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In 1934/1935 Gentzen introduced two proof systems: natural deduction
and sequent calculi.

Features:

o few axioms and less freedom in the choice of rules;
o the inference rules describe (explain) the meaning of the language;
o meta-mathematical properties (consistency) follow naturally;

o both classical and intuitionistic logic have such proof systems.
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Dfn A sequent is an ordered pair [ = A, where I'; A are multisets of
(propositional) formulas. Its interpretation is (I = A) = AT — \/ A.

Axioms and rules for implication and disjunction of G3i (for IPC): |A| <1

Mp=p Ax MNi=ALL
MA=A ILB=A r=A .
rAVB—=aA MV S AV (=L2RY
NMA—-B=A ILB=A NNA=B
A B= A L= r=a5B R~

Thm (Gentzen)
Cut is admissible in G3i: G3i + Cut is conservative over G3i.

N=A Al=A
M= A

Cut
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Proof
o Local transformation steps that move the cuts in a proof upwards.
o In every step either the height or the complexity of a cut decreases.

o Cuts on axioms can be removed.

Advantages
o Modular, elementary, and constructive.
o Adaptable to almost all sequent calculi that have cut-elimination.

o Meta-mathematical properties follow easily.
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Proof (for G3i)
(G,=,,A,V,—,0,1) is a Gentzen structure if 0,1 € G, < is a subset of
G* x (G U{e}), and the binary operations satisfy (ommitting A):

X <X aj .
———— (i=1,2)
xa<a 0<xa x=x1 x<xaVa
xa<c xb<c x=<a ybxc xa<b xab < ¢ x<a y<b
x(avb)xc xy(a—b)gc x<a—b x(a-b)=xc x<a-b

G* consists of the finite multisets which elements are in G.

Rmk Gentzen structures need not be strongly transitive:

xX<a ayc
Xy ¢

The free Gentzen structure is (because of cut-elimination).
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Belardinelli, Jipsen, Ono (2004): an algebraic proof of cut-elimination.

Proof (for G3i)
(T=A)Y=Tand (I = A)° = A. Suppose G # S (52 £ 5% in G).

Construct a strongly transitive Gentzen structure G, that refutes S.

o G¢ is a commutative residuated lattice (ab < c iff ax b — ¢).
o G¢ is a MacNeille completion of G (G is join- and meet-dense in G.).
o Strongly transitive G “are” integral commutative residuated lattices.

o G¢ is a quasi-completion of G with a quasi-embedding G — G, such
that a+— al -

Ciabattoni, Galatos, Terui (2011) use similar methods to characterize, for
structural rules in A3, the ones that preserve analycity when added to the
Lambek calculus FL.
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Question
——————

Are there other proofs of cut-elimination that use algebras?
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The Schiitte method
—_————

Emerged as a method to prove the completeness of sequent calculi.

o Given that t/g3; S, construct a Kripke model K that refutes S.

o The Heyting algebra Ax = (upsets(K), U, N, —, D) refutes S.
This proves cut-elimination for G3i as well.

In this setting it is more convenient to work with multi-conclusion
sequents and the calculus L) instead of G3i.
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Proof (for LJ)
Rules of LJ' for implication and disjunction (for IPC):

MA=A T,B=A = AB,A
rAVB—=A MY r=AvB A RV
MASB=AA IB=A A= B
NASB= A L= F=a5sBa R~

If t/L)s S, generate all possible “derivations” bottom-up, the tableaux of
S. For a node a, sq(a) is the sequent at a.

Choose in every tableau an open branch. For two nodes a, b on a branch:

a ~ b = no application of R — in [a, b]-segment

Defining alk p = 3b € 3(p € sq(b)?) gives a Kripke model that refutes S.

9/13
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Questions

— T ———

o What is the relation between Ag and G.7?

o The Schiitte method is easily extendable to predicate logic. And the
method using completions?

o Can the method using completions be applied to Gentzen structures
corresponding to multi-conclusion sequents?
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