
Submitted to:
QAPL 2015

© Lee & De Vink
This work is licensed under the
Creative Commons Attribution License.

Rooted probabilistic branching bisimulation as a congruence

Matias D. Lee*

FaMAF, UNC–CONICET
Córdoba, Argentina

lee@famaf.unc.edu.ar

Erik P. de Vink
TU/e, Eindhoven, The Netherlands
CWI, Amsterdam, The Netherlands

evink@win.tue.nl

We propose a probabilistic transition system specification format, referred to as probabilistic RBB
safe, for which rooted probabilistic branching bisimulation is a congruence. The congruence theorem
is based on work for the qualitative case of Fokkink. For this to work, the theory of transition system
specifications in the setting of labeled transition systems needs to be extended to deal with probability
distributions, both syntactically and semantically. We provide a scheduler-free characterization of
probabilistic branching bisimulation as adapted from work of Andova et al. for the alternating model.
Counter examples are given to justify the various conditions required by the format.

1 Introduction

Structural operational semantics is a standard methodology to provide a semantics to programming lan-
guages and process algebras [2]. In this setting, a signature Σ, a set of actions A and a set of rules R
define a transition system specification (TSS). The signature is used to define the terms of the lan-
guage T (Σ). The interpretation of each term is given by a labeled transition system where the states
range over T (Σ), the labels overA and the transitions are governed by the set of rules R. This technique
has been widely studied in the context of qualitative process algebras, see [27] for an overview. A partic-
ular topic of interest is the study of rule formats for which a behavioral equivalence is guaranteed to be
a congruence. This property, crucial for a compositional analysis, ensures that pairwise equivalent terms
t1,. . . ,tn and t ′1,. . . ,t

′
n give rise to the equivalence of the terms f (t1,. . . tn ) and f (t ′1,. . . ,t

′
n ),

Much work has been done on formats for labeled transition systems, i.e. in a qualitative setting.
Although the main focus is on strong bisimulation [19, 13, 2], weaker notions that support abstraction
from internal behavior has been studied as well. In [6], Bloom introduced format rules covering weak
bisimulation, rooted weak bisimulation, branching bisimulation and rooted branching bisimulation. In
[17], these results are extended for η-bisimulation and delay bisimulations. In addition, in [14], a more
liberal format is introduced for rooted branching bisimulation, called RBB safe.

Going into the other direction, addition of quantitative information, e.g. the inclusion of probabilities,
allows to model systems in more detail. The aim to include these features motivated further extension of
the theory of structured operational semantics. In the context of probabilistic process algebras previous
results in the qualitative setting have been extended to deal with quantitative decorations. Based on the
category-theoretical framework of Turi and Plotkin [5] proposes probabilistic GSOS. In turn, this has
been generalized in [22, 23] yielding weighted GSOS. For generative systems [24] introduces GTTS, a
format allowing features like look-ahead. The format ntyft/ntyxt is translated to the probabilistic setting
in [11], while generation of axiomatizations [1, 4] for probabilistic GSOS is reported in [10]. In [26] so-
called weight-function SOS is proposed for ULTraS, a generalization of probabilistic transition systems.
The bottom line for all these works is that strong bisimulation is a congruence for probabilistic transition
systems.

*Supported by 2010–2401/001–001–EMA2 and EU 7FP grant agreement 295261 (MEALS) and SECyT–UNC.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Probabilistic branching bisimulation as a congruence

So far, no congruence format is given dealing with both additional aspects, i.e. taking quantitative
information into account, and, at the same time, catering for a weak notion of bisimulation. To the best of
our knowledge, this paper presents the first specification format for the quantitative setting that respects
a weak equivalence, viz. probabilistic branching bisimulation. Our work follows the approach initiated
in [11, 25] to define probabilistic transitions systems specifications (PTSS). A PTSS is composed of
a two-sorted signature (Σs ,Σd ), a set of actions A, that contains the internal action τ, and a set of
rules R. The signature Σs is used to represent states, while Σd is used to represent distributions over
states. Transitions have the shape t

a
−→ θ with the following intended meaning: state t can execute

an action a and the next state is selected using the state distribution JθK. Thus, the interpretation of the
distribution term θ is a probability distribution over states. Note, this framework allows non-determinism:
if t

a
−→ θ and t

a
−→ θ ′ we do not require θ = θ ′. Hence, a PTSS defines systems similar to Segala’s

probabilistic automata [28]. In order to prove that branching bisimulation is a congruence, we follow
the ideas presented in [14]. For that reason, we call our specification format the probabilistic RBB
safe format, referring to the format proposed by Fokkink. Often, working with probabilistic automata
where non-determinism and probabilities coexist, requires the introduction of schedulers to determine
the probability of a particular execution [29, 12]. A key point for our proof of the main result is a
characterization of branching bisimulation without schedulers. This characterization was introduced for
the alternating model in [3], and we have adapted it to our context.

In Section 2, two-sorted signatures and distributions over states are introduced. Section 3 introduces
probabilistic transition system specifications. Section 4 discusses schedulers, weak transitions, branching
bisimulation and its characterization without schedulers. In Section 5, the probabilistic RBB safe speci-
fication format is presented. We furthermore touch upon some intricacies of it and give the congruence
theorem. Finally, in Section 6 some conclusions are drawn and future lines of research are indicated.

2 Preliminaries

We fix the set S = {s,d } denoting two sorts. Elements of sort s are intended to represent states in a
transition system, while elements of sort d will represent distributions over states. We let σ range over S.

An S-sorted signature is a structure (Σ,ar), where (i) Σ is a set of function names, and (ii) ar : Σ→
S∗× S is the arity function. The rank of f ∈ Σ is the number of arguments of f , i.e. rk( f ) = n if ar( f ) =
σ1 · · ·σn → σ. We write σ1 · · ·σn → σ instead of (σ1 · · ·σn ,σ) to highlight that function f maps to
sort σ. Function f is a constant if rk( f ) = 0. To simplify the presentation we will write an S-sorted
signature Σ as a pair of disjoint signatures (Σs ,Σd ) where Σs is the set of operations that map to sort s,
and Σd is the set of operations that map to sort d.

LetV and D be two infinite sets of S-sorted variables whereV , D, and Σ are all mutually disjoint.
We use x,y,z (with possible decorations, subscripts or superscripts) to range overV , µ,ν to range overD
and ζ to range overV∪D.

Definition 1. Let V ⊆ V and D ⊆ D. We define the sets of state terms T (Σs ,V,D) and distribution terms
T (Σd ,V,D) as the smallest sets of terms satisfying

(i) V ⊆ T (Σs ,V,D), and D ⊆ T (Σd ,V,D);

(ii) f (ξ1,· · · ,ξrk( f )) ∈ T (Σσ ,V,D) if ar( f ) = σ1 · · ·σn → σ and ξi ∈ T (Σσi ,V,D).

We let T(Σ) = T (Σs ,V ,D) ∪T (Σd ,V ,D) denote the set of all open terms and distinguish the sets
T(Σs ) = T (Σs ,V ,D) of open state terms and T(Σd ) = T (Σd ,V ,D) of open distribution terms. Simi-
larly, we let T (Σ) = T (Σs ,∅,∅) ∪T (Σd ,∅,∅) denote the set of all closed terms and distinguish the sets



Lee & De Vink 3

T (Σs ) = T (Σs ,∅,∅) of closed state terms and T (Σd ) = T (Σd ,∅,∅) of closed distribution terms. We let t,
t ′, t1,. . . range over state terms, θ, θ ′, θ1,. . . range over distribution terms, and ξ, ξ ′, ξ1,. . . range over
any kind of terms. We use var(ξ) ⊆ V ∪D to denote the set of variables occurring in term ξ.

Let ∆(T (Σs )) denote the set of all (discrete) probability distributions over T (Σs ). We let π range
over ∆(T (Σs )). For each t ∈ T (Σs ), let δt ∈ ∆(T (Σs )) denote the Dirac distribution, i.e., δt (t) = 1 and
δt (t ′) = 0 if t and t ′ are not syntactically equal. For X ⊆ T (Σs ) we define π(X ) =

∑
t ∈X π(t). The convex

combination
∑

i∈I piπi of a family {πi }i∈I of probability distributions with pi ∈ (0,1] and
∑

i∈I pi = 1 is
defined by (

∑
i∈I piπi )(t) =

∑
i∈I (piπi (t)).

The type of signatures we consider has a particular construction, to which we refer to as “proba-
bilistic lifted signature”. We start from a signature Σs of functions mapping into sort s and construct
the signature Σd of functions mapping into d as follows. For each f ∈ Σs we include a function symbol
f ∈ Σd with ar( f ) = d · · ·d → d and rk( f ) = rk( f ). We call f the probabilistic lifting of f . (We use
boldface fonts to indicate that a function in Σd is the probabilistic lifting of another in Σs .) Moreover Σd
may include any of the following additional operators:

• δ with arity ar(δ) = s→ d and

•
⊕

i∈I [pi] of arity ar
(⊕

i∈I [pi]
)
= d |I | → d for index set I, pi ∈ (0,1] for i ∈ I,

∑
i∈I pi = 1.

In particular, we write θ1⊕p1 θ2 instead of
⊕

i∈{1,2}[pi]θi when the index set I has exactly two elements.
The operators δ and

⊕
i∈I [pi] are used to construct discrete probability functions of finite support:

δ(t) is interpreted as the Dirac distribution for t, and
⊕

i∈I [pi]θi represents a distribution that weights
with pi the distribution represented by the term θi . Moreover, a probabilistically lifted operator f is
interpreted by properly lifting the probabilities of the operands to terms composed with the operator f .

Formally, the algebra associated with a probabilistically lifted signature Σ = (Σs ,Σd ) is defined as
follows. For sort s, it is the freely generated algebraic structure T (Σs ). For sort d, it is defined by the
carrier ∆(T (Σs )) and the following interpretation:

• Jδ(t)K = δt for all t ∈ T (Σd )

• J
⊕

i∈I [pi]θiK =
∑

i∈I piJθiK for { θi | i ∈ I } ⊆ T (Σd )

• Jf (θ1,. . . ,θrk( f ))K( f (ξ1,. . . ,ξrk( f ))) =



∏
σi=s JθiK(ξi ) if for all j: σj = d⇒ θj = ξ j

0 otherwise

In the above definition we assume that
∏
∅ = 1. Notice that in the semantics of a lifted function f , the

product at the right-hand side only considers the distributions related to the s-sorted positions in f , while
the distribution terms corresponding to the d-sorted positions in f should match exactly the parameters
of f .

A substitution ρ is a mapV∪D → T(Σ) such that ρ(x) ∈ T(Σs ), for all x ∈ V , and ρ(µ) ∈ T(Σd ),
for all µ ∈ D. A substitution is closed if it maps each variable to a closed term. A substitution extends to
a mapping from terms to terms as usual.

Example 2. To set the context of our running example we introduce the following signature. We assume
a set A of action labels, and distinguish τ ∈ A. Let Σ = (Σs ,Σd ) be a probabilistically lifted signature
where Σs contains: (i) constants 0 (inaction or the stop process) of sort s, i.e., ar(0) = s; (ii) a family
of unary probabilistic prefix operators a. for a ∈ A with ar(a) = d → s; (iii) and a binary operator +
(alternative composition or sum) with ar(+) = ss→ s. Moreover, Σd contains δ, all binary operators
⊕p , and the lifted operators, which are as follows: (iv) the constant 0 with ar(0) = d; (v) the family of
unary operators a. for a ∈ A with ar(a) = d→ d; (vi) the binary operator + with ar(+) = dd→ d.



4 Probabilistic branching bisimulation as a congruence

The intended meaning of the probabilistic prefix operator a.θ is that this term can perform action a
and move to a term t with probability JθK(t). The stop process 0 and alternative composition + have
their usual meaning.

3 Probabilistic Transition System Specifications

In our setting, a probabilistic transition relation prescribes what possible activity can be performed by a
term in a signature. Such activity is described by an action and a probability distribution on terms that
indicates the probability to reach a particular new term. Our definition is along the lines of probabilistic
automata [28].

Definition 3 (PTS). A probabilistic labeled transition system (PTS) is a triple (T (Σs ),A,−→), where
Σ = (Σs ,Σd ) is a probabilistically lifted signature,A is a countable set of actions, and −→ ⊆ T (Σs )×A×
∆(T (Σs )), is a transition relation.

We build on [19, 18, 8] for our definition of a probabilistic transition system specification.

Definition 4 (PTSS). A probabilistic transition system specification (PTSS) is a triple P = (Σ,A, R)
where Σ is a probabilistically lifted signature, A is a set of labels, and R is a set of rules of the form:

{ tk
ak
−−→ θk | k ∈ K } ∪ { t`

b`
−−→6 | ` ∈ L }

t
a
−→ θ

where K,L are index sets, t,tk ,t` ∈ T(Σs ), a,ak ,b` ∈ A, and θk ,θ ∈ T(Σd ).

Expressions of the form t
a
−→ θ and t

a
−→6 are called positive literals and negative literals, respectively.

For any rule r ∈ R, literals above the line are called premises, notation prem(r); the literal below the line
is called the conclusion, notation conc(r). Substitutions provide instances to the rules of a PTSS that,
together with some appropriate machinery, allow us to define probabilistic transition relations. Given a
substitution ρ, it extends to literals as follows: ρ(t

a
−→ θ ) = ρ(t)

a
−→ ρ(θ) and ρ(t

a
−→6 ) = ρ(t)

a
−→6 . We say

that r ′ is a (closed) instance of a rule r if there is a (closed) substitution ρ such that r ′ = ρ(r).
For the sake of clarity, in the rest of the paper, we will deal with models as symbolic transition

relations, i.e. subsets of T (Σs ) ×A ×T (Σd ) rather than concrete transition relations in T (Σs ) ×A ×
∆(T (Σs )) required by a PTS. We will mostly refer with the term “transition relation” to a symbolic
transition relation. In any case, a symbolic transition relation induces a unique concrete transition relation
by interpreting every target distribution term as the distribution it defines. That is, the symbolic transition
t

a
−→ θ is interpreted as the concrete transition t

a
−→ JθK. If the symbolic transition relation turns out to be

a model of a PTSS P, we say that the induced concrete transition relation defines a PTS associated to P.
However, first we need to define an appropriate notion of a model. As has been argued repeatedly

(e.g. [18, 8, 16]), transition system specifications with negative premises do not uniquely define a tran-
sition relation and different reasonable techniques may lead to incomparable models. For instance, the

PTSS with the single constant f , set of labels {a,b} and the two rules f
b
−→6

f
a
−→f

and f
a
−→6

f
b
−→f

, has two models

that are justifiably compatible with the rules (so called supported models [7, 8, 16]), viz. { f
a
−→ f } and

{ f
b
−→ f }.
An alternative view is to consider so-called 3-valued models. A 3-valued model partitions the set

T (Σs )×A×T (Σd ) in three sets containing, respectively, the transitions that are known to hold, that are
known not to hold, and those whose validity is unknown. Thus, a 3-valued model can be presented as a



Lee & De Vink 5

pair 〈CT,PT〉 of transition relations CT,PT ⊆ T (Σs )×A×T (Σd ), with CT ⊆ PT, where CT is the set
of transitions that certainly hold, and PT is the set of transitions that possibly hold. So, transitions in
PT \CT are those whose validity is unknown and transitions in (T (Σs )×A×T (Σd )) \PT are those that
certainly do not to hold.

A 3-value model 〈CT,PT〉 that is justifiably compatible with the proof system defined by a PTSS P
is said to be stable for P. We will make clear what we mean by “justifiably compatible” in Definition 6.
Before formally defining the notions of a proof and 3-valued stable model we introduce some notation.
Given a transition relation Tr ⊆T (Σs )×A×T (Σd ), t

a
−→ θ holds in Tr, notation Tr |= t

a
−→ θ, if t

a
−→ θ ∈Tr;

t
a
−→6 holds in Tr, notation Tr |= t

a
−→6 , if for all θ ∈ T (Σd ), t

a
−→ θ < Tr. Given a set of literals H , we write

Tr |= H if for all ψ ∈ H , Tr |= ψ.

Definition 5 (Proof). Let P = (Σ,A,R) be a PTSS. Let ψ be a positive literal and let H be a set of
literals. A proof of a transition rule H

ψ from P is a well-founded, upwardly branching tree where each
node is a literal such that:

1. the root is ψ, and

2. if χ is a node and K is the set of nodes directly above χ, then one of the following conditions
holds:

(a) K = ∅ and χ ∈ H , or
(b) K

χ is a valid substitution instance of a rule from R.
H
ψ is provable from P, notation P ` H

ψ , if there exists a proof of H
ψ from P.

Above we stated that a 3-value stable model 〈CT,PT〉 for a PTSS P has to be justifiably compatible with
the proof system defined by P. By ‘compatible’ we mean that 〈CT,PT〉 has to be consistent with every
provable rule. With ‘justifiable’ we require that for each transition in CT and PT there is actually a proof
that justifies it. More precisely, we require that (a) for every certain transition in CT there is a proof in P
such that all negative hypotheses of the proof are known to hold (i.e. there is no possible transition in PT
denying a negative hypothesis), and (b) for every possible transition in PT there is a proof in P such
that all negative hypotheses possibly hold (i.e. there is no certain transition in CT denying a negative
hypothesis). This is formally stated in the next definition.

Definition 6 (3-valued stable model). Let P = (Σ,A,R ) be a PTSS. A tuple 〈CT,PT〉 with CT ⊆ PT ⊆
T (Σs )×A×T (Σd ) is a 3-valued stable model for P if for every closed positive literal ψ it holds that

(a) ψ ∈ CT iff there is a set N of closed negative literals such that P ` N
ψ and PT |= N

(b) ψ ∈ PT iff there is a set N of closed negative literals such that P ` N
ψ and CT |= N .

In fact, the least 3-valued stable model of a PTSS can be constructed using induction. We borrow this
construction from [14, 15].

Lemma 7. Let P be a PTSS. For each ordinal α define the pair 〈CTα ,PTα〉 as follows:

• CT0 = ∅ and PT0 = T (Σs )×A×T (Σd ).

• For every non-limit ordinal α > 0, define

CTα = { t
a
−→ θ | for some set N of negative literals, P ` N

t
a
−→θ

and PTα−1 |= N }

PTα = { t
a
−→ θ | for some set N of negative literals, P ` N

t
a
−→θ

and CTα−1 |= N }

• For every limit ordinal α, define CTα =
⋃
β<α CTβ and PTα =

⋂
β<α PTβ .



6 Probabilistic branching bisimulation as a congruence

Then it holds that

• If β 6 α, CTβ ⊆ CTα and PTβ ⊇ PTα , that is, 〈CTβ ,PTβ〉 has at most as much information as
〈CTα ,PTα〉.

• There is an ordinal λ such that CTλ = CTλ+1 and PTλ = PTλ+1. Moreover, 〈CTλ ,PTλ〉 is the
least 3-valued stable model for P.

This result is shown in [15, 14] for a non-probabilistic setting using a slightly different definition of 3-
valued models. However, with minor changes the same proof applies to our setting as well. We note that
the first item of the lemma can be proved using transfinite induction on the lexicographic order of the
pair (α, β). the second item follows from the Knaster-Tarski theorem. PTSS with a least 3-valued stable
model that are also a 2-valued model are of particular interest, since such a model is actually the only
3-valued stable model [8, 16].

Definition 8. A PTSS P is said to be complete if its least 3-valued stable model 〈CT,PT〉 satisfies that
CT = PT i.e., the model is also 2-valued.

Now, we can associate a probabilistic transition system to a complete PTSS.

Definition 9. Let P be a complete PTSS and let 〈Tr,Tr 〉 be its unique 3-valued stable model. We say that
Tr is the transition relation associated to P. We also define the PTS associated to P as the unique PTS
(T (Σs ),A,−→) such that t

a
−→ π iff t

a
−→ θ ∈ Tr and JθK = π for some θ ∈ T (Σd ).

Example 10. The rules for the process algebra of Example 2 are defined by

a.µ
a
−→ µ

x
a
−→ µ

x+ y
a
−→ µ

y
a
−→ µ

x+ y
a
−→ µ

We denote with P̃ the PTSS defined by these rules.

4 Branching bisimulation for probabilistic automata

For a set X , we denote by ∆sub(X ) the set of discrete sub-probability distributions over X . Given π ∈

∆sub(X ), we denote by spt(π) the support { x ∈ X | π(x) > 0 }, and by π(⊥) the value 1− π(X ), for a
distinguished symbol ⊥ < X . We use δ⊥ to represent the empty distribution, i.e. δ⊥(X ) = 0.

An execution fragment of a PTS A is a finite or infinite alternating sequence of states and actions
α = s0 a1s1a2s2 . . . such that si−1

ai
−−→ πi and si ∈ spt(πi ), for each i > 0. We say, α is starting from

fst(α) = s0, and in case the sequence is finite, ending in lst(α). Put length(α) = n if α = s0a1s1,. . . an sn ,
and length(α) = ∞ if α is infinite. We write frags(A) for the set of execution fragments of A, and by
frags∗(A) the set of finite execution fragments of A. An execution fragment α is a prefix of an execution
fragment α′, denoted by α 4 α′, if the sequence α is a prefix of the sequence α′. The trace trace(α)
of α is the subsequence of external actions of α. We use ε to denote the empty trace. Similarly, we
define trace(a) = a, for a ∈ A, and trace(τ) = ε.

A scheduler for a PTS A is a function ς : frags∗(A) → ∆sub(−→) with ς (α) ∈ ∆sub(lst(α)−→) where
lst(α)−→ is the set of outgoing transitions of the state lst(α). Note that by using sub-probability distribu-
tions, it is possible that with non-zero probability no transition is chosen after α, that is, the computation
stops with probability ς (α)(⊥). Given a scheduler ς and a finite execution fragment α, the distribu-
tion ς (α) describes how transitions are chosen to move on from lst(α). A scheduler ς and a state s induce



Lee & De Vink 7

s1 π1

s2

s3

π2

π3

s4

s5
τ

0.5

0.5

b

a

a

1

1

s0 π0

s6 π6 s7 π7

s8

s9

τ

0.5

0.5
a 1 τ

0.5

0.5

Figure 1: A probabilistic transition system

a probability distribution πς,s over execution fragments on measurable sets as generated by the cones of
finite execution fragments. The cone Cα of a finite fragment α is the set { α′ ∈ frags(A) | α 4 α′ }. With
respect to ς and s, the probability πς,s of the cone Cα is recursively defined by

πς,s (Ct ) = δs (t)

πς,s (Cαat ) = πς,s (Cα ) ·
∑

lst(α)
a
−→π

ς (α)(lst(α)
a
−→ π) · π(t)

Given a scheduler ς, a state s and a finite execution fragment α, the probability of executing α based on ς
and s, notation πς,s (α), is defined as πς,s (α) = πς,s (Cα ) · ς (α)(⊥). We define the length of a scheduler ς
with respect to a state s by lengths (ς) = max{ length(α) | fst(α) = s, ς (α) , δ⊥ }. Given a scheduler ς,
we may define a truncation ςn by ςn (α) = ς (α) if length(α) 6 n, otherwise ςn (α) = δ⊥.

We say that a state s can execute a weak transition for action a ∈ A if there is a scheduler ς such that
the action a is executed with probability 1. After a is executed, with probability πς,s ({ α ∈ frags∗(A) |
lst(α) = t }) the state t will be reached. If a = τ, we have a similar definition but with probability 1 no
visible action is executed.

Definition 11. Let A be a PTS with s ∈ S and a ∈ Σ∪{ε}. A transition s
a
=⇒c π is called a weak combined

transition if there exists a scheduler ς such that the following holds for πς,s:

1. πς,s ( frags∗(A) ) = 1.

2. For each α ∈ frags∗(A), if πς,s (α) > 0 then trace(α) = trace(a).

3. For each state t, πς,s ({ α ∈ frags(A∗) | lst(α) = t }) = π(t).

Occasionally we want to make reference to the scheduler ς underlying a weak combined transition
s

a
=⇒c π. We do so by writing s

a
=⇒ς π.

Example 12. The state s0 of the PTS in Figure 1, has the following weak combined transitions: (i) s0
ε
=⇒c

δs0 (ii) s0
ε
=⇒c πs0 with πs0 (s2) = πs0 (s3) = 0.25 and πs0 (s6) = 0.5 (iii) s0

a
=⇒c πa with πa (s5) = πa (s7) =

0.5 (iv) s0
a
=⇒c π

′
a with π′a (s5) = 0.5 and π′a (s8) = πa (s9) = 0.25. Note, there is no weak combined tran-

sition from s0 that executes an action b, since there is no scheduler that allows to execute b from s0 with
probability 1.

Next, we generalize the notion of a weak combined transition to allow for a distribution of source states.

Definition 13. Let A = (T (Σs ),A,−→) be a PTS, π,π′ ∈ ∆sub(S) sub-probability distributions, and a ∈ A
an action. We say that π

a
=⇒c π

′ is a weak combined hyper transition if there exists a family of weak
combined transitions { s

a
=⇒c πs }s∈spt(π′) such that π′ =

∑
s∈spt(π) π(s) · πs .



8 Probabilistic branching bisimulation as a congruence

In the sequel we will consider weak combined transitions and weak combined hyper transitions consist-
ing of transitions taking from a specific subset, the so-called allowed transitions. This leads to the notion
of allowed transitions.

Definition 14. Choose, for a PTS A = (T (Σs ),Σ,−→), a subset of transitions A ⊆ −→. We say that s
a,A
=⇒c π

is an allowed weak combined transition from s to π respecting A, if there exists a scheduler ς inducing a
weak combined transition s

a
=⇒c µ such that, for each α ∈ frags∗(A), spt(ς (α)) ⊆ A. Similarly, we say

that π
a,A
=⇒c π

′ is an allowed weak combined hyper transition from π to π′ respecting A, if there exists a

family of allowed weak combined transitions { s
a,P
=⇒c πs }s∈spt(π) such that π′ =

∑
s∈spt(π) π(s) · πs .

We write s
a
−→c π if there is a scheduler ς such that length(ς) = 1 and s

a
=⇒ς π. We write π

a
−→c π

′ if
π

a
=⇒c π

′ with an associated family of transitions { s
a
−→c πs }s∈spt(π). We employ similar notation for

allowed transitions.
The paper [12] proposes to consider in their study of weak probabilistic bisimulation the notion of

an allowed transition (see Definition 14). The key idea is to consider transitions taken from a specific
part of the transition system. We use the essence of this to distill a notion of probabilistic branching
bisimulation.

Given a relationB ⊆T (Σs )×T (Σs ), its lifting to∆(T (Σs ))×∆(T (Σs )) is defined as follows: πB π′ iff
there is a weight function w : (T (Σs )×T (Σs ))→ [0,1] such that for all t,t ′ ∈T (Σs ), (i) w(t,T (Σs )) = π(t),
(ii) w(T (Σs ),t ′) = π′(t ′), and (iii) w(t,t ′) > 0 implies tB t ′. It is easy to check that the weight function
is a probability distribution on T (Σs )×T (Σs ). Moreover, the lifting of B is reflexive, symmetric and/or
transitive if B is. The overloading of B should be harmless.

Definition 15. Let A = (T (Σs ),A,−→) be a PTS, and let B ⊆ T (Σs ) ×T (Σs ) be a symmetric relation.
A transition s

τ
−→ π is called branching preserving for B if δ(s)B π. The relation B on T (Σs ) is called

a probabilistic branching bisimulation for A if, for a branching preserving set of transitions P ⊆
τ
−→, it

holds that sB t and s
a
−→ πs imply either (i) a = τ and s

τ
−→ πs ∈ P, or (ii) t

τ,P
=⇒c π̃t with π̃t

a
−→c πt and

πsB πt , for all states s,t ∈ T (Σs ). We write s ≈b t if there exists a probabilistic branching bisimulation
for A relating states s and t.

In [3], a definition for branching bisimulation for the alternating model [20] is presented. Contrary to our
definition above, it does not use the notion of schedulers. We explain the underlying intuition considering
the PTS depicted in Figure 2.

It is clear that states T = { t1,. . . ,t4 } are branching bisimilar and that all transitions labeled τ are
branching preserving. Notice that for every scheduler ς such that s

a
=⇒ς πς we have πς = π. Thus, in

this particular example, schedulers do not make any difference for the definition of a combined transition
executing a. In general, it does not make any change choosing, with different probabilities, between
branching preserving transitions until a visible action is executed, because the targets of two branching
preserving transitions are, by definition, the same modulo branching bisimulation.

We adapt the definition of [3] for branching bisimulation without scheduler for alternating systems
to the present setting. This new definition coincides with Definition 15. A concrete execution of a PTS A

is a sequence s0a0π0s1 . . . πn−1snanπn such that si
ai
−−→ πi for 0 6 i 6 n and s j+1 ∈ spt(π j ) for 0 6 j < n.

Definition 16. A symmetric relationB ⊆T (Σs )×T (Σs ) is called a branching bisimulation without sched-
uler for a PTS A= (T (Σs ),A,−→) iff sB s′ and s

a
−→ π imply (i) a = τ and δsB π, or (ii) a ∈ Σ and there is



Lee & De Vink 9

s0 π0

s1

s2

s3

π1

π2

π3

t1

t2

t3

t4

π
τ

p1

p2

p3

τ

τ

τ

τ

p4

p5

p6

p7

p8

p9

p10

p11

a
a

a
a

Figure 2: Schedulers are not needed to define branching bisimulation

a concrete execution s0τπ1s1τπ2s2 . . . πn snaπ′ such that s′ = s0, sB si for 0 6 i 6 n, δsB π j for 1 6 j 6 n
and πB π′. We write s ∼b s′ if a branching bisimulation without scheduler for A relates s and s′.

Thus, while the scheduler-based definition requires preservation of branching by the transitions that are
combined, the scheduler-less definition requires branching bisimilarity of the intermediate states and
distribution with the source state. In view of this, the next result does not come as a surprise.

Theorem 17. Let A = (T (Σs ),A,−→) be a PTS. Then s ≈b t iff s ∼b t, for all s,t ∈ T (Σs ). �

5 The probabilistic RBB format

A congruence over an algebraic structure is an equivalence relation on the elements of the algebra
compatible with its structure. Formally, a (sort-respecting) equivalence relation C ⊆ T (Σ) ×T (Σ) is
a congruence if for all f ∈ Σ and ξi ,ξ

′
i ∈ T (Σ) with ξi C ξ ′i for all i, 1 6 i 6 rk( f )}, it holds that

f (ξ1,. . . ,ξrk( f )) C f (ξ ′1,. . . ,ξ
′
rk( f )).

It is well-known that typically branching bisimulation per se is not preserved by most process alge-
bras [14, 9]. This is solved strengthening the requirements by means of the rootedness condition. In this
way, we obtain a stronger notion, in our setting that of a rooted branching probabilistic bisimulation.

Definition 18. A symmetric relation R ⊆ T (Σs )×T (Σs ) is called a rooted branching probabilistic bisim-
ulation with respect to a PTS A = (T (Σs ),A,−→) if, for all s,t ∈ T (Σs ), it holds that s R t and s

a
−→ θs

imply t
a
−→ θt for some θt such that θs ≈b θt .

To continue, we explain the restrictions needed by the format. Then we present the probabilistic RBB safe
specification format. If a PTSS P satisfies this specification format then rooted branching bisimulation
is a congruence for all operator defined by P. Finally, we present the definitions and lemmas needed to
prove the main result. Basically, we have extended the ideas from [14] to our setting.

Restrictions over the format. Consider, in the context of our running example, the terms s = a.(b.0)
and t = a.(τ.(b.0)). Note s ≈rb t. The restrictions on the format discussed below are justified by the
following examples.

Look-ahead is not allowed. The format presented in [11, 25] allow quantitative premises. These
premises have the shape θ(Y ) D p with θ ∈ T(Σd ), Y ⊆ V , D∈ {>,≥} and p ∈ [0,1]. Given a closed
substitution ρ, the closed premise ρ(θ(Y ) D p) holds iff Jρ(θ)K(ρ(Y )) D p holds. Without quantitative



10 Probabilistic branching bisimulation as a congruence

premises is not possible to have look-ahead. Suppose that our rules (Definition 4) support this kind of
premises, then we can add to P̃ the operator f , ar( f ) = s→ s, defined by

x
a
−→ µ µ({y}) > 0 y

b
−→ ν

f (x)
a
−→ 0

(1)

Then f (s)
a
−→ and f (t)

a
−→6 , therefore f (s)0rb f (t). The problem with look-ahead is the possibility for

testing after an action is executed. The processes reached (with probability greater than zero) after the
execution of the action may not be rooted branching bisimilar. To avoid this problem and simplify the
presentation, the kind of rules that we are using does not support quantitative premises.

The following examples follow in essence the same idea: by combining operators with particular
rules, it is possible to test, in some way, the target of a positive premise. In addition, we use the examples
to motivate other ingredients of our format below.

Arbitrary testing of a positive premise target using other rules is not allowed. Add to P̃ the operator f
with ar( f ) = s→ s, and operator g with ar(g) = ss→ s defined by

x
a
−→ µ

f (x)
a
−→ g(δ(x), µ)

x2
b
−→ µ

g(x1,x2)
b
−→ 0

(2)

then f (s)0rb f (t). Notice, f (s)
a
−→ g(δ(s),b.0) and g(s,b.0)

b
−→ 0, while f (t)

a
−→ g(δ(t),τ.b.0) and

g(t,τ.b.0)
b
−→6 . Here, the target of the premise x

a
−→ µ of the first rule is tested, via instantiation of x2,

in the second rule. When the target of a positive premise is used as an argument of the function in the
target of the conclusion, we say that the position of the argument is wild. If the position is not wild,
then it is tame. Here, the second argument of g is wild. To ‘control’ wild arguments, patience rules are
introduced, see Definition 20. In this case, a patience rule for the second argument of g is defined by

x2
τ
−→ µ

g(x1,x2)
τ
−→ g(δ(x1), µ)

(3)

Taking into account this new rule we have that f (s) ≈b f (t).
However, the problem we have presented is more general. Add to P̃ operator f with ar( f ) = s→ s,

operator g with ar(g) = ss→ s and operator h with ar(h) = s→ s defined by

x
a
−→ µ

f (x)
a
−→ h(g(δ(x), µ))

x2
b
−→ µ

g(x1,x2)
b
−→ 0

x1
b
−→ µ

h(x1)
b
−→ 0

(4)

Then f (s)0rb f (t). In the target of the conclusion of the first rule, the second argument of g is the
target of a positive premise. In addition, this term is the argument of h. In this case, we say that the
second argument of g and the argument of h are wild. Also here, terms f (s) and f (t) can become rooted
branching bisimilar adding patience rules for the wild arguments. In the next section, Definition19
formalizes the notion of a wild argument and Definition 21 is introduced to deal with their nesting.

Finally, we point out that the condition of being wild can be ‘inherited’. For example, take into
account rules from (2) and (3). Recall, the second argument of g is wild and its patience rule is defined.
Add a new operator h with ar(h) = ss→ s and the following rules

g(x1,x2)
a
−→ δ(h(x2,x1))

x1
b
−→ µ

h(x1,x2)
c
−→ 0

(5)

the first argument of h is wild because variable x2 appears in that position and it also appears in a wild
position of g. If we do not add a patience rule for the first argument of h we have f (s)0rb f (t).



Lee & De Vink 11

Wild arguments cannot be used in the source of a premise unrestrictedly. Again, take into account
rules from (2) and (3) and add either one of the following rules

x2
b
−→6

g(x1,x2)
a
−→ 0

x2
τ
−→ µ

g(x1,x2)
a
−→ 0

(6)

In both cases we get f (s)0rb f (t). The first rule is an example that shows that a wild argument cannot
appear as the source of a negative premise. The second rule shows that a wild argument cannot be used
as the source of a positive premise with label τ. Both kind of restrictions will be present in the format.

The RBB format. Definition 19 introduces the nesting graph: an edge from 〈 f ,i〉 to 〈g, j 〉 in the graph
encodes that a variable appearing in the i-th argument of f , also appears in a term that is used as the j-th
argument of g in the conclusion of a rule. This graph is used to define when a variable is wild.

Definition 19. (a) Let P = (Σ,A,R ) be a PTSS. The nesting graph of the PTTS P is the directed
graph GP = (V,E) with

V = { 〈 f ,i〉 | f ∈ Σs ,1 6 i 6 rk( f ) }

E = { (〈 f ,i〉,〈g, j〉) | r ∈ R, conc(r) = f ( ..,ζi ,..)
a
−→ C[g( ..,,ξ j−1,C ′[ζi],ξ j+1,,..)] } ∪

{ (〈 f ,i〉,〈g, j〉) | r ∈ R, conc(r) = f ( ..,ζi ,..)
a
−→ C[g( ..,,ξ j−1,C ′[ζi],ξ j+1,,..)] }

(b) Let P be a PTSS and GP = (V,E) be its nesting graph. A node 〈g, j〉 ∈ V is called wild if

1. t
a
−→ µ ∈ prem(r) and tgt(conc(r)) = C[g( ..,ξ j−1,C ′[µ],ξ j+1,..)] for some r ∈ R, or

2. t
a
−→ µ ∈ prem(r) and tgt(conc(r)) = C[g( ..,ξ j−1,C ′[µ],ξ j+1,..)] for some r ∈ R, or

3. (〈 f ,i〉,〈g, j〉) ∈ E and 〈 f ,i〉 is wild.

The i-th argument of an operator f or f is wild if 〈 f ,i〉 is wild, otherwise it is tame.

In the definition of a wild argument, items (b.1) and (b.2) deal with the case where the target of a positive
premise µ is used in the target of the conclusion. Two cases are needed to deal with g ∈ Σs and its lifting
g ∈ Σd . Notice that g ∈ Σs can appear in a distribution term, particularly in the target of the conclusion,
using the operator δ. The nesting of context allows to take into account all possible cases. Item (b.3)
deals with the ‘inheritance’ mentioned above. Below, the definitions of patience rules, w-nested contexts
and the RBB safe specification format are given. Later we explain how these are used to ensure that
rooted branching bisimulation is a congruence.

Definition 20. Let ζ ∈ V ∪D, define ζ = δ(ζ ) whenever ζ has sort s and ζ = ζ , otherwise. The patience
rule for the i-th argument (of sort s) of a function symbol f ∈ Σs is the rule

xi
τ
−→ µ

f ( ..,ζi−1,xi ,ζi+1,..)
τ
−→ f ( ..,ζ i−1, µ,ζ i+1,..)

Definition 21. The set of w-nested contexts is defined inductively by

1. The empty context [ ] is w-nested.

2. The term f ( ..,ξi−1,C[ ], ξi+1,..) is w-nested if C[ ] is w-nested and the i-th argument of the function
symbol f is wild.

3. The term δ(C[ ]) is w-nested if C[ ] is w-nested.

4. The term
⊕

i∈I [pi]ξi is w-nested if ξ j = C[ ] for some j ∈ I, and C[] is w-nested.

5. The term f ( ..,ξi−1,C[ ], ξi+1,..) is w-nested if C[ ] is w-nested and the i-th argument of the function
symbol f is wild.



12 Probabilistic branching bisimulation as a congruence

The variable ζ appears in a w-nested position in ξ ∈ T(Σ) if there is a w-nested context C[] with C[ζ]= ξ.

Definition 22. Let P = (Σ,A,R ) be a PTSS where each argument of f ∈ Σ is defined as wild or tame
with respect to GP . The PTSS P is in the probabilistic RBB safe specification format if for all r ∈ R one
of the following conditions holds.

1. r is a patience rule for a wild argument of a function symbol in Σ.

2. r is a RBB safe rule, i.e. r has the following shape

{ tm
am
−−−→ µm | m ∈ M } { tn

bn
−−−→6 | n ∈ N }

f (ζ1,. . . ,ζrk( f ) )
a
−→ θ

where M and N are index sets, ζk , and µm , with 1 6 k 6 rk( f ) and m ∈ M , are all different
variables, f ∈ Σs , tm ,tn ∈ T(Σs ) and θ ∈ T(Σd ), and the following conditions are met.

(a) If the i-th argument of f is wild and has a patience rule in R, then for all ψ ∈ prem(r) such
that ζi = xi ∈ var(ψ), ψ = xi

ai
−−→ µi with ai , τ.

(b) If the i-th argument of f is wild and does not have a patience rule in R, then ζi does not
occur in the source of a premise of r .

(c) Variables µm , for m ∈ M , and variables ζi , where i-th argument of f is wild, only occur at
w-nested positions in θ.

(d) µm < var(tm′) for all m,m′ ∈ M .

Patience rules for wild arguments allow to progress along the i-th parameter using the transition xi
τ
−→ µ.

Because of the patience rules and the restriction to test a wild argument (Definition 22.2a), τ-transitions
will not be detected by the premises of the rules of a PTSS satisfying the format. If an argument of some
f is wild and it has no patience rule, then it cannot be tested (Definition 22.2b). Notice that the patience
rules lift the τ-transition that can be executed by the i-th parameter of f to f , i.e. if the i-th parameter
of f can execute a τ-transition then f can execute a τ-transition affecting only the this parameter. Then,
the lifting of a τ-transition has to be also ‘controlled’. This is done requiring Definition 22.2c. Finally,
restriction Definition 22.2d is added to avoid dealing with non-well-founded set of premises (see [18]).
Because rules do not support quantitative premises, see Definition 4, this is not a significant restriction.

For the probabilistic RBB safe specification format we have the following congruence result.

Theorem 23. Let P be a complete PTSS in RBB safe specification format. Then ≈rb is a congruence
relation for all operators defined in P.

In the rest of this section we present the key elements needed to prove Theorem 23. For the sake of clarity,
we fix P = (Σ,A,R ), a complete PTSS. For any ordinal α, let 〈CTα ,PTα〉 be the 3-valued model of P
constructed inductively as in Lemma 7 with 〈CTλ ,PTλ〉 being the 3-valued least stable model. Thus,
CTλ = PTλ is the transition relation associated to P.

First we introduce the relations C and B. C is the congruence closure of rooted branching bisim-
ulation, and B is a kind of congruence closure of the branching bisimulation based on wild and tame
arguments and relation C. Notice the correlation between B and the restrictions imposed to the target of
the conclusion of a rule in RBB safe format.

Definition 24. (a) The relation C ⊆ T (Σ)×T (Σ) is the smallest relation such that

1. ≈rb ⊆ C,
2. c C c′ whenever c,c′ ∈ Σs , ar(c), ar(c′) = s and c C c′, and
3. f (ξ1,· · · ,ξrk( f )) C f (ξ ′1,· · · ,ξ

′
rk( f )) whenever ξi C ξ ′i for all i, 1 6 i 6 rk( f ) and f ∈ Σs ∪Σd .



Lee & De Vink 13

(b) The relation B ⊆ T (Σ)×T (Σ) is the smallest relation such that

1. ≈b ⊆ B,
2. c B c′ whenever c,c′ ∈ Σs , ar(c), ar(c′) = s and c B c′, and
3. f (ξ1,· · · ,ξrk( f )) C f (ξ ′1,· · · ,ξ

′
rk( f )) whenever f ∈ Σs ∪Σd ,

– ξi C ξ
′
i for the i-th tame arguments of f , and

– ξi B ξ ′i for the i-th wild arguments of f .

The two cases of the following lemma can be proved using structural induction with respect to ϑ ∈ T(Σ)
and the definitions of C and B.

Lemma 25. Let ρ, ρ′ be two closed substitutions and ϑ ∈ T(Σ).

• If ρ(ζ ) C ρ′(ζ ) for all ζ ∈ V ∪D, then ρ(ϑ) C ρ′(ϑ).

• If, for each variable ζ ∈ var(ϑ), either

– ρ(ζ ) C ρ′(ζ ), or
– ρ(ζ ) B ρ′(ζ ) and x only occurs at w-nested positions in ϑ,

then σ(ϑ) B σ′(ϑ).

The relations C and B lift properly to distributions. This ensures that JθK C Jθ ′K and JθK B Jθ ′K whenever
θ C θ ′ and θ B θ ′, respectively. Therefore we can work at the symbolic level.

Lemma 26. Let θ,θ ′ ∈ T (Σd ). If θ C θ ′ then JθK C Jθ ′K. If θ B θ ′ then JθK B Jθ ′K.

Theorem 23 is a straight consequence of Lemma 27. Notice that (IIIα) uses the characterization of
branching bisimulation without schedulers.

Lemma 27. If P is in probabilistic RBB safe format and s,t ∈ T (Σs ), then

(Iα) If s C t and s
a
−→ θs ∈ CTλ , then t

a
−→ θt ∈ PTα for some θt ∈ T (Σd ).

(I Iα) If s C t and s
a
−→ θs ∈ CTα , then t

a
−→ θt ∈ CTλ for some θt ∈ T (Σd ) with θs B θt .

(I I Iα) If s B t and s
a
−→ θs ∈ CTα then either:

• a = τ and δ(s) B θs or
• there is a concrete execution t0τθ1t1τθ2t2 . . . θntnaθt in CTλ such that t = t0, s B ti for

0 ≤ i ≤ n, δ(s)B θ j for 1 ≤ j ≤ n and θs B θt .

Proof of Theorem 23. Condition IIIα of Lemma 27 yields that B is a branching bisimulation. Together
with IIα this implies that C is a rooted branching bisimulation. By definition of ≈rb, C ⊆ ≈rb and by
definition of C, C ⊇ ≈rb, therefore C = ≈rb. Finally, by Definition 24.a.3, rooted branching bisimulation
is a congruence. �

6 Concluding remarks

In this paper we have presented the RBB safe specification format, to the best of our knowledge, the first
transition system specification format in the quantitative setting that respects a weak equivalence.

Two main ideas underlie our approach. First, the qualitative RBB safe specification format [14]
occurs to translate smoothly to the way of specifying probabilistic transitions systems as proposed in [11,
25]. The representation of distributions over states via the algebraic of distribution terms, is crucial to



14 Probabilistic branching bisimulation as a congruence

adapt the result. With syntactic grip on distributions in place we are able to incorporate the definitions of
a nesting graph and a wild argument, patience rules, w-nested context and w-nested position, and finally
the format specification itself. In addition, Lemma 26 ensures that relations at the syntactic level lift well
to the semantical level.

Second, the characterization of branching bisimulation without schedulers of [3] reduced the com-
plexity of our proofs. In general, frameworks combining internal transitions and probabilities, exploit
schedulers to define weak combined transitions. This gives extra overhead in the technical treatment.
Witnessing that working with these notions is not that easy, decision algorithms for e.g. weak probabilis-
tic bisimulation [21] and weak distribution bisimulation [12] are from recent years.

Future work includes an extension of the format to support quantitative premises. As explained in
Section 5, quantitative premises cannot be used to include look-ahead in the format directly. However,
the two-sorted approach allows rules of the shape

µ1 ⊕p1 δ({y2})({y1}) D p1 µ2 ⊕p2 δ({y1})({y2}) D p2

f (µ1, µ2)
a
−→ θ

In order to achieve this goal, techniques introduced for the ntµfθ/ntµxθ format [11] can be used. That is,
the sets used for measuring probabilities, above {y1} and {y2}, have to be infinite. Moreover, the rule set,
regarding occurrences in premises, has to be symmetric with respect to these variables. Also, we have
to incorporate a well-foundedness condition [18, 11]. The premises of the last rule are not well-founded
because there is a circular dependency between variables y1 and y2. Another research investigates the
characterization of branching bisimulation without schedulers to obtain new results in the probabilistic
context. Currently we are working on a logic to characterize this relation, focusing on completeness.

Acknowledgment. The authors would like to thank Pedro R. D’Argenio for helpful discussions.

References
[1] L. Aceto, B. Bloom & F.W. Vaandrager (1994): Turning SOS Rules into Equations. Information and Com-

putation 111, pp. 1–52, doi:10.1006/inco.1994.1040. Available at http://dx.doi.org/10.1006/inco.
1994.1040.

[2] L. Aceto, W. Fokkink & C. Verhoef (1999): Handbook of Process Algebra, chapter Chapter 3: Structural
Operational Semantics, pp. 197–292. Elsevier.

[3] S. Andova, S. Georgievska & N. Trčka (2012): Branching bisimulation congruence for probabilistic systems.
Theoretical Computer Science 413, pp. 58–72, doi:10.1016/j.tcs.2011.07.020.

[4] J.C.M. Baeten & E.P. de Vink (2004): Axiomatizing GSOS with Termination. Journal of Logic and Algebraic
Programming 60–61, pp. 323–351, doi:10.1016/j.jlap.2004.03.001.

[5] F. Bartels (2004): On Generalised Coinduction and Probabilistic Specification Formats. Ph.D. thesis, Vrije
Universiteit Amsterdam.

[6] B. Bloom (1995): Structural operational semantics for weak bisimulations. Theoretical Computer Science
146, pp. 25–68, doi:10.1016/0304-3975(94)00152-9.

[7] B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Journal of the ACM 42, pp. 232–268,
doi:10.1145/200836.200876.

[8] R. Bol & J.F. Groote (1996): The meaning of negative premises in transition system specifications. Journal
of the ACM 43, pp. 863–914, doi:10.1145/234752.234756.

[9] V. Castiglioni, R. Lanotte & S. Tini (2014): A Specification Format for Rooted Branching Bisimulation.
Fundamenta Informaticae 135, pp. 355–369, doi:10.3233/FI-2014-1128.

http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1016/j.tcs.2011.07.020
http://dx.doi.org/10.1016/j.jlap.2004.03.001
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
http://dx.doi.org/10.3233/FI-2014-1128


Lee & De Vink 15

[10] P.R. D’Argenio, D. Gebler & M.D. Lee (2014): Axiomatizing bisimulation equivalences and metrics from
probabilistic SOS rules. In: Foundations of Software Science and Computation Structures, Springer, pp.
289–303.

[11] P.R. D’Argenio & M.D. Lee (2012): Probabilistic transition system specification: Congruence and full
abstraction of bisimulation. In L. Birkedal, editor: Proc. FOSSACS, LNCS 7213, pp. 452–466.

[12] C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini & Lijun Zhang (2013): Deciding Bisimilarities on Dis-
tributions. In K. Joshi, M. Siegle, M. Stoelinga & P.R. D’Argenio, editors: Proc. Quantitative Evaluation of
Systems, LNCS 8054, pp. 72–88, doi:10.1007/978-3-642-40196-1 6.

[13] W. Fokkink (1994): The tyft/tyxt Format Reduces to Tree Rules. In M. Hagiya & J.C. Mitchell, editors: Proc.
TACS 1994, LNCS 789, pp. 440–453, doi:10.1007/3-540-57887-0 109.

[14] W. Fokkink (2000): Rooted Branching Bisimulation as a Congruence. Journal of Computer and System
Sciences 60, pp. 13–37, doi:10.1006/jcss.1999.1663.

[15] W. Fokkink & C. Verhoef (1998): A Conservative Look at Operational Semantics with Variable Binding.
Information and Computation 146, pp. 24–54, doi:10.1006/inco.1998.2729.

[16] R.J. van Glabbeek (2004): The Meaning of Negative Premises in Transition System Specifications II. Journal
of Logic and Algebraic Programming 60-61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[17] R.J. van Glabbeek (2005): On cool congruence formats for weak bisimulations. In Dang Van Hung &
M. Wirsing, editors: Proc. ICTAC 2005, LNCS 3722, pp. 318–333.

[18] J.F. Groote (1993): Transition system specifications with negative premises. Theoretical Computer Science
118, pp. 263–299, doi:10.1016/0304-3975(93)90111-6.

[19] J.F. Groote & F. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a Congruence.
Information and Computation 100, pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[20] H. Hansson (1991): Time and probability in formal design of distributed systems. Ph.D. thesis, University of
Uppsala.

[21] H. Hermanns & A. Turrini (2012): Deciding Probabilistic Automata Weak Bisimulation in Polynomial Time.
In D. D’Souza, T. Kavitha & J. Radhakrishnan, editors: FSTTCS 2012, 18, Dagstuhl, pp. 435–447.

[22] B. Klin (2009): Structural Operational Semantics for Weighted Transition Systems. In J. Palsberg, editor:
Semantics and Algebraic Specification, LNCS 5700, pp. 121–139, doi:10.1007/978-3-642-04164-8 7.

[23] B. Klin & V. Sassone (2013): Structural operational semantics for stochastic and weighted transition sys-
tems. Information and Computation 227, pp. 58–83, doi:10.1016/j.ic.2013.04.001.

[24] R. Lanotte & S. Tini (2009): Probabilistic bisimulation as a congruence. ACM Transactions on Computa-
tional Logic 10, pp. 1–48, doi:10.1145/1462179.1462181.

[25] M.D. Lee, D. Gebler & P.R. D’Argenio (2012): Tree rules in probabilistic transition system specifications
with negative and quantitative premises. In B. Luttik & M.A. Reniers, editors: Proc. EXPRESS/SOS,
EPTCS 89, pp. 115–130, doi:10.4204/EPTCS.89.9.

[26] M. Miculan & M. Peressotti (2014): GSOS for non-deterministic processes with quantitative aspects. In
N. Bertrand & L. Bortolussi, editors: Proc. QAPL 2014, EPTCS 154, pp. 17–33.

[27] M.R. Mousavi, M.A. Reniers & J.F. Groote (2007): SOS formats and meta-theory: 20 years after. Theoretical
Computer Science 373, pp. 238–272, doi:10.1016/j.tcs.2006.12.019.

[28] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
MIT.

[29] R. Segala & N.A. Lynch (1995): Probabilistic simulations for probabilistic processes. Nordic Journal of
Computing 2, pp. 250–273.

http://dx.doi.org/10.1007/978-3-642-40196-1_6
http://dx.doi.org/10.1007/3-540-57887-0_109
http://dx.doi.org/10.1006/jcss.1999.1663
http://dx.doi.org/10.1006/inco.1998.2729
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1007/978-3-642-04164-8_7
http://dx.doi.org/10.1016/j.ic.2013.04.001
http://dx.doi.org/10.1145/1462179.1462181
http://dx.doi.org/10.4204/EPTCS.89.9
http://dx.doi.org/10.1016/j.tcs.2006.12.019

	Introduction
	Preliminaries
	Probabilistic Transition System Specifications
	Branching bisimulation for probabilistic automata
	The probabilistic RBB format
	Concluding remarks

