following result.

Theorem 4. If a functor T on Set is the type of a FuTS, then T possesses a final coalgebra.

Proof. Functors of the form FS( ·,R ) can be shown to be accessible using a standard argument, cf. [17,
7]. Accessibility is preserved by products, exponentiation and composition. It follows that T itself is
accessible, and hence has a final coalgebra, see [1]. �

Let X = (X, θ) be a FuTS of type functor T and letΩ = (Ω,ω) denote the final coalgebra of T. By finality
of Ω there exists a unique T-homomorphism [[·]]T

X
: X → Ω. Behavioral equivalence ≈T is then defined

as x ≈T y iff [[x]]T
X
= [[y]]T

X
. We have the following result.

Theorem 5 (correspondence theorem). Let X= (X, θ) be a FuTS of type T for the functor T on Set. Then
it holds that x 'X y iff x ≈T y, i.e. FuTS bisimulation and behavioral equivalence coincide. �

A restricted version of Theorem 5 was given in [23, 21]. The present theorem generalizes the result to
also deal with nesting, a situation needed for the more advanced quantitative automata discussed in the
sequel. The proof of the theorem is built on two lemmas. To smooth the presentation, we consider the
lemmas only for non-product functors (i.e. choosing n = 1 in Definition 3). The extension to product
functors is conceptually straightforward.

Recall, for f : X → Y , FS( . . .FS( f ,R1 ) . . . ,Rn)L is a function from the set FS( X,R1 , . . . ,Rn)L

to the set FS(Y,R1 , . . . ,Rn)L with FS( f ,R1 )(ϕ)(y) =
∑

x∈ f −1 (y) ϕ(x) for ϕ ∈ FS( X,R1 ) and y ∈ Y ,
and

FS( . . .FS( f ,R1 ) . . . ,Rn)(Φ)(`)(ψ) =
∑
ϕ∈FS ( ...FS ( f ,R1 ) ... ,Rn−1)−1 (ψ)Φ(`)(φ)

for Φ ∈ FS( X,R1 , . . . ,Rn)L, ` ∈ L, ψ ∈ FS(Y,R1 , . . . ,Rn−1), and resulting value in Rn .

Lemma 1. Let X = (X, θ) be a FuTS of type T = FS( . . .FS( ·,R1 ) . . . ,Rn)L. If E is an equivalence re-
lation on X , then there exists a mapping θE : X/E→ FS( X/E ,R1 , . . . ,Rn )L such that XE = (X/E , θE )
is a coalgebra of the functor T, and the canonical mapping ε : X → X/E is a T-homomorphism.

Sketch of proof. Define a coalgebra structure θE on X/E by putting

θE ([x]E )(` )( z̄n−1) =
∑

zn−1∈FS (ε,R1 ,... ,Rn−1 )−1 (z̄n−1) θ(x)(` )(zn−1)
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for x ∈ X , ` ∈ L, z̄n−1 ∈ FS( X/E ,R1 , . . . ,Rn−1 ). The property

FS(ε,R1 , . . . ,Ri )(zi ) = FS(ε,R1 , . . . ,Ri )(z′i ) ⇐⇒ FS(E ,R1 , . . . ,Ri )(zi , z′i )

for zi , z′i ∈ FS( X,R1 , . . . ,Ri ), i = 1, . . . ,n can be proved by induction on i. Then, the property for n is
the key ingredient to verify that FS(ε,R1 , . . . ,Rn )L ◦ θ = θE ◦ε, i.e. ε is a T-homomorphism. �

From the lemma it follows that the final mapping [[·]]X
T

: X → Ω factorizes through ε. Hence, if ε(x) =
ε(y), then x ≈T y, proving half of Theorem 5. The reverse is shown using the following result.

Lemma 2. Let X = (X, θ) be a FuTS of type T = FS( . . .FS( ·,R1 ) . . . ,Rn)L. The relation ≈T on X is
a bisimulation for the FuTS X.

Sketch of proof. One first shows, by induction on i,

yi ∈ [xi]FS (≈T ,R1 ,... ,Ri ) ⇐⇒ FS([[·]]XT ,R1 , . . . ,Ri )(xi ) = FS([[·]]XT ,R1 , . . . ,Ri )(yi )

for xi , yi ∈ FS( X,R1 , . . . ,Ri ), and i = 1, . . . ,n. Using the above property for n, one next verifies

ω([[x]]XT )(` )(wn−1) =
∑

zn−1∈FS ([[·]]X
T
,R1 ,... ,Rn−1 )−1 (wn−1) θ(x)(` )(zn−1)

for x ∈ X , ` ∈ L, and wn−1 ∈ FS(Ω,R1 , . . . ,Rn−1 ). From this the ‘transfer condition’ of Definition 2
for ≈T follows. �

By the lemma, if x ≈T y, then there exists a bisimulation for the FuTS X, viz. the bisimulation ≈T , that
relates x and y. This proves the other direction of the correspondence theorem.

In the next two sections, we proceed to incorporate the major operational models used for the seman-
tics of quantitative process languages in the FuTS framework. Theorem 5 confirms that FuTS bisimula-
tion is a proper notion of process equivalence. Thus, as a consequence, a notion of process equivalence
that coincides with FuTS bisimulation also coincides with its coalgebraic counterpart.

4 Quantitative transition systems as simple and combined FuTS

In this section we interpret standard labeled transition systems, continuous-time Markov chains and
Hermann’s interactive Markov chains as FuTS and show that their usual notion of bisimulation coincides
with the notion of bisimulation of their associated FuTS.

4.1 Labeled transition systems

It is straightforward to see that an LTS, over a set of actions A and with a set of states S, can be modeled
as a function S ×A→ (S→ B). However, arbitrary LTS do not fit in our set-up with finitely supported
functions. So, our modeling of LTS here, similar as reported elsewhere, e.g. [18, 7], restricts to image-
finite LTS.

Definition 6. Fix a set A of actions.

(a) An image-finite LTS over A is a pair L = (S, −→L ) where S is a set of states, and −→L ⊆ S ×A × S
is the transition relation such that, for all s ∈ S, a ∈ A, the set { s′ | s

a
−→L s′ } is finite.
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(b) An equivalence relation R ⊆ S × S is called a bisimulation equivalence for the LTS L = (S, −→L )
if, for all s, s′, t ∈ S, a ∈ A such that R(s, t) and s

a
−→L s′, there exists t′ ∈ S such that t

a
−→L t′

and R(s′, t′).

(c) Two states s, t ∈ S in an LTS L = (S, −→L ) are called strongly bisimilar for LTS L, if there exists
a bisimulation equivalence R for L such that R(s, t).

An image-finite LTS L = (S, −→L ) over A induces a simple FuTS F(L) = (S, θL) over A and the semi-
ring B, if we define θL : S→ FS(S,B )A by θL(s)(a)(s′) ⇐⇒ s

a
−→L s′, for all s, s′ ∈ S, a ∈ A. The

next theorem will not come as an surprise. See [18, 7] for example, for a proof that the respective notions
of bisimulation coincide for this specific case. In order to illustrate the general pattern of such a proof
for FuTS we provide a proof here as well.

Theorem 7. Let L = (S, −→L ) be an LTS. Then it holds that R is a bisimulation equivalence iff R is a
FuTS bisimulation for F(L).

Proof. The result follows almost directly from the definitions. We have, for s, t ∈ S,

FS( R,B )A(s, t)
⇐⇒ ∀a ∈ A∀C ∈ S/R :

∑
u∈C θL(s)(a)(u) =

∑
u∈c θC(t)(δ)(u) (definition FS( R,R>0 )A)

⇐⇒ ∀a ∈ A∀C ∈ S/R : ∃u ∈ C : s
a
−→L u⇔∃u ∈ C : t

a
−→L u (definition θL)

⇐⇒ ∀a ∈ A∀s′ ∈ S : s
a
−→L s′⇒∃t′ ∈ S : t

a
−→L t′∧ R(s′, t′) (R is an equivalence relation)

We use the logical equivalence from left to right in proving that a bisimulation for F(L) is a bisimulation
equivalence, and the logical equivalence the other way around in proving that a bisimulation equivalence
is a FuTS bisimulation. �

With appeal to Theorem 5 we retrieve that strong bisimulation and behavioral equivalence coincide.

4.2 Continuous-time Markov chains

As a first, basic example of a quantitative semantic model we consider continuous-time Markov chains
(CTMC) and the notion of lumpability. In its purest form, a CTMC does not involve actions. It can
be viewed as connecting a state to a number of other states while weighing the connection with a real
number, viz. the rate of the negative exponential distribution used to represent the time associated with
the transition. As for our treatment of LTS we need to restrict to image-finiteness, which amounts to
finite branching here, too.

Definition 8 (cf. [4]).
(a) A CTMC is a pair C = (S, −→C ) where S is a set of states, and −→C ⊆ S × R>0 × S is the transition

relation. Define R(s, s′) =
∑
{ λ | s

λ
−→C s′ } and R(s,C) =

∑
{ R(s, s′) | s′ ∈ C }.

(b) An equivalence relation R ⊆ S × S is called a lumping relation for the CTMC C = (S, −→C ) if, for
all s, t ∈ S, such that R(s, t) it holds that R(s,C) = R(t ,C) for every equivalence class C of R.

(c) Two states s, t ∈ S in an CTMC C= (S, −→C ) are called lumping equivalent, if there exists a lumping
relation R for C such that R(s, t).
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A CTMC C = (S, −→C ) induces a simple FuTS F(C) = (S, θC) over the label set ∆ = {δ} and the semi-
ring R>0, if we define θC : S→ FS(S,R>0 )∆ by

θC(s)(δ)(s′) =
∑
{ λ | s

λ
−→C s′ }

for s, s′ ∈ S. Here, ∆ is a dummy set to help CTMC fit in the format of FuTS, cf. [6, 11]; conventionally,
the label δ signifies delay.

Theorem 9. Let C = (S, −→C ) be a CTMC and R ⊆ S × S an equivalence relation. Then it holds that R is
a lumping iff R is a FuTS bisimulation for F(C).

Proof. Also here the proof mainly consists of unfolding the various definitions. We have, for s, t ∈ S,

FS( R,R>0 )∆(s, t)

⇐⇒ ∀C ∈ S/R :
∑

u∈C θC(s)(δ)(u) =
∑

u∈C θC(t)(δ)(u) (definition FS( R,R>0 )∆)

⇐⇒ ∀C ∈ S/r :
∑
{ λ | s

λ
−→C u, u ∈ C } =

∑
{ µ | t

µ
−→C u, u ∈ C } (definition θC)

⇐⇒ ∀C ∈ S/r : R(s,C) = R(t ,C) (definition R)

Combing this logical equivalence with the respective definitions of lumping equivalence and bisimulation
yields the result. �

For CTMC, from Theorem 5 and elimination of the degenerated exponentiation with the singleton set ∆,
we obtain that lumping equivalence coincides with behaviour equivalence of FS( ·,R>0 ).

4.3 Interactive Markov chains

Interactive Markov chains (IMC) were proposed in [14] as a reconciliation of LTS and CTMC. Because
of this two-dimensionality IMC constitute a prime example of a combined FuTS. The definition of
an IMC below is taken from [15].

Definition 10. Fix a set A of actions.

(a) An interactive Markov chain (IMC) over A is a triple I = (S, −→I , =⇒I ) where S is a set of states,
−→I ⊆ S × A × S is the interactive transition relation, and =⇒I ⊆ S × R>0 × S is the Markovian
transition relation.

(b) For states s, s′ ∈ S, action a ∈A, and a subset of states C ⊆ S, define T(s, a,C)⇔ s
a
−→I s̄ for some

state s̄ ∈ C. Moreover, define R(s, s′) =
∑
{ λ | s

λ
=⇒I s′ } and R(s,C) =

∑
{ R(s, s′) | s′ ∈ C }.

(c) An equivalence relation R ⊆ S × S is called a bisimulation relation for the IMC I = (S, −→I , =⇒I )
if, for all states s, t ∈ S and every equivalence class C of R the following holds:

(i) T(s, a,C) = T(t , a,C), for all a ∈ A;
(ii) R(s,C) = R(t ,C).
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(c) Two states s, t ∈ S in an IMC I = (S, −→I , =⇒I ) are called bisimilar, if there exists a bisimulation
relation R for I with R(s, t).

As for CTMC we use the symbol δ to denote delay, and put ∆ = {δ}. An IMC I = (S, −→I , =⇒I ) over A in-
duces a combined FuTS F(I) = (S, θI), where θI = 〈θ′I , θ

′′
I
〉, over the label sets A and ∆ and the semirings

B and R>0. We define θ′
I
: S→ FS(S,B )A and θ′′

I
: S→ FS(S,R>0 )∆ by

θ′I(s)(a)(s′)⇔ s
a
−→I s′ and θ′′I (s)(δ)(s′) = R(s, s′)

for all s, s′ ∈ S, a ∈ A. Thus, the transition function θ′
I

is similar to the transition function θL of an LTS.
The transition function θ′′

I
is similar to the transition function θC of a CTMC.

The transition relation of a FuTS for an IMC is the superposition of those of an LTS and a CTMC.
Therefore, the proof of a correspondence result of standard bisimulation and FuTS bisimulation for
an IMC combines the observations made in the proofs of Theorems 7 and 9.

Theorem 11. Let I = (S, −→I , =⇒I ) be an IMC and R ⊆ S × S an equivalence relation. Then it holds that
R is a bisimulation for the IMC I iff R is a bisimulation for the FuTS F(I).

Proof. For an equivalence relation R and states s, t ∈ S such that R(s, t) we have the following logical
equivalence:

FS( R,B )A × FS( R,R>0 )∆(θI(s), θI(t))

⇔ FS( R,B )A × FS( R,R>0 )∆(〈θ′
I
(s), θ′′

I
(s)〉, 〈θ′

I
(t), θ′′

I
(t)〉) (since θI = 〈θ′I , θ

′′
I
〉)

⇔ FS( R,B )A(θ′
I
(s), θ′

I
(t)) ∧ FS( R,R>0 )∆(θ′′

I
(s), θ′′

I
(t)) (definition of relational product)

⇔ ∀a ∈ A∀C ∈ S/R :
∨
{ θ′

I
(s)(a)(u) | u ∈ C } =

∨
{ θ′

I
(t)(a)(u) | u ∈ C } ∧

∀C ∈ S/R :
∑
{ θ′′

I
(s)(δ)(u) | u ∈ C } =

∑
{ θ′′

I
(t)(δ)(u) | u ∈ C }

(definition of FS( R,B )A and FS( R,R>0 )∆)

⇔ ∀a ∈ A∀C ∈ S/R : ∃u ∈ C :θ′
I
(s)(a)(u)⇔∃u ∈ C :θ′

I
(t)(a)(u) ∧

∀C ∈ S/R :
∑
{ R(s,u) | u ∈ C } =

∑
{ R(t ,u) | u ∈ C } (definition of sum on B and R>0)

⇔ ∀a ∈ A∀C ∈ S/R : T(s, a,C) = T(t , a,C) ∧ ∀C ∈ S/R : R(s,C) = R(t ,C)

(definition of T and R)

Thus, if R is a FuTS bisimulation for I, then R(s, t) implies FS( R,B )A × FS( R,R>0 )∆(θI(s), θI(t)).
Hence, for all C ∈ S/R, we have T(s, a,C) = T(t , a,C) for all a ∈ A, and R(s,C) = R(t ,C). So,
R is an IMC bisimulation. Reversely, if R is an IMC bisimulation, then R(s, t) implies for all C ∈
S/R, we have T(s, a,C) = T(t , a,C) for all a ∈ A, and R(s,C) = R(t ,C). Hence, FS( R,B )A ×
FS( R,R>0 )∆(θI(s), θI(t)). So, R is a FuTS bisimulation. �

For IMC we have another proof of concrete bisimilarity being equal to behavioral equivalence, a result
also presented in [23]. However, here we see better how the bisimulation scheme guides the correspon-
dence result for standard bisimulation for IMC, on the one hand, and FuTS bisimulation, on the other
hand.
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5 Quantitative automata as nested and general FuTS

In this section we show that FuTS and their associated notion of bisimulation suits probabilistic automata
as well as Markov automata. For the latter fact to prove we need the full generality of Theorem 5.

5.1 Probabilistic automata

As next quantitative semantic model we consider probabilistic automata (PA) originating from [28], and
the associated notion of strong Segala bisimulation. We follow the set-up presented in [13].

Definition 12. Fix a set of actions A.

(a) A PA over A is a pair P = (S, −→P ) where S is a set of states, and −→P ⊆ S × A × Distr(S) is
an image-finite transition relation, i.e. the set { π | s

a
−→P π } is finite, for any state s ∈ S, and

action a ∈ A.

(b) An equivalence relation R ⊆ S × S is called a bisimulation relation for the PA P = (S, −→P ) if, for
all s, t ∈ S, a ∈ A, π ∈ Distr(S) such that R(s, t) and s

a
−→P π, there exists % ∈ Distr(S) such that

t
a
−→P % and π[C] = %[C], for every equivalence class C of R.

(c) Two states s, t ∈ S in a PA P = (S, −→P ) are called probabilistically bisimilar, if there exists a
bisimulation relation R for P such that R(s, t).

A PA P = (S, −→P ) over A induces a nested FuTS F(P) = (S, θP) with label set A and semirings R>0
and B. We define θP : S→ FS( FS(S,R>0 ) ,B )A by

θP(s)(a)(ϕ) ⇐⇒ s
a
−→P ϕ

for all s ∈ S, a ∈ A, ϕ : S → R>0. Note the nesting of FS( ·,R>0 ) and FS( ·,B ). Also note that, if
θP(s)(a)(ϕ) = true then ϕ is in fact a probability distribution, since the probabilistic transition relation
connects states to probability distributions only.

The proof of the correspondence result for PA is along the same lines as we have seen previously.
However, now the equivalence relation R needs to be lifted twice: to the level of FS(S,R>0 ) first, and
to the level of FS( FS(S,R>0 ) ,B ) next.

Theorem 13. Let P = (S, −→P ) be a PA and R ⊆ S × S an equivalence relation. Then it holds that R is a
probabilistic bisimulation iff R is a FuTS bisimulation for F(P).

Proof. For an equivalence relation R ⊆ S × S and states s, t ∈ S such that R(s, t) we have the following:

FS( FS( R,R>0 ) ,B )A (θP(s), θP(t) )

⇔ ∀a ∈ A∀Γ ∈ FS(S,R>0 )/FS( R,R>0 ) : θP(s)(a)(Γ)⇔ θP(t)(a)(Γ)

(definition FS(FS( R,R>0 ),B )A and lifting)

⇔ ∀a ∈ A∀Γ ∈ FS(S,R>0 )/FS( R,R>0 ) :

∃ϕ ∈ Γ : θP(s)(ϕ) = true ⇔ ∃ψ ∈ Γ : θP(t)(ψ) = true (ring structure B)

⇔ ∀a ∈ A∀Γ ∈ FS(S,R>0 )/FS( R,R>0 ) : ∃ϕ ∈ Γ : s
a
−→P ϕ ⇔ ∃ψ ∈ Γ : t

a
−→P ψ

⇔ ∀a ∈ A∀π ∈ Distr(S) : s
a
−→P π⇒∃% ∈ Distr(s) : t

a
−→P %∧∀C ∈ S/R : π[C] = %[C]

(symmetry of R, s
a
−→P ϕ implies ϕ ∈ Distr(S))
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As previously, combination of the above equivalence and the respective definitions of PA bisimulation
for P and FuTS bisimulation for F(P) yields the result. �

Thus for PA we obtain, via Theorem 5, coalgebraic underpinning using FuTS as an intermediate model.

5.2 Markov automata

Markov automata (MA) are a relative recent example of a quantitative semantical model. It brings
together non-deterministic and probabilistic choice, and stochastic delay. The definition below is taken
from [12].

Definition 14. Fix a set of actions A.

(a) A Markov automaton (MA) over A is a triple M = (S, −→M , =⇒M ) where S is a set of states,
−→M ⊆ S ×A ×Distr(S) is the immediate transition relation, and =⇒M ⊆ S × R>0 × S is the timed
transition relation.

(b) For states s, s′ ∈ S, action a ∈ A, and a set of distributions Γ ⊆ Distr(S), define T(s, a,Γ) ⇔

s
a
−→M π for some distribution π ∈ Γ. Moreover, define R(s, s′) =

∑
{ λ | s

λ
=⇒M s′ }, and, for a set

of states C, R(s,C) =
∑
{ R(s, s′) | s′ ∈ C }.

(c) An equivalence relation R ⊆ S × S is called a bisimulation relation for the MA M= (S, −→M , =⇒M )
if, for all states s, t ∈ S the following holds:

(i) T(s, a,Γ) = T(t , a,Γ), for all a ∈ A, and Γ ∈ Distr(S)/lift(R);
(ii) R(s,C) = R(t ,C), for all C ∈ S/R.

where lift(R) is the lifting of R to Distr(S).

(d) Two states s, t ∈ S in an MA M = (S, −→M , =⇒M ) are called bisimilar, if there exists a bisimulation
relation R for M with R(s, t).

In part (c), the definition of a bisimulation relation for an MA, we encounter the use of two kinds
of equivalence relations. For the timed behaviour the comparison is at the level of states involving
equivalence classes from S/R. For the immediate behaviour, though, the comparison is at the level of
distributions of states involving equivalence classes from Distr(S)/lift(R), where lift(R) denotes the
lifting of R with respect to Distr(S), see Section 2. Note, for PA, because of the direct definition used,
the application of the lifting operator is left implicit.

Again, distinguish the symbol δ to denote delay, and put ∆ = {δ}. An MA M = (S, −→M , =⇒M )
over A induces a general FuTS F(M) = (S, θM), with θM = 〈θ′M , θ

′′
M
〉, over the label sets A and ∆ and

the sequences of semirings R>0, B and R>0, if we define θ′
M

: S→ FS( FS(S,R>0 ) ,B )A and θ′′
M

: S→
FS(S,R>0 )∆ by

θ′M(s)(a)(ϕ)⇔ s
a
−→M ϕ and θ′′M(s)(δ)(s′) = R(s, s′)

for s, s′ ∈ S, a ∈ A, ϕ ∈ FS(S,R>0 ). Note, the FuTS F(M) is a combination of a nested FuTS repre-
senting the immediate behaviour of M and a simple FuTS representing the timed behaviour of M.

Theorem 15. Let M = (S, −→M , =⇒M ) be a MA and R ⊆ S × S an equivalence relation. Then it holds
that R is an MA bisimulation for M iff R is a FuTS bisimulation for F(M).
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Proof. For a binary relation R ⊆ S × S and states s, t ∈ S such that R(s, t) we have the following logical
equivalence:(

FS( FS( R,R>0 ) ,B )A × FS( R,R>0 )∆
)

(θM(s), θM(t) )

⇔ FS( FS( R,R>0 ) ,B )A (θ′
M

(s), θ′
M

(t) )∧ FS( R,R>0 )∆ (θ′′
M

(s), θ′′
M

(t) )

(θM = 〈θ′M , θ
′′
M
〉, definition relational product)

⇔ ∀a ∈ A∀π ∈ Distr(S) :

s
a
−→P π⇒∃% ∈ Distr(s) : t

a
−→P %∧∀C ∈ S/R : π[C] = %[C] ∧

∀C ∈ S/R :
∑
{ λ | s

λ
−→C u, u ∈ C } =

∑
{ µ | t

µ
−→C u, u ∈ C }

(see the proofs of Theorems 13 and 9)

⇔ ∀a ∈ A∀Γ ∈ Distr(S)/lift(R) : T(s, a,Γ) = T(t , a,Γ) ∧

∀C ∈ S/R : R(s,C) = R(t ,C)

(symmetry R, definition T and R)

As previously, combination of the above equivalence and the respective definitions of MA bisimulation
for M and FuTS bisimulation for F(M) yields the result. �

Markov automata feature simultaneously non-deterministic branching followed by probabilistic branch-
ing vs. stochastic branching, so to speak. This is reflected by the corresponding FuTS being of type
FS( FS( ·,R>0 ) ,B )A × FS( ·,R>0 )∆. Again, by the correspondence theorem, behavioral equivalence
of the type functor captures exactly the concrete notion of bisimulation.

6 Concluding remarks

We contributed to the work of providing uniform techniques for modeling quantitative process languages.
The concept of a FuTS, originating from [10], provides a compact way to assign quantities to states, or
other entities, by means of continuations, leading to clean and concise descriptions of SPC, cf. [11].

In the present paper, we extended the results we presented in [23]. Here, we associate a type to
a FuTS, and we propose a systematic way, directed by the type, of lifting an equivalence relation from
the level of states to the level of the continuations involved. The scheme allows types with products and
arbitrary nesting. The induced notion of FuTS bisimulation coincides with behavioral equivalence, a
coalgebraic notion of identification associated with the Set functor implied by the type. In particular, the
correspondence result proved in [23] now extends to nested FuTS and related functors. Various forms
of quantitative transition systems are shown to be amenable to a representation as a FuTS. Moreover,
the concrete notion of bisimulation of these quantitative transition systems is shown to coincide with the
notion of FuTS bisimulation as given by our scheme, and hence with behavioral equivalence.

The main restriction of FuTS is its being based on finitely supported functions. As a consequence,
image-finiteness is inherent to our treatment. Still the scope of application is broad. Apart from the
examples discussed here and in our earlier work [23, 21] we have been able to model discrete real-time
with FuTS as well [22]. However, replacing the construct FS( ·,R ) by the Giry monad of measurable
functions [26] may be an option: on the one hand, finiteness is traded for a restricted form of infinite,
one the other hand, summation is exchanged for integration. However, in the continuous setting, e.g. for
hybrid systems, broadly accepted semantical models that parallel LTS seem to be missing.
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In this paper we focused on strong notions of bisimilarity. Weak notions prove difficult to handle,
e.g. for probabilistic weak bisimulation [12], or for probabilistic branching bisimulation [2]. It would be
interesting to investigate whether the more abstract view based on FuTS and a categorical approach, in
the line of [24, 8] could be of help.
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