
To appear in EPTCS.

A Reference Interpreter for the Graph Programming

Language GP 2

Christopher Bak∗, Glyn Faulkner∗, Detlef Plump and Colin Runciman

Department of Computer Science, The University of York, UK

GP 2 is an experimental programming language for computing by graph transformation. An ini-

tial interpreter for GP 2, written in the functional language Haskell, provides a concise and simply

structured reference implementation. Despite its simplicity, the performance of the interpreter is suf-

ficient for the comparative investigation of a range of test programs. It also provides a platform for

the development of more sophisticated implementations.

1 Introduction

GP 2 is an experimental programming language in which the major part of the computational state is

a labelled directed graph, and the basic units by which computational progress is made are subgraph-

replacement rules. Choices of rules and subgraphs are non-deterministic, and some of the control struc-

tures above the level of rules involve back-tracking.

The implementation of such a programming language poses some interesting challenges and oppor-

tunities. Our ultimate goal is to produce a compiler from GP 2 to high-performance executable code.

This paper reports a first stage towards that goal, the development of a reference interpreter for GP 2. By

this we mean an interpreter written with the main aim of being clear, concise and correct. Where there

are design choices, simplicity of definition takes priority over other considerations such as performance

and the richness of functionality. The interpreter contains only around 1,000 lines of Haskell source

code. Even so, we shall show that it is usable in practice.

Section 2 outlines and illustrates the GP 2 graph-programming language. Section 3 presents a small

set of test programs written in GP 2. Section 4 considers the expected uses of a reference interpreter,

and consequent requirements. Section 5 describes our reference interpreter for GP 2. Section 6 sets

out the measured results of using the reference interpreter to evaluate test programs. Section 7 briefly

discusses related work and indicates some of our own expected lines of future work. Section 8 draws

overall conclusions from our work on the reference interpreter for GP 2.

2 Graph Programs

This paper focusses on GP 2, a successor to the graph programming language GP [14, 15]. GP is a

domain-specific language which aims to support formal reasoning on graph programs (see [16] for a

Hoare-logic approach to verifying GP programs). We give a brief introduction to GP 2, mainly by

example. The definition of the language, including a formal operational semantics, can be found in [15].

A graph program consists of declarations of conditional graph transformation rules and macros, and

exactly one main command sequence. Graphs are directed and may contain loops and parallel edges. The

rules operate on a host graph (or input graph) whose nodes and edges are labelled with a list of integers
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2 A Reference Interpreter for GP 2

and character strings. Besides the list, a label may contain a mark which is one of the values red, green,

blue, grey and dashed (where grey and dashed are reserved for nodes and edges, respectively). For

example, the label of the node on the right of rule init in Figure 2 is the pair 〈x:1, grey〉.

Variables in rules are of type int, char, string, atom or list, where atom is the union of int and

string. Atoms are considered as lists of length one, hence integers and strings are also lists. Similarly,

characters are considered as strings of length one. Given lists x and y, their concatenation is written x:y

(not to be confused with the list-cons operator in Haskell).

Example 1 (Transitive Closure). The principal programming constructs in GP 2 are conditional graph-

transformation rules labelled with expressions. The program in Figure 1 applies the single rule link as

long as possible to a host graph. In general, any subprogram can be iterated with the postfix operator

“!”. (A composite loop (P1; . . . ;Pn)! terminates if any of the components Pi fails, meaning that some rule

in Pi could not be matched. In this case the loop finishes with the graph on which the current iteration of

the body (P1; . . . ;Pn) was entered. See [15] for details.)

Main= link!

link(a,b,x,y,z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a b

where notedge(1,3)

Figure 1: Program for transitive closure

Applying link amounts to non-deterministically selecting a subgraph of the host graph that matches

link’s left graph, and adding to it an edge from node 1 to node 3 provided there is no such edge (with

any label). The application condition ensures that the program terminates and extends the host graph

with a minimal number of edges. Rule matching is injective and involves instantiating variables with

concrete values (see also below).

A graph is transitive if for each directed path from a node v to another node v′, there is an edge from

v to v′. Given any graph G, the program in Figure 1 produces the smallest transitive graph that results

from adding unlabelled edges to G.1 This graph is unique up to isomorphism and requires at most n2

applications of link, where n is the number of nodes in G.

Example 2 (Vertex Colouring). The program in Figure 2 assigns a colour to each node of the host graph,

such that non-loop edges have differently coloured endpoints. Positive integers are used as colours

because, in general, an unbounded number of colours is needed. The program replaces each node label

l with l:i, where i is the node’s colour. In addition, the rule init shades nodes to prevent repeated

application to the same node.

Rule inc is applied to the host graph as long as there are edges with identically coloured endpoints.

It can can be shown that this terminates after at most n2 rule applications, where n is the number of nodes.

In contrast to the previous example program, different graphs may result from this process. In particular,

there is no guarantee that the number of colours produced is minimal. For instance, Figure 3 shows two

different colourings produced for the same host graph.

1“Unlabelled” edges are actually labelled with the empty list.
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Main = init!; inc!

init(x : list) inc(a,x,y : list; i : int)

1

x ⇒

1

x:1 x:i y:i

1 2

a
⇒ x:i y:i+1

1 2

a

Figure 2: Program for vertex colouring
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∗
⇐

∗
⇒ 1

2

3

2

Figure 3: Different results from vertex colouring

Other program constructs. A GP 2 command not used in the example programs is a rule set {r1, . . . ,rn}.

This command non-deterministically applies any of the rules to the current host graph. The application

fails if none of the left-hand graphs in the rules matches a subgraph. Matches must be injective and are

only valid if they do not result in dangling edges. (More formally, GP 2 is based on the double-pushout

approach with injective matching, extended with relabelling and rule schemata [15].)

Another construct not yet discussed is the branching command if C then P else Q, where C, P

and Q are arbitrary command sequences. This is executed on a host graph G by first executing C on a

copy of G. If C succeeds, P is executed on the original graph G; otherwise, Q is executed on G. The

command try C then P else Q has a similar effect, except that P is executed on the graph resulting

from C’s execution.

3 Benchmark Programs

We envisage GP 2 as a general-purpose language for graph problems, hence the reference interpreter

should be tested on algorithms of varying complexity. This is different from the benchmarking reported

in [20] which focusses on a deterministic program with very limited complexity. In Section 6, we evaluate

the performance of our interpreter on a small set of benchmark programs. These include the programs

for transitive closure and vertex colouring, and three more programs which we describe in this section.

Shortest distances. The program in Figure 4 expects an input graph G containing a unique grey node s,

where edge labels are assumed to be non-negative integers. A unique output graph is obtained by marking

grey each node reachable from s and replacing its label l with l:d, where d is the shortest distance from

s. (A distance is the sum of the edge labels of a directed path.)

The program first assigns distance 0 to the unique start node s. Then the loop add! traverses the

nodes reachable from s, assigning distances by adding edge labels. In a second phase, the loop reduce!

minimizes distances by searching for edges whose sum of source node distance and edge label is smaller
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Main= init; add!; reduce!

init(x : list) add(x,y : list; m,n : int)

x

1

⇒ x:0

1

x:m y

1 2

n
⇒ x:m y:m+n

1 2

n

reduce(x,y : list; m,n,p : int)

x:m y:p

1 2

n
⇒ x:m y:m+n

1 2

n

where m+n< p

Figure 4: Program for shortest distances

Main = if Cyclic then fail

Cyclic = delete!; {edge, loop}

delete(a,x,y : list)

x y

1 2

a ⇒ x y

1 2

where indeg(1) = 0

edge(a,x,y : list) loop(a,x : list)

x y

1 2

a ⇒ x y

1 2

a
x

1

a ⇒ x

1

a

Figure 5: Program for recognising acyclic graphs

than the target node distance, and replacing the target node distance with the sum.

The requirement that edge labels are non-negative ensures that the program terminates. It can be

relaxed by allowing negative edge labels but requiring that directed cycles have a non-negative overall

distance.

Recognising acyclic graphs. The program in Figure 5 checks whether its input graph is acyclic. If this is

the case, the program preserves its input graph, otherwise it fails. Suppose we call the program acyclic

to use it as a macro in the program if acyclic then P else Q. Given any input graph G, this program

will test whether G is acyclic and, depending on the result, either execute P or Q on G.

The presence of cycles is checked by deleting as long as possible edges whose sources have no

incoming edges, and testing whether any edges remain. This is correct since an application of delete

preserves both the absence and the presence of cycles (by the condition of the rule). Moreover, a graph

to which delete is not applicable is acyclic if and only if it is edge-less (every acyclic graph with edges

must contain an edge to which delete is applicable).

Generating Sierpinski triangles. A Sierpinski triangle is a self-similar geometric structure which can

be recursively defined. Figure 7 shows a Sierpinski triangle of generation three, composed of three
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second-generation triangles, each of which consists of three triangles of generation one.2

The program in Figure 6 expects as input a single node labelled with the generation number of the

Sierpinski triangle to be produced. The rule init creates the Sierpinski triangle of generation 0 and turns

the input node into a “control node” with label x:0, holding the required generation number x together

with the current generation number.

After initialisation, the nested loop (inc; expand!)! is executed. In each iteration of the outer loop,

inc increases the current generation number if it is smaller than the required number (which is checked

by the rule’s condition). If the test is successful, the inner loop expand! performs a Sierpinski step

on each triangle whose top node is labelled with the current generation number: the triangle is replaced

by four triangles such that the top nodes of the three outer triangles are labelled with the next higher

generation number. The test x> y fails when the required generation number has been reached. In this

case the application of inc fails, causing the outer loop to terminate and return the current graph which

is the Sierpinski triangle of the requested generation.

Sierpinski triangles pose a hard challenge for graph transformation: generating the n-th triangle

requires space and a number of rule applications exponential in n. This problem was part of the 2007

tool contest for graph transformation, where the goal was to generate triangles of generation numbers as

high as possible and as fast as possible [19].

4 Reference Interpreters: Uses and Requirements

A reference interpreter for a new programming language such as GP2 has several potential uses. Each

has consequences for the way the reference interpreter is written and the facilities it provides.

An arbiter for programmers. A programmer working in a new language needs to know whether what

they are writing is a valid program, and whether the effect of executing it is the effect they intend. To

resolve such issues, the programmer may want to use a reference interpreter as a black box, checking

the output it produces given their program as input. Or they may wish to look at a salient part of the

source-code for the interpreter, to confirm some aspect of the language they are unsure about.

It follows that a reference interpreter should provide as output at least a report whether a program is

valid, and if so a clear representation of the result when it is evaluated. It also follows that the source-

code for a reference interpreter should be organised in such a way that salient components are easy to

identify. For ease of reading it should be written using a consistent style in a modest subset of a suitable

high-level language.

An arbiter for implementors. An implementer of a programming language, developing their own inter-

preter or compiler, needs a standard against which to test the correctness of their implementation. There

are two main respects in which any implementation should agree with a reference interpreter as a defin-

ing standard. They should agree which programs are valid, and for valid programs they should agree the

results of executing them. Like application programmers, implementers too may wish sometimes to use

the reference interpreter as a black box, but at other times to consult its internal definitions.

There are additional requirements for this use, bearing in mind the likely development or generation

of many test programs. The representation of the reference interpreter’s results for such programs should

be amenable to automated comparison. This comparison presents particular challenges in GP 2 since

behaviour of programs may be non-deterministic, or programs may not terminate, or both. The number of

test programs may be large — there may even be arbitrarily many test programs generated dynamically.

2The geometric layout was created by the graphical interface of the GP 1 implementation [13].
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Main = init; (inc; expand!)!

init(x : int) inc(x,y : int)

x

1

⇒ 1

x:0 1

0 0

0 1

2

x:y

1

⇒ x:y+1

1

where x > y

expand(x,y,u,v : int)

1 2

3 4

x:y y

u v

0 1

2

⇒

1 2

3 4

x:y y+1

u v

y+1 y+1

0

0

0 0

1

1 1

2

2 2

Figure 6: Program for generating Sierpinski triangles

Figure 7: Third generation Sierpinski triangle
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So although performance is not a design goal for the reference interpreter, its performance should be

good enough to make such multi-test comparisons feasible.

A prototype for application developers. If no production compiler has been developed for the language,

or none is yet available to an application developer, they may need to use a reference interpreter as an

initial development platform.

During the development of application programs, errors are common. So, for this use, a reference

interpreter should provide not only a check for valid programs, but a rapid check with informative reports

of errors. Yet elaborate error handling must not obscure the definitional style in which the interpreter is

written. Similarly, it is desirable to have the option of some kind of trace or other informative report

to shed light on failures or unexpected results when a program is evaluated. Here again, the machinery

must not obscure the basic definitions for evaluation, nor should it impose heavy performance costs when

performance of the interpreter has already been sacrificed in favour of simplicity.

A prototype for implementation developers. As well as using a reference interpreter to verify correctness,

implementers may wish to use it as the starting point in the development of another interpreter or a

compiler. The whole course of such a development might even be defined as the successive replacement

of interpreter components by alternatives giving higher performance, or richer information, at the cost

of greater complexity. The advantage of this approach is that as each replacement is introduced it can be

checked as a new component in an already tried system.

This use of a reference interpreter requires a modular design with simple and clearly defined in-

terfaces between components. Concerns should be separated so far as possible, avoiding dependencies

that are not strictly necessary. Options for development by successive replacement may be further in-

creased by choosing a host programming system for the reference interpreter that has a well-developed

foreign-language interface.

5 Implementation

We describe the key components of the reference interpreter with the aim of illustrating the simplicity,

clarity, and conciseness of the implementation. A basic knowledge of Haskell is useful but not essential

to understand the content in the following sections.

Parser Transformer Evaluator

Rule Applier

Graph File

Program

File

AST

Initial

Graph

Program

RuleGraph

Max #

Rule Apps

Graphs

Output

Data

Figure 8: Main data flow of the reference interpreter
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Main

Interpreter

53 lines

Isomorphism

Checker

21 lines

Graph Printer

34 lines

Evaluator

99 lines

Parser

230 lines

Rule

Applier

53 lines

Graph

Matcher

43 lines

Graph

Library

76 lines

Label

Matcher

89 lines

Checker &

Transformer

118 lines

Lists &

Finite Maps

60 lines

AST

126 lines

Figure 9: Module dependencies. A module points to any modules on which it depends. Line counts

exclude blank lines and comment-only lines

5.1 Overview

Figure 8 shows a data flowchart of the reference interpreter. It takes three inputs: (1) a file containing the

textual representation of a GP 2 program, (2) a file containing the textual representation of a host graph,

and (3) an upper limit on the number of rule applications to be made before halting program execution.

It runs the program on the host graph, traversing either all nondeterministic branches of the program or a

single branch, at the behest of the user. The output data is a complete description of all possible outputs.

Section 5.7 describes the output data in detail.

The interpreter contains approximately 1,000 lines of Haskell source code. Figure 9 shows the mod-

ule dependency structure of the interpreter and an indication of module sizes.

5.2 Parser

The parser has two components: (1) a host graph parser and (2) a program text parser. Each individual

parsing function takes a string as input and attempts to match a prefix of the string to a particular syntactic

unit. It uses a library of parser combinators. Their purpose is to neatly compose the parsing functions to

cover standard parsing requirements such as alternation and repetition. The parsing code is very similar

in appearance to GP 2’s context-free grammar: each nonterminal of the grammar is represented by a

Haskell function that parses the right-hand side of the grammar rule. For example:

gpMain :: Parser Main

gpMain = keyword "Main" |> keyword "=" |> pure Main <*>

commandSequence

The operators |> and <*> are binary functions: |> ignores the output of its left parser and <*> se-

quences two parsers. Applications of keyword recognise and discard a string argument, and

commandSequence is another parsing function. Main is a data constructor for the main node of GP 2’s

abstract syntax tree.
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5.3 Checking & Transformation

The checking and transformation phase extracts semantic information from the AST, such as the types of

variables specified in a rule schema’s parameter list, and transforms both rule graphs and the host graph

into the data structure defined in the graph library. The internal graph representation is a pair of maps

from keys to labels for each of nodes and edges separately. Node keys are integers. Edge keys are triples:

source key, target key and an integer. Node and edge labels are encoded into the node and edge data

types. Operations on graphs are concisely represented using Haskell functions from the Haskell library

Data.Map which implements maps efficiently as balanced binary trees. Node and edge enumeration

functions also support the use of Haskell’s strong list-processing. See Section 5.5 for details.

5.4 Label Matching

The label matching algorithm establishes whether a label from a rule’s left-hand side can be matched

with a label from the host graph. It takes as input the current environment, the set of bindings for label

variables, and the two labels to be compared.

GP 2 labels consist of a mark and a list. The marks are encoded as an abstract data type and are

directly comparable. GP 2’s lists are naturally encoded as Haskell lists, where each element is a GP 2

atom. Atoms occurring in the host graph are constants (integers, characters or strings), while rule atoms

are either constants, variables or a concatenated string3. If a match binds a variable, the binding must

define a compatible extension of the environment.

When comparing atoms, the interesting case occurs if a list variable is encountered. GP 2 allows

at most one list variable in any label expression on a left-hand side. This restriction allows binding to

host-label segments of determined length, by comparing the lengths of the remainder of the rule label

and the remainder of the host label. Matching fails if too few host atoms remain.

5.5 Graph Matching

Given a rule graph L and a host graph G, the graph matcher lazily constructs a list of GraphMorphisms.

A GraphMorphism is a data structure containing an environment, a mapping between nodes in L and

the corresponding nodes in G, and a similar edge map. We use association lists to represent these small

mappings, for simplicity and amenability to list-processing. Morphisms are generated in two stages.

First the candidate NodeMorphisms are identified, where a NodeMorphism is an environment and a

node mapping. For each such NodeMorphism, the matcher searches for compatible edge mappings and

environment extensions to form a set of complete GraphMorphisms.

Node matching. For each node lk ∈ L, the matcher constructs the list of all host nodes [hk1
, . . . ,hkm

] that

match lk with respect to label matching and rootedness4 An environment is paired with each host node.

The result is a list of lists [[h11
, . . . ,h1m

],...,[hn1
, . . . ,hnm

]] where n is the number of nodes in L. A

candidate node mapping is found by injectively selecting one item from each list. The final step is to test

each candidate mapping for compatibility with respect to its environment. Haskell’s list comprehensions

are perfectly suited for this task: the list of lists is computed with a single nested list comprehension,

while a second list comprehension is responsible for collating the valid candidate mappings.

3Expressions and degree operators are forbidden in LHS labels to prevent ambiguous matching.
4Graphs can be augmented with root nodes to reduce the search space. GP 2’s semantics requires that a root node in L must

only match a root node in G [2].
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Edge matching. For each edge in L, we use a candidate node morphism to determine the required source

and target for a corresponding edge in the host graph. The list of candidate host edges is the list of host

edges from that source to that target. Each rule edge is checked against each candidate host edge for

label compatibility, supported by the environment passed from the node morphism.

5.6 Rule Application

Each of the GraphMorphisms produced by the graph matcher is checked against a dangling condition

and any rule conditions. If these checks succeed, the rule application is performed in the following steps:

delete edges, delete nodes, relabel nodes, add nodes, relabel edges, add edges. For relabelling, variables

take their values from a GraphMorphism’s environment.

The dangling condition can be elegantly expressed as follows.

danglingCondition :: HostGraph -> EdgeMatches -> [NodeId] -> Bool

danglingCondition h ems delns =

null [e | hn <- delns, e <- incidentEdges h hn \\ rng ems]

The second argument is an edge map, obtained from a GraphMorphism. The third argument is the

set of nodes deleted by the rule. The function body specifies that no host edge e incident to any deleted

node n may lie outside of the range of the edge map ems.

5.7 The Evaluator

The evaluator applies a GP 2 program to a host graph, subject to an upper bound on the number of

rule applications. Often the same graph can be reached through several distinct computational branches.

Therefore, when program execution is complete, an isomorphism checker is used to collate the list of

output graphs into its isomorphism classes. The output is as follows:

1. A list of unique output graphs, up to isomorphism, with a count of how many isomorphic copies

of each graph were generated.

2. The number of failures. For example, a failure occurs in some contexts if none of a set of rules can

be applied to a graph.

3. The number of unfinished computations. A computation is unfinished if the bound on rule appli-

cations is reached before the end of the main command sequence.

During program execution the evaluator maintains a list of GraphStates, one for each nondeter-

ministic branch of the computation so far. A GraphState is one of: (1) a graph with its rule application

count, (2) a failure symbol with its rule application count, and (3) an unfinished symbol. Each GP 2 con-

trol construct is evaluated by a function that takes as input a single GraphState and some program data,

returning a list of GraphStates. Only the application of a rule can yield a GraphState with a changed

graph. The rule application process is the workhorse of the interpreter, so here by way of illustration is

the top-level defining equation for the evaluation of a rule-call command:

evalSimpleCommand max ds (RuleCall rs) (GS g rc) =

if rc == max then [Unfinished]

else case [h | r <- rs, h <- applyRule g $ ruleLookup r ds] of

[] -> [Failure rc]

hs -> [GS h (rc+1) | h <- hs]
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Here max is the rule application bound, ds is a list of the rule and procedure declarations in the GP 2

program, rs is a list of rules, and GS g rc is the current graph state. GS is the GraphState constructor,

g is the working host graph, and rc is the number of rules that have been applied to g. The case-subject

list comprehension can be read as, “for all rules r in rs, apply r to g and produce the list of all output

graphs h.” Each individual rule application may produce multiple output graphs; the list comprehension

gathers every possible output into a single lazily-computed list. If resultGraphs is empty, then no rule

in rs was applicable, and the list containing the single GraphState Failure is returned. Otherwise,

the output graphs are placed into a fresh list of GraphStates, each with an incremented rule-application

count.

6 Performance Evaluation

In this section we will look at how efficiently our interpreter executes the benchmark programs described

in Section 3, and discuss the factors that affect its performance. Though not tuned for speed, the inter-

preter must run fast enough to allow its use as a practical tool.

6.1 The Test Environment

We compiled the interpreter using the Glasgow Haskell Compiler [1] version 7.6.3 with optimisations

and profiling support enabled:

$ ghc -O2 -prof -fprof-auto -rtsopts -o gp2 Main.hs

All figures reported were obtained using a quad-core Intel i7 clocked at 3.4GHz, with 8GB RAM,

running 64-bit Ubuntu 14.04 LTS with kernel 3.13.0. The number of processor cores should not have a

significant effect on the measured performance of the single-threaded GP 2 interpreter.

We ran benchmarks using the following command

$ timeout --foreground 5m time \

gp2 +RTS -p -sgc.prof -RTS $GPOPT $PROG $GRAPH 10000

limiting execution time to five minutes for each application of a program to a host graph. We used the

sum of user and system time reported by the standard time utility as our measure of execution time. The

arguments to gp2 between +RTS and -RTS tell the Haskell run-time system to save profiling information.

The $GPOPT variable was either set to --one to put the interpreter into single-result mode (see Table 1), or

unset for all-result mode (see Table 2). The final three mandatory arguments to the gp2 executable specify

the benchmark program, the host graph, and the maximum number of rule applications, as described in

Section 5.

6.2 Host Graphs

The names of host graphs used for benchmarking give an indication of their structure.

Gen n. The Sierpinski program expects a host graph containing a single node with a numeric label, which

controls the number of iterations of the expand! command.

Linear n. A chain of n nodes. The first node has only a single outgoing edge. The last node has only a

single incoming edge. All other nodes have exactly one incoming and one outgoing edge.
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Cyclic n. As Linear n, but with an extra edge from the last node to the first, so every node has exactly

one incoming and one outgoing edge.

x× y Grid. A rectangular lattice x nodes wide by y nodes tall, with x(y− 1) + y(x − 1) edges. The

shortest distances benchmark requires all edges to have an integer “cost” of traversal. The grid host

graphs passed to this program have the top-left node marked grey, all edges directed either rightwards or

downwards, a cost of one assigned to half of the edges, and a cost of two to the other half.

6.3 Benchmark performance

Single-result mode. Table 1 summarises results for the reference interpreter operating in single-result

mode. The Apps column shows the number of rule applications required to reach the solution. Time

lists the sum of user and system time reported by the time command. The final two columns show the

maximum amount of memory requested by the gp2 executable, and the maximum memory holding live

data respectively. The disparity between these two numbers, which sometimes approaches a factor of

three, results from the Haskell run-time system requesting memory from the operating system in large

chunks.

All-result mode. Table 2 summarises the performance of the reference interpreter running in all-result

mode. This table contains three additional columns showing the total number of output graphs, the

number of distinct output graphs up to isomorphism, and the number of executions that terminated in

failure. Where different solutions required differing numbers of rule applications the Apps column now

shows the range of values.

The extra costs of evaluating a program in all-result mode go beyond those of generating all possi-

ble output graphs; the interpreter must also test them for isomorphism. Unsurprisingly, execution time

increases sharply with increasing size of host graph, putting many of the computations that completed in

single-result mode beyond our five-minute execution-time limit.

The effect on heap usage of producing all possible results is less than one might expect for the 3x3

grid host graph in both the acyclicity test and shortest distances programs, given the tens of thousands of

isomorphic graphs generated. We benefit from Haskell’s lazy evaluation of the list of output graphs. As

there is a single isomorphism class, at most two final host graphs are needed in memory simultaneously

— though there may be many intermediate graphs awaiting further processing.

In contrast, the vertex colouring benchmark has many distinct solutions. As the five minute limit

approached during all-results computation for the 3x3 grid host graph, gp2 had been allocated over

seven gigabytes, putting a conservative estimate of its live heap in excess of two gigabytes!

6.4 Discussion

In single-result mode, performance is acceptable even for some quite complex programs. However, in

all-result mode, execution time and memory usage can increase very rapidly with problem size. An

extreme example is the vertex-colouring program, which exhibits factorial growth in the number of

possible intermediate graphs as edge-counts in initial graphs increase.

The current version of the interpreter uses a finite-map library for indexed sets of nodes and edges in

graphs. Early versions stored these sets as association lists, resulting in an interpreter which spent most

of its execution time traversing lists of nodes and edges. The cumulative effect of several incremental

improvements to our original prototype, without making it larger or more complicated, was a large

speed-up. This in turn enabled us to run larger computations, putting greater stress on stack and heap
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Heap/kB

Benchmark Host Graph Apps Time/s Allocd Live

Acyclicity test 3x3 grid 12 0.02 2048 129

5x5 grid 40 0.03 3072 382

7x7 grid 84 0.17 4096 1119

9x9 grid 144 0.70 6144 2100

cyclic 100 0 0.04 3072 778

cyclic 500 0 0.46 14336 5646

cyclic 1000 0 1.76 25600 10368

Shortest distances 5x5 grid 38 < 0.01 3072 414

7x7 grid 90 0.08 4096 1177

9x9 grid 175 0.39 8192 3172

Sierpinski gen 2 7 < 0.01 2048 133

gen 3 17 0.14 5120 1056

gen 4 45 6.52 58368 18313

gen 5 - > 5m - -

Transitive closure linear 05 6 < 0.01 2048 144

linear 10 36 0.04 2048 144

linear 20 171 1.67 21504 7073

linear 30 406 14.39 103424 33152

linear 40 741 66.31 324608 103275

linear 50 - > 5m - -

Vertex colouring 3x3 grid 27 0.02 2048 140

5x5 grid 125 0.03 3072 999

7x7 grid 343 0.17 9216 3681

9x9 grid 729 0.89 25600 11438

Table 1: Reference interpreter benchmark results when generating a single output graph

memory. There may yet be quite simple modifications that would reduce memory demand — we have

made comparatively little effort in this direction.

As discussed in Section 5.5 the reference interpreter matches nodes and edges in separate passes.

This makes for a simple algorithm at the expense of performance. A more performance focussed imple-

mentation might use a search plan [4, 21] in which a graph morphism is built incrementally by adding

both nodes and edges to an existing partial morphism, back-tracking if no suitable candidate can be

found.

7 Related and Future Work

Early programming languages were often defined by their implementations, perhaps in the form of a defi-

nitional interpreter. We now have more abstract techniques for defining operational semantics. However,

in recent years there has been a rehabilitation of interpreters as executable counterparts to semantic defi-

nitions — eg. [3]. Motivation varies, but here’s an extract from the preface of an influential textbook:
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Output Graphs Heap/kB

Benchmark Host Graph Total Unique Failed Apps Time/s Total Live

Acyclicity test 2x2 grid 6 1 0 4 < 0.01 2048 134

3x3 grid 19770 1 0 12 12.00 10240 3301

4x4 grid - - - - > 5m - -

cyclic 100 0 0 100 0 0.06 4096 784

cyclic 500 0 0 500 0 0.86 14336 5651

cyclic 1000 0 0 1000 0 3.31 26624 11053

Shortest distances 2x2 grid 6 1 0 4 < 0.01 2048 131

3x3 grid 28924 1 0 9-14 19.15 167936 58180

4x4 grid - - - - > 5m - -

Sierpinski gen 2 6 1 0 7 0.04 3072 242

gen 3 - - - - > 5m - -

Transitive closure linear 05 866 1 0 6 0.44 6144 1699

linear 10 - - - - > 5m - -

Vertex colouring 2x2 grid 480 2 0 6-8 0.07 5120 1598

3x3 grid - - - - > 5m - -

Table 2: Reference interpreter benchmark results when generating all possible output graphs

Our goal is to provide a deep, working understanding of the essential concepts of program-

ming languages. . . . Most of these essentials relate to the semantics, or meaning, of program

elements. Such meanings reflect how program elements are interpreted as the program ex-

ecutes. . . . The most interesting question about a program is, “What does it do?” The study

of interpreters tells us this. Interpreters are critical because they reveal nuances of mean-

ing, and are the direct path to more efficient compilation and to other kinds of program

analyses. [8]

In several respects, our motivation is similar. We adopt the slogan: Semantics first!. But then, fol-

lowing the semantic definition, we write a reference interpreter in order to promote a “deep, working

understanding” of the GP 2 design, and to find “path(s) to more efficient compilation . . . and program

analysis”.

Languages based on graph-transformation rules include PROGRES [18], AGG [5, 17], GAMMA [7],

GROOVE [9], GRGEN.NET [10] and PORGY [6]. To our knowledge, none of these languages has a

published implementation in the same spirit as our reference interpreter. For example, GROOVE and

GRGEN.NET are two of the most widely used systems. The Java source code for the GROOVE imple-

mentation, including a graphical development suite, extends to around 150,000 lines. GRGEN.NET is

implemented in a combination of Java and C#: a Java front-end is used to generate C# code and .NET

assemblies from a textual specification of a GRGEN program; the run-time system and other compo-

nents are written in C#. In all there are around 68,000 lines of Java source for the front-end, and around

93,000 lines of C# for the run-time system, API support and an interactive shell. We recognise that

both GROOVE and GRGEN.NET are mature and fully-featured systems, and GRGEN.NET in particular

is highly optimising. Even so, the contrast with the 1,000-line Haskell sources for our GP 2 reference

interpreter is striking.

We have begun work on two compiled implementations of GP 2. One generates code for an abstract

machine; the other translates GP 2 programs to C. They also differ in the way a low-level graph data
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structure is defined and accessed, and the strategies employed to match left-hand sides of rules. The ref-

erence interpreter is supporting these ongoing developments. For example, some front-end components

are re-used, and we check output graphs against isomorphism classes computed by the interpreter.

8 Conclusions

Our original goals for our reference interpreter have largely been realised. We have a concise implemen-

tation of GP 2, expressed in around 1,000 lines using the lazy functional language Haskell. We have taken

every opportunity to use a Haskell strength — lazy list-processing, and in particular list comprehensions

for generate-and-test style definitions — to achieve this conciseness. However, despite our observations

in Section 4 about error reports and traces, we concede that our current interpreter provides only a bare

minimum in this respect.

As stated in the Introduction, our motivation for producing a simple interpreter was to achieve clarity

and correctness. This raises the question of whether the reference interpreter could be formally verified

against the operational semantics of GP 2. While this is a desirable goal for future work, existing verifi-

cation projects for subsets of C [12] and ML [11] indicate that such a project would be a major endeavour

despite the modest size of the GP 2 language.

When working with the interpreter, we have had some unexpected results. Occasionally, the practical

consequences of a crisp semantic definition may be surprising to programmers, or it may pose challenges

for an efficient implementation. We have found that our reference interpreter can shed helpful light in

such instances.

As we have shown in Section 6, the interpreter is efficient enough for practical use in testing, both

by GP 2 programmers and by the developers of other GP 2 implementations. Our main reservation here

concerns all-results mode. Used in this mode, the interpreter can require very long execution times and

all the memory our machines have available. One remedy might be to check for isomorphism or other

equivalences between intermediate graphs, compacting the state-space. However, the extra machinery

would complicate the interpreter, and it could demand even more space in some cases. Instead, our likely

solution will be to build up a standard set of test programs. We can first run each test (for several days,

if necessary) on a powerful machine to produce the set of all possible output graphs up to isomorphism.

Our isomorphism checker, though simple, is efficient enough for rapid subsequent checking of single

results produced by another implementation.
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