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Our goal is to provide different semiring-based formal tools for the specification of security require-
ments: we quantitatively enhance the open-system approach, according to which a system is partially
specified. Therefore, we suppose the existence of an unknown and possibly malicious agent that
interacts in parallel with the system. Two specification frameworks are designed along two different
(but still related) lines. First, by comparing the behavior of a system with the expected behavior, or
by checking if such system satisfies some security requirements: we investigate a novel approximate
behavioural-equivalence for comparing processes behaviour, thus extending the Generalized Non-
Deducibility on Composition (GNDC) approach with scores. As a second result, we equip a modal
logic with semiring values with the purpose to have a score related to the satisfaction of a formula
that specifies some requested properties. Finally, we generalise the classical partial model-checking
function, and we name it as quantitative partial model-checking in such a way to point out the nec-
essary and sufficient conditions that a system has to satisfy in order to be considered as secure, with
respect to a fixed security/functionality threshold-value.

1 Introduction

The considerable amount of trust and decentralisation, coming with today’s software systems, demands
for a rigorous security analysis. Unfortunately, security is frequently in conflict with functionality and
performance requirements of a system, making 100% security an impossible or overly expensive goal
to be accomplished. For instance, functional requirements add to the picture costs, execution times,
and rates. Therefore, the relevant question is not whether a system is secure, but rather how much
security it provides under such “soft” constraints. Instead of a plain yes/no answer, quantitative levels
of security can express different degrees of protection, and allow a security expert to reason about the
trade-off between security and conflicting requirements (e.g., on performance). Quantitative security
analysis [21] has been already applied, e.g., to name a few, for quantifying the side-channel leakage
in cryptographic algorithms, for capturing the loss of privacy in statistical data analysis or information
flows, and for quantifying security in anonymity networks.

The goal of this paper is to move from qualitative interpretation of security to a quantitative one. The
basic ingredients in our “recipe” are c-semirings [7, 5] (or simply “semirings” in the following) and the
Generalized Process Algebra (GPA) [9], a quantitative process-algebra where actions are labelled with
a value taken from a semiring. Therefore, we use GPA to model processes with quantitative aspects:
different semiring instantiations can parametrically model different cost-metrics. In order to formalise
security-properties of GPA processes, we provide two different approaches.

The first approach consists in providing several definitions of quantitative behavioural-equivalencies
in such a way to extend with quantities the family of security properties that can be expressed in
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Generalized Non-Deducibility on Composition (GNDC) [16]. The GNDC schema is a uniform ap-
proach for defining security properties derived from the Non Deducibility on Composition (NDC) prop-
erties [19, 14]. The GNDC scheme uniformly expresses many security properties as, e.g., fault tolerance
properties (fail stop, fail silent, fail safe and fault tolerant behaviour [22, 18]) or, also, many security
properties of cryptographic protocols as, e.g., secrecy, authentication, integrity, etc. [15]. Hence, we for-
malise the system through quantitative observational relations. We introduce the notion of quantitative
trace-equivalence, and we recall the definition of quantitative bisimulation given in [26]. Furthermore,
we extend both these relations by considering two approximate versions, the ε-equivalence and the ∆-
equivalence. By using these equivalence relations, we compare and specify different security properties,
as a quantitative extension of NDC and bisimulation-based NDC properties (BNDC) [19, 14].

In the second approach we present in this paper, we first introduce a semiring-based extension
of the classical Hennessy-Milner Logic (named c-HM Logic) as a means to quantitatively measure the
satisfaction of a given formula: its truth value can now be not only true/false, but a numeric value as well
(e.g., 50% or 3e). Note that by exploiting the boolean semiring (i.e., 〈{false, true},∨,∧, false, true〉) we
can still enforce yes/no only requirements. Hence, we use c-HM Logic in the frame of Partial Model
Checking (PMC) [2]. Classical Model Checking (MC) involves using verification tools to exhaustively
search in a process/protocol specification for all the execution sequences with desired properties. PMC
focuses this verification on part of a system only: the main advantage is to perform a full analysis while
avoiding the combinatorial explosion of the state space.

In security, the PMC function has been often used to point out necessary and sufficient constraints
on the unspecified/unknown part of a system that is supposed to show a malicious behaviour. Hence, a
controller program is required to ensure the correct behaviour of the whole system, comprehensive of the
attacker [24]. In a quantitative scenario, we associate the notion of satisfiability of a logic formula with
the security/functionality level of a system. Once we set a satisfiability threshold k ∈ K, if the system
quantitatively satisfies a security requirement φ with a value k′ worse than k, then we can state that the
investigated system is not quantitatively secure.

The paper is structured as follows. In Sec. 2 we recall c-semiring algebraic structures and GPAs. In
Sec. 3 we introduce our first approach, which aims at comparing a system behaviour with the expected
one: we adopt both trace and bisimulation equivalence. Hence, we rephrase them as approximate rela-
tions, in order to include “close”-enough processes, where close is related to a threshold-score. In this
way, we are able to specify some security aspects formalised as a quantitative GNDC schema. Other
security properties, as for instance the safety ones, can be expressed through a logic formula. In Sec. 4
we describe security constraints through a semiring-based modal logic, and we use QPMC to point out
the necessary and sufficient conditions each subsystem has to satisfy for guaranteeing such requirements.
Finally, Sec. 6 summarises the related work in literature, and Sec. 7 wraps up the paper with conclusions.

2 Background

In this section we recall the necessary fundamental notions about c-semirings [7, 5] and Generalized
Process Algebra [9], a quantitative process algebra based on semiring.

2.1 Semirings

Definition 2.1 (semiring [20]) A commutative semiring is a five-tuple K = 〈K,+,×,0,1〉 such that K
is a set, 1,0 ∈ K, and +,× : K×K→ K are binary operators making the triples 〈K,+,0〉 and 〈K,×,1〉
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commutative monoids (semigroups with identity), satisfying

• (distributivity) ∀a,b,c ∈ K.a× (b+ c) = (a×b)+(a× c).

• (annihilator) ∀a ∈ A.a×0 = 0.

Proposition 2.1 (absorptive semirings [30]) Let K be a commutative semiring. Then these two prop-
erties are equivalent:

• (absorptiveness) ∀a,b ∈ K.a+(a×b) = a.

• (1 absorbing element of +) ∀a ∈ K.a+1 = 1.

Absorptive semirings are referred also as simple, and their + operator is necessarily idempotent [20,
Ch. 1, pp. 14]. Semirings where + is idempotent are defined as tropical semirings, or diods.

Definition 2.2 (c-semiring [7, 5]) C-semirings are commutative and absorptive semirings. Therefore,
c-semirings are tropical semirings where 1 is an absorbing element for +.

The idempotency of + leads to the definition of a partial ordering ≤K over the set K (K is a poset). Such
partial order is defined as a≤K b if and only if a+b = b, and + becomes the least upper bound (lub, or
t) of the lattice 〈K,≤K〉. This intuitively means that b is “better” than a. As a consequence, we can use
+ as an optimisation operator and always choose the best available solution.

Some more properties can be derived on c-semirings [7]: i) both + and × are monotone over ≤K , ii)
× is intensive (i.e., a× b ≤K a), iii) × is closed (i.e., a× b ∈ K), and iv) 〈K,≤K〉 is a complete lattice.
0 and 1 are respectively the bottom and top elements of such lattice. When also × is idempotent, i)
+ distributes over ×, ii) × is the greater lower bound (glb, or u) of the lattice, and iii) 〈K,≤K〉 is a
distributive lattice.

Semirings and c-semirings have been often adopted in Computer Science and Operation Research as
a very simple but very expressive optimisation structure [30]. Some c-semiring instances are: boolean
〈{F,T},∨, ∧,F,T〉1, fuzzy 〈[0,1], max,min,0,1〉, bottleneck 〈R+∪{+∞}, max,min,0,∞〉, probabilistic
〈[0,1],max,×̂,0,1〉 (known as the Viterbi semiring), weighted 〈R+ ∪ {+∞},min,+̂,+∞,0〉. Capped
operators stand for their arithmetic equivalent.

Although c-semirings have been historically used as monotonic structures where to aggregate costs
(and find best solutions), the need of removing values has raised in local consistency algorithms and non-
monotonic algebras using constraints (eg [5]). A solution comes from residuation theory [8], a standard
tool on tropical arithmetics that allows for obtaining a division operator via an approximate solution to
the equation b× x = a.

Definition 2.3 ([5]) Let K be a tropical semiring. Then, K is residuated if the set {x ∈ K | b× x ≤ a}
admits a maximum for all elements a,b ∈ K, denoted a÷b.

Since a complete2 tropical-semiring is also residuated, we have that all the classical instances of c-
semiring presented above are residuated, i.e., each element in K admits an “inverse”, which is unique in
case ≤K is a total order. For instance, the unique “inverse” a÷b in the weighted semiring is defined as
follows:

a÷b = min{x | b+̂x≥ a}=

{
0 if b≥ a
a−̂b if a > b

1Boolean c-semirings can be used to model crisp problems.
2K is complete if it is closed with respect to infinite sums, and the distributivity law holds also for an infinite number of

summands [5].
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Definition 2.4 ([5]) Let K be an absorptive, invertible semiring. Then, K is uniquely invertible iff it is
cancellative, i.e., ∀a,b,c ∈ A.(a× c = b× c)∧ (c 6= 0)⇒ a = b.

Note that since all the previously listed semirings (e.g., weighted and fuzzy) are cancellative, they
are uniquely invertible as well. Furthermore, it is also possible to consider several optimisation criteria
at the same time: the cartesian product of semirings is still a semiring. Clearly, in this case the ordering
induced by + is partial, e.g., when we have 〈k1,k2〉 and 〈k3,k4〉, and k1 ≤ k3 while k2 ≥ k4.

2.2 Generalized Process Algebra

In a quantitative process, observable transitions are labelled with some value associated to a step in
the behaviour of a system. In GPA [9] the authors use semirings to model two fundamental modes of
composing observable behaviour, either by combination of different traces, or by sequential composi-
tion. Process algebras are simple languages with precise mathematical semantics, tailored to exhibit
and study specific features of computation. Typically, a process P, specified by some syntax, may non-
deterministically execute several labelled transitions of the form P a→ P′, where a is an observable effect
and P′ is a new process. In quantitative process algebras, transitions are labelled by pairs (a,x) where x
is a quantity associated to the effect a.

We define transition systems where transitions are labelled with symbols from a finite alphabet and
from a semiring. The semantics of a GPA process P is an MLTS [9].

Definition 2.5 (MLTS) A (finite) Multi Labeled Transition System (MLTS) is a five-tuple MLTS =
(S,Act,K,T, i), where S is the countable (finite) state space, i ∈ S is the initial state,3 Act is a finite set of
transition labels, K is a semiring used for the definition of transition costs, and T : (S×Act×S)−→K
is the transition function.

Definition 2.6 ([9])
P ::= 0 | (a,k).P | P+P | P‖A P | P\A | P/A | X

where a ∈ Act, A ⊆ Act\{τ} is a subset of action on which process synchronize their behaviour, k ∈ K,
and X belongs to a countable set of process variables, coming from a system of co-recursive equations
of the form X , P. GPA(K) denotes the set of GPA processes labelled with weights in K.

The formal operational semantics of GPA operators is given in Tab. 1, Informally, process 0 describes
inaction or termination; (a,k).P performs a with value k and evolves into P; P+P′ non deterministically
behaves as either P or P′; P‖A P′ describes the process in which P and P′ proceed concurrently when
they perform actions belonging to A and independently on all other actions; P\A expresses the fact that
actions from the set A are hidden, i.e., they become τ actions which are no longer usable in joint actions
with an environment while its dual, i.e., P/A restricts the behaviour of P by allowing it to perform only
actions not in L.

Given a GPA process P, the set of derivatives of a P is defined as Der(P) = {P′ | P→∗ P′} where

→∗ is ∪a∈Act,k∈K
a,k→; Sort(P) denotes the set of actions names that syntactically appear in P regardless

their values.
Being a1, . . . ,an ∈ Act, a trace is a sequence (a1,k1) · · ·(an,kn) leading from process P to process

Q. We call T (P) the set of traces rooted in P. Given a trace (a1,k1) · · ·(an,kn), we define its label

3We simplify the original definition of MLTS given in [9], where an initialization function is taken into account to assign a
quantitative valuation to each of the n initial states.
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(a,k).P
a,k→ P

P
a,k→ P1 P′

a,l→ P′1
P‖A P′

a,k×l→ P1‖A P′1
a ∈ A P

a,k→ P1

X
a,k→ P1

X , P

P
a,k→ P1

P‖A,P′
a,k→ P1‖A P′

a 6∈ A
Pj

a,k→ P1

∑
i∈I

Pi
a,kΣ→ P1

j ∈ I P′
a,k→ P′1

P‖A P′
a,k→ P‖A P′1

a 6∈ A

where kΣ = ∑i∈I(Pi
a→ P1)

P′
a,k→ P′1

P\A a,k→ P′1\A
a 6∈ L P

a1,k1→ P′ . . .P
an,kn→ P′

P\A τ,kτ→ P′\A
{a1, . . .an} ⊆ A∪{τ} kτ = ∑

n
i=1(ki)

P′
a,k→ P′1

P/A
a,k→ P′1/A

a 6∈ A

Table 1: Operational semantics for GPA [9].

l(t) = a1 · · ·an, and its weak run-weight |t|= k1× . . .× kn ∈ K (where × comes from a semiring K). We
also define the strong run-weight ‖t‖ of a trace, as the weak-run weight without the weights of τ actions.

Hence, it is possible to evaluate the whole behaviour of a process. The valuation of the 0 process is
equal to 1. We consider processes different form 0 as evaluated in the optimistic way, i.e., their evaluation
coincides with the value of their best trace. Formally, given a process P 6= 0 the weak evaluation-value

is JPK =
K
∑

{t∈T (P)}
|t|, where

K
∑ is the set-wise version of the + operator in K. The strong evaluation-value

is J[PK] =
K
∑

{t∈T (P)}
‖t‖.

3 Quantitative Generalized Non-Deducibility on Composition

The GNDC schema is a uniform approach for defining several security properties based on the compo-
sitionality nature of the process algebra formalism. It has been introduced in [16] to express security
properties in a qualitative way. Hereafter, we extend that definition in order to express, in a uniform
way, quantitative security properties. Then, according to different definition of quantitative behavioural
relations given above, we compare the behavior of two GPA processes.

Hence, we have the following formalisation, given in terms of GPA:

P ∈ GNDCα,K
/ iff ∀X ∈AH : (P‖HX)\H /K α(P) (1)

where H ⊆ Act\{τ} is the set of environmental actions, AH is the set of environments, / ∈A ×A is a
relation between processes, which definition depends also on the partial order of the semiring K accord-
ing to which the processes quantified and evaluated, and α : A → A is a function between processes.
The |H is the synchronisation operator stating that all actions in H are performed by the system if and
only if both P and X perform them, and the \H is the hiding operator that hides all actions in H.
Informally, the GNDCα,K

/ property requires that the behaviour of the process P, once it is composed
with any possible environment X ∈ AH , is compliant with the system’s expected behaviour, described
by the function α . The notion of compliance depends on the /K relation we chose for comparing the be-
haviours of (P‖HX)\H and α(P) according not only to an observational equivalence, as in the qualitative
approach [16], but also with respect to order induced by the semiring K of the GPA.
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In the following we provide several definition of quantitative behavioural-equivalence according to
which we are able to specify weighted properties through the QGNDC schema [16]. Furthermore, we
compare the expressive power of the different equivalence relations we define.

3.1 Quantitative Trace-equivalences

One of the basic notions used in the literature to compare processes behaviours is the notion of trace: two
processes are equivalent if they exactly show the same execution sequences, ands their evaluation scores
are comparable in the semiring partial-order. In order to formally define traces, we need a transition
relation that does not consider internal moves, denoted by τ . We start by highlighting such τ-actions in
execution traces:

Definition 3.1 (weighted weak-trace) The notation P
(a,k)
==⇒ P′ is a shorthand for P(

(τ,kτ )−−−→)∗Pτ

(a,k)−−→
P′τ(

(τ,k′τ )−−−→)∗P′, where a (possibly empty) sequence of τ labeled transitions is denoted by (
(τ,kτ )−−−→)∗. A

weighted weak-trace γ = (a1,k1) . . .(an,kn) ∈ (Act\{τ})∗ is such that P
γ

==⇒ P′ if and only if there exist

P1, . . . ,Pn−1 ∈ GPA such that P
(a1,k1)
====⇒ P1 . . .Pn−1

(an,kn)
====⇒ P′.

We can now define an equivalence relation based on trace similarity, i.e., weak-trace equivalence
(≈wtrace). We require both the strong evaluation-score and the weak evaluation score of two processes to
be equal or not comparable:

Definition 3.2 (weak-trace equivalence) For any P ∈ A the set T̂ (P) of weighted weak-traces asso-
ciated with P is T̂ (P) = {γ ∈ (Act\{τ})∗ | ∃P′ : P

γ
==⇒ P′}, where (Act\{τ})∗ is the set of sequences

of actions. P and Q are weak trace equivalent (notation P≈wtrace Q) if and only if all the following three
conditions hold:

1. T̂ (P) = T̂ (Q),

2. J[PK] 6≶K J[QK],4 and

3. JPK 6≶K JQK.

In the following, we provide an approximate version of weak-trace equivalence, i.e., ε-trace relation.
With respect to Def. 3.2, we allow the weak evaluation-score of two processes to differ up to a threshold-
value ε ∈ K.

Definition 3.3 (ε-trace equivalence) For any P ∈A the set T̂ (P) of weighted weak-traces associated
with P is T̂ (P) = {γ ∈ (Act\{τ})∗ | ∃P′ : P

γ
==⇒ P′}, where (Act\{τ})∗ is the set of sequences of

actions. P and Q are ε-trace equivalent (notation P ≈ε−trace Q) if and only if all the following three
conditions hold:

1. T̂ (P) = T̂ (Q),

2. J[PK] 6≶K JQK, and

3. JPK÷ ε ≥K JQK∧ JQK÷ ε ≥K JPK.

These relations are comparable one to another. In particular, the following proposition holds.

4In the following we will use 6≶K as a shortcut to denote when two semiring values are equal or not comparable in the poset.
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Proposition 3.1 For each couple of processes P,Q ∈ GPA. The following statement holds

∀ε ∈ K P≈wtrace Q ⇒ P≈ε−trace Q

Note that when ε = 1 we have P≈wtrace Q ⇔ P≈ε−trace Q

Example 3.1 Consider two processes P=(τ,1).(a,3).(b,2) and Q=(a,2).(b,3) in the weighted semir-
ing. We have that P≈1−trace Q (i.e., ε = 1) while P≈wtrace Q does not hold.

Note that P and Q in Ex. 3.1 are qualitatively trace-equivalent according to the classic definition
given in [16]. Therefore, by considering the weight of traces (i.e., weak-trace equivalence) we obtain a
more restrictive equivalence-relation. Consequently we have introduced the notion ε-trace equivalence
with the purpose to gradually be able to relax it and include more processes in the relation.

3.2 Quantitative Bisimulation Equivalences

In this section we focus on the weak bisimulation equivalence for GPA [9, 26], since we would like to
consider as equivalent the behaviour of two processes regardless the weight of internal action τ they
perform. Differently from [9], where only the definition of strong bisimulation is provided, we assume
that each state of a MLTS has a finite number of transitions with a non-1 weight. In the following, for R

a relation, we write PRQ to say that (P,Q) ∈R. Furthermore, we write P
a,k−→ Q to denote δ (P,a,k,Q).

We extend the definition of quantitative weak-bisimulation in [26] by considering a poset of prefer-
ence values:

Definition 3.4 (quantitative weak bisimulation) An equivalence relation R on L ×L is a quantita-
tive weak bisimulation if and only if for all (P,Q)∈R and all a ∈ Act and each equivalence class C ∈R
we have:

∑D∈C(P
a,k
=⇒ D) 6≶ ∑D∈C(Q

a,k′
==⇒ D)

∑D∈C(P
τ,kτ−−→

∗
D) 6≶ ∑D∈C(Q

τ,k′τ−−→
∗

D)

We write P≈K Q whenever there is a bisimulation R such that (P,Q) ∈R.

Note that quantitative weak bisimulation holds even if the two values related to P and Q are incomparable
in the partial order defined by +. In [26] they have to exactly correspond to the same value, since partial
orders are not considered.

As accomplished in Sec. 3.1, we define a variant that approximates Def. 3.4, named as weak ε-
bisimulation. The intuition behind it, similarly to Sec. 3.1, is to relax the cost of τ actions by a threshold-
value ε with the purpose to allow two processes to be bismilar (or, better, ε-bisimilar) despite this differ-
ence. More precisely, such ε has to bound the difference between the cost of τ actions before and after
an action at the same time (see Ex. 3.2).

Definition 3.5 (Weak ε-bisimulation) An equivalence relation R on L ×L is a weak ε-bisimulation
if and only if , for all (P,Q) ∈R and all a ∈ Act and each equivalence class C ∈R we have:

∑
D∈C

(P
a,k
=⇒ D)÷ ε ≥K ∑

D∈C
(Q

a,k′−−→ D) ∧ ∑
D∈C

(Q
a,k
=⇒ D)÷ ε ≥K ∑

D∈C
(P

a,k′−−→ D)

∑
D∈C

(P
τ,kτ−−→

∗
D)÷ ε ≥K ∑

D∈C
(Q

τ,k′τ−−→
∗

D) ∧ ∑
D∈C

(Q
τ,kτ−−→

∗
D)÷ ε ≥K ∑

D∈C
(P

τ,k′τ−−→
∗

D)

We write P≈ε Q whenever there is a bisimulation R such that (P,Q) ∈R.
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These relations are comparable as follows.

Proposition 3.2 For each couple of processes P,Q ∈ GPA. The following statement holds

∀ε ∈ K P≈K Q ⇒ P≈ε Q

Note that when ε = 1 we have P≈K Q ⇔ P≈ε Q

Example 3.2 Consider two processes P = (τ,3).(a,4).(τ,5) and Q = (τ,2).(a,4).(τ,1)(τ,1) in the
weighted semiring. We have that P ≈1 Q (i.e., ε = 1) while P ≈K Q does not hold. Instead, if we have
two processes E = (τ,3).(a,4).(τ,3) and F = (τ,2).(a,4).(τ,1).(τ,1), E ≈2 F (i.e., ε = 2) while E ≈1 F
does not hold.

Note that both P and Q, and E and F in Ex. 3.2 are weak bisimilar according to the classic definition
given in [27]. Therefore, by considering the bisimulation relation in Def. 3.4 we obtain a more restrictive
equivalence-relation. Consequently, with the same aim adopted in Sec. 3.1, we have introduced the
notion weak ε-bisimulation.

4 C-semiring H-M Logic

In the previous section, we have shown how quantitative security properties can be specified by using
different quantitative process-equivalences in order to compare the behaviour of a system with respect to
the expected one. Other approach for specified quantitative security requirements is to express them as a
logic formula that the system has to satisfy. It can be useful, for instance, when it is not decidable if two
processes are quantitative equivalence. Furthermore, some properties, as for example, safety properties,
e.g., properties expressing that if something goes wrong it can be detected in a finite number of steps,
can be easily expressed through a logic formula and may not require that all the behavior of the system
is checked in order to discover that the system does not satisfy the requirements.

For these reason, in the rest of this section, we propose a different approach with respect to the
one described in Sec. 3, in order to propose an alternative machinery to represent a quantitative secure
system. This differ from the other because it is based on model checking and satisfiability procedure
instead of behavioral equivalences and comparison checking. It is worth noting that the first approach
can be reported to the following one if we specify the expected behavior of the system α(P) through its
characteristic formula [29] with respect to one of the equivalences defined in the previous section.

Hence, in order to specify if a system is secure or not we have to require that it satisfies the logic
formula expressing the security requirements. To this aim, hereafter, we propose a quantitative variant
of the Hennessy-Milner logic, named c-HM, in such a way to be able to specify quantitative constraints.
In particular, differently from [23], we label each transition with an action and we take into account the
same weights on the transitions of an MLTS (Sec. 2). In Def. 4.1, we syntactically define the set ΦM of
correct formulas given over an MLTS M.

Definition 4.1 (Syntax) Given a MLTS M = 〈S, Act,K,T 〉, and let a ∈ Act, a formula φ ∈ ΦM is syn-
tactically expressed as follows, where k ∈ K:

φ ::= k | φ1 +φ2 | φ1×φ2 | φ1uφ2 | 〈a〉φ | [a]φ

Clearly we can express more than just true (corresponding to 1 ∈ K) and false (0 ∈ K) through all the
values k ∈ K. Semiring operators + (the lub t), glb u, and × are used in place of classical logic
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JkK(s) = k ∈ K ∀s ∈ S
Jφ1 +φ2K(s) = Jφ1K(s)+ Jφ2K(s)
Jφ1×φ2K(s) = Jφ1K(s)× Jφ2K(s)
Jφ1uφ2K(s) = Jφ1K(s)u Jφ2K(s)
J〈a〉φK(s) = ∑

R
(T (s,a,s′)× JφK(s′))

J[a]φK(s) =

{ d

R
(T (s,a,s′)× JφK(s′)) i f R 6= /0

1 i f R = /0

where R = {s′ ∈ S | s a→ s′ ∈ T}

Table 2: Semantics of c-HM. ∑( /0) =
d
( /0) = 0.

operators ∨ and ∧, in order to compose the truth values of two formulas together. As a reminder, when
the × operator is idempotent, then × and u coincide (see Sec. 2). Finally, we have the two classical
modal operators, i.e., “possibly” (〈·〉), and “necessarily” ([·]).

It is also possible to have a negation operator ¬ : K −→ K, which is a unary operator such that, being
A⊆ Act, ¬a ∈ A and ¬¬(a) = a for all a ∈ A, and ¬

⊔
{A′}= {¬a | a ∈ A} for all A′ ⊆ A, where

⊔
and

d

are the set-wise lub and glb operators of the lattice 〈A,≤K〉. The negation operator allows us to use the
equivalence ¬0 = 1. Note that the duality ¬(a+b) = (¬a)× (¬b) holds exactly when × is idempotent.
Examples where a negation can be defined are the logical c-semiring, where logical negation is a negation
operator, and probabilistic and fuzzy c-semirings where 1− is a negation operator. On the other hand,
it is not possible to define a negation operator for the weighted c-semiring. Hence the syntax given in
Def. 4.1 is given without considering negation, otherwise we could simplify it by removing 0 and [ ]φ ,
since they can be rewritten as ¬1 and ¬〈〉¬φ .

The semantics of a formula φ is given on a particular MLTS M = 〈S,Act,K,T 〉, with the purpose to
check the specification defined by φ over the behaviour of a weighted transition system (in Sec. 4.1, M
defines the behaviour of a GPA process). Note that while in [2] the semantics of a formula computes the
states U ⊆ S that satisfy that formula, our semantics JKM : (ΦM×S)−→ K (see Tab. 2) computes a truth
value (in K) for the same U . For instance, if we use the boolean semiring we always obtain 1 iff U 6= /0,
and 0 otherwise. It is not difficult to extend our semantics to also return U , as in [2]; however, in this
work we are focused on computing a degree of satisfaction for φ (and U).

In Tab. 2 and in the following (when clear from the context) we omit M from JKM for the sake of
readability. The semantics is parametrised over a state s∈ S, which is used to consider only the transitions
that can be fired at a given step (labeled with an action a). The first s will be the single initial state of the
MLTS we define in Def. 2.5.5

4.1 Interpreting c-HM over GPA

Both GPA and c-HM logic formulas can be interpreted on an MLTS. In this section, we focus on the
interpretation of a c-HM formula φ on a GPA process P to provide a notion of quantitative satisfiability
for the specification described by φ , on the behaviour of a process P. First of all, we define the projection

5Note that is also possible to let the semantics in Tab. 2 be parametrised on a set of states, by aggregating values on all the
transitions originating from all of them. For instance, in case we have multiple initial states, as in [9].
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of a process on an MLTS.
Definition 4.2 (MLTS projection) Given an MLTS M = 〈S,Act,K,T, i〉, its projection over a process
P defined over the same M is defined as M ⇓P= 〈SP,Act,K,TP, i〉, where SP = {s ∈ S | s ∈ Der(P)} and
TP = {(s,a,s′) ∈ S×Act×S | s,s′ ∈ SP∧a ∈ Sort(P)}.6

We are now ready to rephrase the notion of satisfiability to take into account a threshold k (k-
satisfiability):

Definition 4.3 (|=k) A process P satisfies a c-HM formula φ with a threshold-value k, i.e., P |=k φ , if
and only if the interpretation of φ on M ⇓P is not worse than k. Formally: P |=k φ ⇔ k ≤ JφKM⇓P .

This means that P is a model for a formula φ with respect to a certain value k iff the amount of the
interpretation of φ on P is not worse than k in the partial order defined by + in K. It is worth noting that
the interpretation of φ on P is independent by the valuation of P itself.

Remark 1. Note that, if P does not satisfy a formula φ then JφKM⇓P = 0. Consequently, the only k
such that P |=k φ is k = 0. If JφKM⇓P 6= 0, then φ is satisfiable with a certain threshold k 6= 0.

Example 4.1 In order to exemplify the concept expressed here, let us consider a formula φ stating that
before opening a document “file2” you have to close an already opened document “file1” . This is a
security property aiming at preserving the confidentiality and integrity of the two documents. φ can be
expressed by a c-HM formula as follows:

φ = [open file1]([close file1][open file2]1× [open file2]0)

The sub-formula after × (i.e., [open file2]) is weighted with 0 because the opening of file2 has to be
prevented in case file1 is not closed. Au contraire, the left-side of × expresses the right behaviour, and
thus it is weighted with 1.
Then consider three different processes P and Q, defined on 〈R+∪{+∞},min,+̂,+∞,0〉:

P = (open file1,5).(close file1,4).0
Q = (open file1,3).(close file1,10).0
V = (open file1,4).(open file2,2).0

According to our definition, P |=11 φ because, referring to Tab. 2, at the first step we consider the cost of
the action open file1, i.e., 5, which is arithmetically summed to

J([close file1][open file2]0 +̂ [open file2]∞)KP′

where P′ = (close file1,4).0. After close file1, the process halts, thus J[open file2]∞K = 0.
Finally, we have JφKP = 5 +̂4 +̂0 = 9, which satisfies the asked threshold 11. Q is evaluated in the same
way, but since JφKQ = 3 +̂10 +̂0 = 13, we have that P 6|=11 φ because 11 6≤ 14. Therefore, even if there
is a subset of Q states that satisfies φ , the degree satisfaction does not respect the requested threshold.
Finally, φ is not satisfied by V because JφKV = 5 +̂ J([close file1][open file2]0 +̂ [open file2]
∞)KV ′ = 4 +̂2 +̂∞ = ∞.

5 Quantitative Partial Model Checking

In this section we present a quantified version of PMC [2], named QPMC, with respect to the parallel
composition of GPA processes. Such a function is defined in Tab. 3. Being the logic closed, the inter-
pretation of the formulas obtained through the application of the function is straightforward. In Th. 5.1 a
result similar to the one in [2] holds.

6All the processes in parallel share the same i.
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k//P,P
= k

(φ1×φ2)//P,P
= (φ1)//P,P

× (φ2)//P,P

(φ1 +φ2)//P,P
= (φ1)//P,P

+(φ2)//P,P

(φ1uφ2)//P,P
= (φ1)//P,P

u (φ2)//P,P

([a]φ)//P,P
=


[a](φ)//P,P

u
d

P
a,ka→ P′

((ka÷ k∗a)×φ//P′,P′P,a
) a 6∈ L

d

P
a,ka→ P′

((ka÷ k∗a)× [a]φ//P′,P′P,a
) a ∈ L SIDE EFFECT: kP 7→ kP× k∗a

(〈a〉φ)//P,P
=


〈a〉(φ)//P,P

+ ∑

P
a,ka→ P′

((ka÷ k∗a)×φ//P′,P′P,a
) a 6∈ L

∑

P
a,ka→ P′

((ka÷ k∗a)×〈a〉φ//P′,P′P,a
) a ∈ L SIDE EFFECT: kP 7→ kP× k∗a

with k∗a = ( ∑

P
a,ka→ P′

ka), P ′
P,a = {P′ | ∃P.P

a,k→ P′}

Table 3: QPMC function; the kP amount of such partial evaluation is computed as a side effect.

Theorem 5.1 Let P and Q two processes in GPA, K a c-semiring with k,k′ ∈ K where k is a fixed
(threshold) value, and let φ a c-HM formula, the following holds:

P‖Q |=k φ ⇔ (kP ≥ k)∧∃k′ (Q |=k′ φ//P
∧ k′ ≥ k÷ kP)

where initially kP = 1, and then it is possibly worsened at each step of the PMC function (see Tab. 3).7

Proof 5.1 (Sketch): The proposition is proved by induction on the complexity of a formula. Indeed, the
base case, i.e., φ = k1, trivially holds taking k′ = k1, being always kP = 1 ≥ k1. To show the inductive
case, we here prove only φ = φ1×φ2. According to Tab. 2, P‖LQ |=k φ1×φ2 if and only if there exist k1
and k2 such that P‖LQ |=k1 φ1∧P‖LQ |=k2 φ2. For inductive hypothesis,

(kP ≥ k1) ∧ ∃k′1 Q |=k′1
φ1//P ∧ k′1 ≥ k1÷ kP

(kP ≥ k2) ∧ ∃k′2 Q |=k′2
φ2//P ∧ k′2 ≥ k2÷ kP

Let k′ = k′1×k′2, in this case, according to the semantics of the formula, Q |=k′ φ1×φ2 and k′ = k′1×k′2 ≥
(k1÷kP)× (k2÷kP)≥ (k1×k2)÷kP = k÷kP. Thus it holds k′ ≥ k÷kP, and due to the monotonicity of
× and ÷.

Note that, whether we consider an uniquely invertible c-semiring, then we have exactly k′ = k÷ kP.
During the application of the QPMC function, we accumulate weight to kP for two different reasons:
first, if already kP 6≥ k we can immediately state that P‖Q 6|=k φ without checking the existence of k′.
It corresponds to the crisp reasoning in [2], in case the valuation of φ//P

is already false. Secondly, we
just follow the same inspiration behind [2], where the author aims at removing parts of a concurrent
system while keeping intermediate specifications small (see Sec. 7 for optimisation): in this work we
also remove as more weight as possible from such parts, by taking advantage of ÷.

The intuition is the following: let us consider a formula φ = [a].[b].1 and the weighted semiring. If
a process P performs an action a along two different branches with different weights, e.g., the process

7Note that kP = 1 does not change if e.g., P = 0 or P does not perform any action in φ , i.e., φ//P
= φ
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P
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Piv
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a,1

a,2

b,3

b,2

b,7

Figure 1: The MLTS of P.

whose MLTS is visually represented in Fig. 1, P = (a,1).Pi+(a,2).Pii, we aim to guarantee that, regard-
less the a action Q synchronizes with, P‖aQ satisfies φ . This reasoning has to be done for each step and
each branch of the process P. Hence, let us consider that the complete description of P is the following
P = (a,1).((b,2).0+(b,7).0)+(a.2).(b,3).0, as represented in Fig. 1.

At first step, k∗a = 1, and the QPMC function removes 1 from both the a-branches, i.e., 2÷ 1 =
1 and 1÷ 1 = 0, and kP = 1× 1. Then, at the second step, Pi = (b,2).0+ (b,7).0 and Piii = (b,3)
perform the action b with weight 2,7, and 3 respectively. Among these three values we calculate k∗b = 2.
Consequently, kP = 1×2 = 3. Note that, in the second step we have considered all possible branches of
all possible derivatives to consider the best value of the actions within the whole process traces.

Example 5.1 Let us consider, the weighted semiring K, two actions open,close and let us consider
L = {open}, φ = [open]〈close〉1 stating that once a file is opened, then it has to be closed. We omit the
name of the file because not significant here. Let E and F be two GPA processes:
E = (open,5).(close,4).0+(open,6).0
F = (open,4).(close,3).0

Let us consider the combined process E‖LF where E and F synchronise one another on actions in L, i.e.,
on the action open. It is easy to see that E‖LF |=20 φ . Applying QPMC to φ with respect to E:

φ//E = (1× [open]〈(close〉1)//E ′)u ([open]〈(close〉1)//E ′) = (1× [open]〈(close〉1)u ([open]〈close〉1)

where × ≡ +̂, u ≡ max, and kE = 5+̂4 = 9 (thus kE ≥ 20, as required by Th. 5.1). QPMC helps to
understand which formula F has to satisfy in order to guarantee that the whole system satisfies the
initial requirement. In this simple case, we know the behaviour of F and we can check if it quantitatively
satisfies φ//E . To do this, we prove that ∃k′ F |=k′ φ//E ∧ k′ ≥ k÷ kE . Indeed, F |=k′ φ//E means that
k′ ≤ Jφ//EKF = (1× 4× 3)u (4× 3) ≡ max(4+̂3+̂1,4+̂3) = 8. While k′ ≥ 20÷ 9 = 11. So each k′

belonging to the range 11≤ k′ ≤ 8 quantitatively satisfies the requirement.

Proposition 5.1 Given any two processes E and F in parallel, and any c-HM formula φ , then we have
that JφKE‖F ≥ kE ⊗ Jφ//E

KF , or JφKE‖F = kE ⊗ Jφ//E
KF when the semiring is uniquely invertible.

6 Related Work

The aim of this work is to present a semiring-based formal framework where to deal with quantitative
specification of security in combined systems. We dedicate the first part of this section to alternative
definitions of quantitative-bisimulation relations, even some cases not applied to security (e.g., [26]).

In [26] the authors extend Weighted Labelled Transition Systems (WLTS) towards other behavioural
equivalences, by considering semirings of weights. The main result of such work is the definition of
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a general notion of weak weighted bisimulation. They show that this relation coincides with the usual
weak bisimulations in the cases of non-deterministic and fully-probabilistic systems. Moreover, it can
also be extended towards kinds of LTSs where this notion is currently missing (e.g., stochastic systems).
In Def. 3.3 we also relax quantitative weak bisimulation to weak ε-bisimulation.

In [1] the authors address the problem of providing a quantitative estimation of the confidentiality of
a system by measuring its information leakage. In our analysis the most powerful adversary is measured
via a notion of approximate process equivalence. In practice, the lack of information leakage is expressed
by a successful weak probabilistic bisimulation based check. Whenever such a check fails, approximate
relations relax the conditions imposed by the weak probabilistic bisimulation, in such a way that the
level of approximation represents an estimate of the amount of information leakage. Our notion of ε-
bisimulation is very close to [1], except that we generalise it by using semiring operators.

Even the approach in [17] bounds the distance between the transitions of two states: if their distance
is less equal than a threshold δ , and this holds for all the states of two processes P1 and P2, such processes
are said to be approximately bisimilar with the precision δ . The motivations is that, interacting with the
physical world, exact relationships are restrictive and not robust.

The literature also proposes works using fuzzy weights (in this work we have the fuzzy semiring): in
[10] a notion of behavioural distance is given to measure the behavioural similarity of non-deterministic
fuzzy-transition systems: two systems are at zero distance if and only if they are bisimilar.

Considering the second fragment of the paper, no direct comparison is available for QPMC. Never-
theless, our c-semiring H-M Logic (see Sec. 4) has been inspired by the work in [23]. Some examples of
quantitative temporal logic are [13, 3]. In [13] the authors present QLTL, a quantitative analogue of LTL
and presents algorithms for model checking it over quantitative versions of Kripke structures and Markov
chains. Thus, weights are in the interval of Real numbers [0,1]. In [3] the authors combine robustness
scores with the satisfaction probability to optimise some control parameters of a stochastic model: the
goal is to best maximise robustness of the desired specifications. However, even this approach is focused
on Continuous-Time Markov Chains, and not on semiring algebraic-structures.

Non-binary measures of security have been considered for access control systems by Cheng et
al. [11]. The level of security should correspond to a fuzzy domain rather than a strict separation be-
tween what is secure and what is not. Zhang et al. define with the BARAC model [31] a notion of benefit
for each access, with the underlying idea that allowing an access comes with a benefit for the system.
The “value” of an access or an action can be for instance calculated using market-based techniques [28].

From a different perspective, in [12], a notion of cost similar has been introduced. Here, we focus
on the definition of quantitative requirements and quantitative partial model checking function for the
analysis of composed system, following some intuitive leads given in [25] in order to move from quali-
tative to quantitative enforcement. Semirings have been used by Bistarelli et al. in the context of access
control [6] and trust systems [4]. Here we use them in the context of enforcement mechanism defined
trough process algebra, following the approach by Buchholz and Kemper [9].

7 Conclusion

We have introduced two different formal-frameworks oriented to the specification of quantitative proper-
ties on a GPA-process. Both of the frameworks are have a common trait d’union consisting in the use of
c-semiring structures to represent transition costs. By taking advantage of such costs, we can constrain
classical qualitative-relations between two processes, as we do as our first contribute for trace equiva-
lence and weak bisimulation equivalence. In practice we parametrise the weak bisimulation notion given
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in [1] by allowing for different metrics, and not probability scores only. At the same time we refine the
definition of semiring-based bisimulation given in [26], by relaxing the relation in order to also include
ε-close (or ∆-close, see Sec. 3.2) processes. As a second result, we propose a way to express security
constraints via a quantitative version of the Hennessy-Milner logic, and a method for specifying the se-
curity of a system through a quantitative version of PMC. If the system satisfies a security property with
a value k′ worse than k (a security threshold), then the system is not quantitatively secure. In this way
we can use this threshold to tradeoff security and functionality/performance requirements.

Therefore, the essence of the paper is to advance the same basic bricks (i.e., GPA and semirings)
with the purpose to enhance two different quantitative frameworks (i.e., process equivalences and PMC),
which are nevertheless related by the common purpose of (security) property specification. Of course
both of the frameworks can be independently (but still interlacedly) developed to offer a complete spec-
ification and validation tool on their own, as the following ideas on future work suggest.

In the future we aim to extend both the approaches in different directions. As an ongoing work, we are
investigating on the definition of characteristic formulas of a processes with respect to each bisimulation
equivalence definitions we have provided in Sec. 3 in such a way to be able to compare the effectiveness
of the two proposed approaches. Furthermore, we aim to extend both of them in order to not only use
them for the specification has but also for the analysis. Indeed, referring to the former approach, we
need to investigate on the characterization of the most powerful attacker in order to compare the system
under attack with respect to the expected behavior. This can be done only under certain constraints on
considered equivalences that have to be further studied. Referring on the latter approach, we need to
elaborate a satisfiability procedure for the quantitative logic we have introduced here in order to verify if
the system under investigation is secure or not, i.e., it satisfies the security requirement.

Another possible direction we would like to investigate is the identification of comparative strategies
based on the (partial or total) ordering of the semiring in order to be able to compare different strategies,
and finally synthesise the best one (whether it exists). Another direction is the extension of the framework
to use more than one measure associated to each action in order to evaluate a process. Such measures
can be combined and ordered, e.g., by using the lexicographical ordering, in such a way that controlling
strategies can be selected with respect to the optimisation of the trade-off between some of them.
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