Relational and final coalgebra semantics for dynamic logics

Sabine Frittella

joint work with
G. Greco, A. Kurz, A. Palmigiano, V. Sikimic
Hans van Ditmarsch, Aybuke Ozgun

May 16, 2014

ALCOP 2014, London, UK
Informal presentation of Display Calculi

Display calculi: variation of sequent calculi

Why: they are modular, cut elimination meta theorem

How do they work? 1 property = 1 rule

Some rules

\[
\begin{align*}
X & \vdash A & Y & \vdash B \\
\hline
X; Y & \vdash A \land B
\end{align*}
\]

\[
\begin{align*}
X & \vdash A \\
\hline
\odot X & \vdash \diamond A
\end{align*}
\]

\[
\begin{align*}
\odot X & \vdash Y \\
\hline
X & \vdash \bullet Y
\end{align*}
\]

; structural symbols → to manipulate structures
∧ operational symbols → formulas such as \(\diamond A \) are “frozen”.

Main feature: display property
Informal presentation of Display Calculi

Display calculi: variation of sequent calculi

Why: they are modular, cut elimination meta theorem

How do they work? 1 property = 1 rule

Some rules

\[
\begin{align*}
X \vdash A & \quad Y \vdash B \\
\hline
X; Y \vdash A \land B
\end{align*}
\]

\[
\begin{align*}
X \vdash A & \\
\hline
\circ X \vdash \Diamond A
\end{align*}
\]

\[
\begin{align*}
\circ X \vdash Y & \\
\hline
X \vdash \bullet Y_{\text{display}}
\end{align*}
\]

; structural symbols \(\rightarrow\) to manipulate structures
\(\land\) operational symbols \(\rightarrow\) formulas such as \(\Diamond A\) are “frozen”.

Main feature: display property

display property \(\rightarrow\) cut elimination meta theorem
Example: The case of EAK

EAK: Epistemic Action and Knowledge

- Syntax: $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond_a \varphi \mid \langle \alpha \rangle \varphi$

- Intuitive meaning: $\Diamond_a \varphi$: agent a thinks that φ is possible and $\langle \alpha \rangle \varphi$: α can be executed, and after that, φ holds.

Protocol to design the proof system of a given logic:
1/ Algebraic description of the logic,
2/ Existing blocks: intuitionistic/classical logic, normal modal logic
3/ Design of the derivation rules following some conditions.

Aim: Display rules for each connective

Soundness? We need adjunction

Remark: $\langle \alpha \rangle$ distributes over joins \rightsquigarrow Does it have an adjoint?
Kripke model: \(a \in \text{Agent}, \alpha \in \text{Action}, \, p \in \text{Prop} \)

\[M := (W, R_a \subseteq W \times W, V) \text{ or } M := (W, \sigma_a : W \rightarrow \mathcal{P}W, V) \]

Epistemic update: public announcement \(\alpha \cong p \)

\(\langle \alpha \rangle \varphi : \text{after } p \text{ is announced, } \varphi \text{ holds.} \)

\[M = (W, R \subseteq W \times W, V) \leadsto_\alpha M_\alpha = (W_\alpha, R_\alpha \subseteq W_\alpha \times W_\alpha, V_\alpha) \]

\[W_\alpha := V(p) \cap W, \quad R_\alpha := R \cap W_\alpha \times W_\alpha, \quad V_\alpha(p) := V(p) \cap W_\alpha. \]

\(/!\backslash \) We lose information about \(M \), some worlds disappear.

Problem: We cannot talk about the inverse of \(\alpha \)!
We don’t know how to talk about the adjoint?
We need them to define our proof system!
Why is the Final Coalgebra interesting?

What is the final coalgebra \mathcal{Z}?

Idea: “We put all the models together and build a gigantic model.”

Advantages:

- *dynamic modalities are maps on \mathcal{Z}.*
- We do not need to compute a new model anymore.
- We can interpret the adjoint.
Final Coalgebra: formal definition

Let \mathcal{C} be a category, F be an endofunctor on \mathcal{C}. A F-coalgebra is a pair $(A, \sigma : A \rightarrow FA)$ with $A \in \mathcal{C}$. A coalgebra morphism from (A, α) to (B, β) is a arrow $h : A \rightarrow B$ in \mathcal{C} such that $\beta \circ h = F(h) \circ \alpha$.

$F\text{-}\text{Coalg}(\mathcal{C})$: the category of F-coalgebras and their morphisms.

Final object

A final object in the category \mathcal{C} is an object Z s.t. for any $Y \in \mathcal{C}$, there is a unique arrow $f : Y \rightarrow Z$.

Final Coalgebra

A final coalgebra Z for the functor F is a final object of the category $F\text{-}\text{Coalg}(\mathcal{C})$.
When does the final coalgebra exist for a *Set*-endofunctor?

The Final Coalgebra Theorem, Aczel & Mendler

Every set-based functor has a final coalgebra.

Category of **classes**: objects are classes and arrows are functions between classes.

An endofunctor F is called **set-based** if

- for each class A and each $a \in FA$,
- there is a set $A_0 \subseteq A$ and $a_0 \in FA_0$
- such that $a = F(i_{A_0, A})(a_0)$,
- where $i_{A_0, A}$ is the inclusion map $A_0 \hookrightarrow A$.

Idea: F must be entirely defined by what it does on sets.

Kripke model: \(a \in \text{Agent}, \ \alpha \in \text{Action}, \ p \in \text{Prop} \)
\[M := (W, \sigma_a : W \rightarrow \mathcal{P}W, V) \]

Updated model: \(M_\alpha := (W_\alpha, \sigma'_a : W_\alpha \rightarrow \mathcal{P}W_\alpha, V_\alpha) \)

Final Coalgebra: \(Z := (Z, \zeta_a : Z \rightarrow \mathcal{P}Z, V) \)

\[
\begin{array}{ccc}
\mathcal{P}Z & \xrightarrow{\langle \alpha \rangle} & \mathcal{P}Z \\
\exists!f & \uparrow & \exists!g \downarrow \ \ \ \ g^{-1} \\
\mathcal{P}W & \xrightarrow{\langle \alpha_M \rangle} & \mathcal{P}W_\alpha \\
\end{array}
\]

\[[\phi]_M = f^{-1}[\phi]_Z \]
What about other dynamic logics?

Other logics:
- Monotone modal logic: $\mathcal{M} := (W, \sigma : W \rightarrow \mathcal{P}\mathcal{P}W)$
- Intuitionistic modal logic: coalgebras over poset
- ...

Questions about monotone modal logic:
- Which action structure should we use?
- How to define the updated model?
- When does the final coalgebra exist?

Conjecture: Every poset-based functor has a final coalgebra.
Conjecture: Every poset-based functor has a final coalgebra.

Category of partially ordered classes: objects are classes with a partial order and arrows are order-preserving functions.

An endofunctor F is called **poset-based** if for each partially ordered class (A, \leq) and each $a \in FA$, there is a poset (A_0, \leq_0) and $a_0 \in FA_0$ such that $A_0 \subseteq A$ and $a = F(e_{A_0, A})(a_0)$, where $e_{A_0, A}$ is an order-embedding $(A_0, \leq_0) \hookrightarrow (A, \leq)$.

Idea: The class (A, \leq) must be entirely defined by the sub-posets $\{(A_i, \leq_i)\}$. That is why we ask for an order-embedding e.

$$\forall a_0, b_0 \in A_0, \quad a_0 \leq b_0 \quad \text{iff} \quad e(a_0) \leq e(b_0)$$
Conclusion

We know:
- Final coalgebra theorem for *Sets*
- Final coalgebra semantics for EAK
- A display type proof system for EAK

We want:
- Final coalgebra theorem for *Posets*
- Epistemic monotone modal logic (\lozenge and/or $\langle \alpha \rangle$ monotone). Semantics? Axiomatization?
- A display type proof system for monotone dynamic logics, coalgebraic logics, ...

Giuseppe is going to talk about:
Display calculi for dynamic logics