Subframe Formulas and Stable Formulas in Intuitionistic Logic

Dick de Jongh
ALCOP 2014, Queen Mary, London

May 15, 2014

\footnote{In cooperation with Nick Bezhanishvili}
NNIL-formulas are propositional formulas that do not allow nesting of implication to the left (e.g. $(p \to q) \to r$ is forbidden).

These formulas were introduced by VvBdJR995, where it was shown that NNIL-formulas are exactly the formulas that are closed under taking submodels of Kripke models.

Today we show that the set of NNIL-formulas represents (up to frame equivalence) the set of subframe formulas and that subframe logics can be axiomatized by NNIL-formulas (NBdiss, 2006).
We also introduce **ONNILLI-formulas**, only NNIL to the left of implications, and show that ONNILLI-formulas are formulas that are closed under order-preserving images of (descriptive and Kripke) frames.

We obtain a result that the set of ONNILLI-formulas represents (up to frame equivalence) the set of stable formulas, introduced by B22013.
The J-de J-formula of finite frame \mathcal{F} axiomatizes the least intermediate logic that does not have \mathcal{F} as its frame. A descriptive frame \mathcal{G} refutes such a formula iff \mathcal{F} is a p-morphic image of a generated subframe of \mathcal{G}.
Zakharyaschev 1989, 1996 introduced subframe formulas. For each finite rooted frame \mathcal{F} the subframe formula of \mathcal{F} is refuted in a frame \mathcal{G} iff \mathcal{F} is a p-morphic image of a subframe of \mathcal{G}.

These subframe logics are exactly those logics whose frames are closed under taking subframes.

There are continuum many of them and each has the finite model property. An intermediate logic L is a subframe logic iff it is axiomatized by (\land, \to)-formulas.
B and B introduced stable formulas.

For each finite rooted frame \mathcal{F} the stable formula of \mathcal{F} is refuted in a frame \mathcal{G} iff \mathcal{F} is an order-preserving image of \mathcal{G} (B^22013).

Stable logics are intermediate logics for which its frame class is closed under order-preserving images. They are axiomatized by stable formulas. There is a continuum of stable logics and all stable logics have the finite model property.

A good syntactic characterization remained an open problem.
The VvBdJR result implies that NNIL-formulas are also preserved under taking subframes. Moreover, for each finite rooted frame \mathcal{F}, NBdiss (2006) constructs a NNIL-formula that is its subframe formula.

Hence, an intermediate logic is a subframe logic iff it is axiomatized by NNIL-formulas. This also implies that each NNIL-formula is frame-equivalent to a (\land, \rightarrow)-formula and vice versa.
We introduce **ONNILLI-formulas**, only NNIL to the left of implications, and show that ONNILLI-formulas are formulas that are preserved under order-preserving images of (descriptive and Kripke) frames.

We also obtain that the set of ONNILLI-formulas represents (up to frame equivalence) the set of stable formulas.

Examples of ONNILLI-formulas are **LC**: \((p \rightarrow q) \lor (q \rightarrow p)\) (also NNIL), **KC**: \(\neg p \lor \neg \neg p\).
Let $\mathcal{F} = (W, R)$ be a Kripke frame. For every $w \in W$ and $U \subseteq W$ let

$$R(w) = \{ v \in W : wRv \},$$
$$R^{-1}(w) = \{ v \in W : vRw \},$$
$$R(U) = \bigcup_{w \in U} R(w),$$
$$R^{-1}(U) = \bigcup_{w \in U} R^{-1}(w).$$
1. Let $\mathcal{F} = (W, R)$ be a Kripke frame. A frame $\mathcal{F}' = (W', R')$ is called a subframe of \mathcal{F} if $W' \subseteq W$ and R' is the restriction of R to W'.

2. Let $\mathcal{F} = (W, R, \mathcal{P})$ be a descriptive frame. A descriptive frame $\mathcal{F}' = (W', R', \mathcal{P}')$ is called a subframe of \mathcal{F} if (W', R') is a subframe of (W, R), $\mathcal{P}' = \{ U \cap W' : U \in \mathcal{P} \}$ and the topo-subframe condition, is satisfied:

$$\forall U \subseteq W' \ (W' \setminus U \in \mathcal{P}' \implies W \setminus R^{-1}(U) \in \mathcal{P})$$
Proposition

Let $\mathcal{F} = (W, R, P)$ and $\mathcal{F}' = (W', R', P')$ be descriptive frames. If \mathcal{F}' is a subframe of \mathcal{F}, then for every descriptive valuation V' on \mathcal{F}' there exists a descriptive valuation V on \mathcal{F} such that the restriction of V to W' is V'.
NNIL–FORMULAS AND SUBMODELS

NNIL-formulas are known to have the following normal form:

\[\varphi := \bot | p | \varphi \land \varphi | \varphi \lor \varphi | p \rightarrow \varphi \]

Theorem (VvBdJR)

Let \(\mathcal{M} = (W, R, V) \) and \(\mathcal{N} = (W', R', V') \) be (descriptive of Kripke) frames.

1. If \(\mathcal{N} \) is a submodel of \(\mathcal{M} \), then for each \(\varphi \in \text{NNIL} \) and \(w \in W' \), \(\mathcal{M}, w \models \varphi \implies \mathcal{N}, w \models \varphi \).

2. If for all \(w \) in submodels \(\mathcal{N} \) of \(\mathcal{M} \), \(\mathcal{M}, w \models \varphi \) implies \(\mathcal{N}, w \models \varphi \), then \(\exists \psi \in \text{NNIL} \) (IPC \(\vdash \psi \leftrightarrow \varphi \)).

(1) implies that NNIL-formulas are preserved under taking subframes of (Kripke and descriptive) frames.
Definition

Let $\mathcal{M} = (\mathcal{F}, V)$ be a descriptive model for p_1, \ldots, p_n. If w in \mathcal{M}, $\text{col}(w)$ (the color of w) = $i_1 \ldots i_n$ such that:

$$i_k = \begin{cases}
1, & \text{if } w \models p_k, \\
0, & \text{if } w \nvDash p_k.
\end{cases}$$

A finite model $\mathcal{M} = (W, R, V)$ is colorful if

$$\forall w \in W \exists! p_w(V(p_w) = R(w)).$$
Lemma

Let (\mathfrak{F}, V) be a colorful model. Then for every $w, v \in W$ we have:

1. $w = v$ iff $\text{col}(w) = \text{col}(v)$,
2. $w \neq v$ and $w R v$ iff $\text{col}(w) < \text{col}(v)$.
For finite rooted frames \mathcal{F} we inductively define the subframe formula $\beta(\mathcal{F})$ in NNIL.

\[
\text{prop}(v) := \{p_k \mid v \models p_k, k \leq n\}, \quad \text{notprop}(v) := \{p_k \mid v \not\models p_k, k \leq n\}.
\]

If v is a maximal, then

\[
\beta(v) := \bigwedge \text{prop}(v) \rightarrow \bigvee \text{notprop}(v)
\]

Let w_1, \ldots, w_m be all the immediate successors of w.

\[
\beta(w) := \bigwedge \text{prop}(w) \rightarrow \bigvee \text{notprop}(w) \lor \bigvee_{i=1}^{m} \beta(w_i).
\]

Finally, $\beta(\mathcal{F}) := \beta(r)$, where r is the root of \mathcal{F}.
Crucial Property of Subframe Formulas

Theorem
Let \(G = (W', R', \mathcal{P}') \) be a descriptive frame and let \(\mathcal{F} = (W, R) \) be a finite rooted frame. Then

\[G \not\models \beta(\mathcal{F}) \iff \mathcal{F} \text{ is a } p\text{-morphic image of a subframe of } G. \]

The proof depends on the fact that, if \(\bigwedge \text{prop}(v) \rightarrow \bigvee \text{notprop}(v) \) is false anywhere, then some node above will need to have the color of \(v \) (with \(\text{prop}(v) \) true and \(\text{notprop}(v) \) false). If \(\bigwedge \text{prop}(v) \rightarrow \bigvee \text{notprop}(v) \lor \bigvee_{i=1}^{m} \beta(w_i) \) is false anywhere, then some node above will need to have the color of \(w \) with above it nodes of the colors of the \(w_i \). Falsity of \(\beta(\mathcal{F}) \) will then guarantee nodes of the right colors in the proper order.
Theorem

1. An intermediate logic L is a subframe logic iff L is axiomatized by NNIL-formulas.
2. The class of NNIL-formulas is up to frame-equivalence the class of subframe formulas.
3. Each NNIL-formula is frame-equivalent to a (\land, \rightarrow)-formula.

A direct syntactic transformation of NNIL-formulas into frame-equivalent (\land, \rightarrow)-formulas can be found in Fanthesis2008. No way is known to transform a (\land, \rightarrow)-formula directly syntactically into a NNIL-formula.
We construct a new class of formulas, ONNILLI, preserved by order-preserving maps.

\((X, R), (Y', R')\) Kripke frames. \(f : X \rightarrow Y\) is order-preserving if \(u R v\) implies \(f(u) R' f(v)\) and is admissible\(^2\) if appropriate.

Applied to models we assume \(f\) to be valuation preserving as well.

Proposition

Let \(\mathcal{M} = (X, R, V)\) and \(\mathcal{N} = (Y, R', V')\) be two (Kripke or descriptive) models and \(f : X \rightarrow Y\) an order-preserving map. Then,

\[
\forall u \in X, \varphi \in \text{NNIL} \quad (f(u) \models \varphi \Rightarrow u \models \varphi)
\]

\(^2\) \(W \setminus f^{-1}(W \setminus U') \in \mathcal{P}\)
Order preserving functions and NNIL-formulas II

Proof. Only the last inductive step is non-trivial. Assume $f(u) \models \varphi \Rightarrow u \models \varphi$ for all $u \in X$ (IH). Suppose $f(u) \models p \rightarrow \varphi$, and let $u R v$ with $v \models p$. Then $f(u) R f(v)$ and $f(v) \models p$. So, $f(v) \models \varphi$. By IH, $v \models \varphi$. So $u \models p \rightarrow \varphi$. □

Note that the identity function from a submodel into the larger model is obviously an order-preserving function. Thus this shows that NNIL-formulas are also exactly the ones that are preserved backwards by order-preserving functions on models.
ONNILLI-FORMULAS

Definition

1. BASIC is the closure of the set of the atoms plus \top and \bot under conjunctions and disjunctions.

2. The class ONNILLI (only NNIL to the left of implications) is defined as the closure of $\{\varphi \rightarrow \psi \mid \varphi \in \text{NNIL}, \psi \in \text{BASIC}\}$ under conjunctions and disjunctions.

So, no iterations of implications in ONNILLI-formulas except inside the NNIL-part. Note:

If $\psi \in \text{BASIC}$, f valuation-preserving, then $f(v) \models \psi \iff v \models \psi$.
KC is ONNILLI

Example

$\neg p \lor \neg \neg p$ is ONNILLI. To see this, write it as

$((p \rightarrow \bot) \lor (\neg p \rightarrow \bot))$, and note that $\neg p$ is in NNIL.

$\neg p \lor \neg \neg p$ is not preserved under taking subframes. So, it cannot be frame-equivalent to a NNIL-formula. Thus, ONNILLI $\not\subseteq$ NNIL. We will see later that also NNIL $\not\subseteq$ ONNILLI.
Order-preserving functions and ONNILLI-formulas I

Let $\mathcal{M} = (X, R, V)$ and $\mathcal{N} = (Y, R', V')$ be Kripke or descriptive, $f : X \rightarrow Y$ surjective, order-preserving:
If $\varphi \in \text{ONNILLI}$, then $\mathcal{M} \models \varphi \implies \mathcal{N} \models \varphi$.

Proof.
Let $\varphi = \psi \rightarrow \chi$ with $\psi \in \text{NNIL}, \chi \in \text{BASIC}$, $\mathcal{M} \models \psi \rightarrow \chi$, i.e. $u \models \psi \rightarrow \chi$ for all $u \in X$.
f is surjective: all elements of Y are of the form $f(u), u \in X$.
Assume $f(u) \models \psi$. By previous, $u \models \psi$.
$u \models \psi \rightarrow \chi \implies u \models \chi \implies f(u) \models \chi$.
Hence, $f(u) \models \psi \rightarrow \chi$. Thus, $\mathcal{N} \models \psi \rightarrow \chi$.

Validity in models is needed, truth in a node insufficient. Also surjectivity is an essential.
Corollary
Let \(\mathcal{F} = (X, R) \) and \(\mathcal{G} = (Y, R') \) be (Kripke or descriptive) frames and \(f : X \to Y \) an order-preserving map from \(\mathcal{F} \) onto \(\mathcal{G} \). Then, for each \(\varphi \in \text{ONNILLI} \), \(\mathcal{F} \models \varphi \implies \mathcal{G} \models \varphi \).
Stable formulas and ONNILLI

Definition

1. If \(c \) is an \(n \)-color we write \(\psi_c \) for \(p_1 \land \cdots \land p_k \to q_1 \lor \cdots \lor q_m \) if \(p_1 \ldots p_k \) are the propositional variables that are 1 in \(c \) and \(q_1 \ldots q_m \) the ones that are 0 in \(c \).

2. If \(M \) is colorful and \(w \in W \), we write \(Col(M_w) \) for the formula \(\text{prop}(w) \land \land \{ \psi_c \mid c \text{ a color that is not in } M_w \} \).

3. \(\gamma(M) = \lor \{ Col(M_w) \to p_{w_1} \lor \cdots \lor p_{w_m} \mid w \in W, w_1, \ldots w_m \) are all the proper successors of \(w \} \).

Let \(\mathcal{F} \) be a finite rooted frame. We define a valuation \(V \) on \(\mathcal{F} \) such that \(M = (\mathcal{F}, V) \) is colorful and define \(\gamma(\mathcal{F}) \) by

\[\gamma(\mathcal{F}) := \gamma(M). \]

We call \(\gamma(\mathcal{F}) \) the stable formula of \(\mathcal{F} \). \(\gamma(\mathcal{F}) \) is an ONNILLI-formula.
Lemmas

Lemma
Assume $\mathcal{M} = (W, R, V)$ is colorful, $w \in W$, u' and v' are nodes in an arbitrary (Kripke or descriptive) model $\mathcal{M}' = (W', R', V')$ such that $u' R' v'$. Then

1. If $\text{col}(u') = \text{col}(u)$ and $\text{col}(v') = \text{col}(v)$ for $u, v \in W$, then $u R v$.
2. If $u' \models \text{Col}(\mathcal{M}_u)$, then u' and v' both have one of the colors available in \mathcal{M}_u.
3. If $u' \not\models \text{Col}(\mathcal{M}_w) \rightarrow p_{w_1} \lor \cdots \lor p_{w_m}$, then there is $v'' \in W'$ such that $u' R v'$ and $\text{col}(v'') = \text{col}(w)$.

Lemma
Let \mathcal{F} be a finite rooted frame. Then $\mathcal{F} \not\models \gamma(\mathcal{F})$.
The basic ONNILLI theorem

Corollary

Let $\mathcal{F} = (W, R)$ be a finite rooted frame and let \mathcal{G} a (Kripke or descriptive) frame. Then

1. $\mathcal{G} \not\models \gamma(\mathcal{F})$ iff there is a surjective order-preserving map from a generated subframe of \mathcal{G} onto \mathcal{F}.

2. $\mathcal{G} \not\models \gamma(\mathcal{F})$ iff there is a surjective order-preserving map from \mathcal{G} onto \mathcal{F}.
Proof of the basic ONNILLI theorem

(1) ⇒: We know that $\mathcal{F} \not
\gamma(\mathcal{F})$. Since $\gamma(\mathcal{F})$ is ONNILLI, it is preserved under order-preserving images. So, $\mathcal{G} \not
\gamma(\mathcal{F})$.

⇐: Let \mathcal{N} on \mathcal{G}, \mathcal{N}, $u \not
\gamma(\mathcal{F})$. Then $\forall w \in W \exists w', u R w'$ with $Col(M_w)$ true and p_{w_1}, \ldots, p_{w_m} false. Thus, w' has the color of w and its successors have colors of successors of w. Let W' be the set of the chosen w's. As W is finite, W' is also finite.

Let $\mathcal{N}' = M_{R(W')}$.

Now define $f : R(W') \to W$ by $f(u) = w$ if $col(u) = col(w)$.

If $u'R v' \in R(W')$, then there are $u R v \in W$ such that $col(u') = col(u)$ and $col(v') = col(v)$. So, f is order-preserving.

Finally, $\forall w \in W \exists u \in R(W')(col(u) = col(w))$. Thus, $f(u) = w$ and f is also surjective.
Stable Logics and ONNILLI

Theorem

1. An intermediate logic \(L \) is stable iff \(L \) is axiomatized by ONNILLI-formulas.

2. The class of ONNILLI-formulas is up to frame-equivalence the class of stable formulas.
Example
NNIL-formulas that are not equivalent to an ONNILLI-formula.

For each n, the logic BD_n of frames of depth $\leq n$ is preserved under taking subframes. Thus, it is a subframe logic axiomatized by NNIL formulas.

But there are frames of depth n having frames of depth $m > n$ as order-preserving images. So BD_n is not a stable logic and cannot be axiomatized by ONNILLI formulas. Thus, the class of ONNILLI-formulas does not contain the class of NNIL-formulas.
Some examples of stable logics

LC_n be the logic of all linear rooted frames of depth $\leq n$,

BW_n be the logic of all rooted frames of width $\leq n$,

BTW_n be the logic of all rooted descriptive frames of cofinal width $\leq n$,

OPEN QUESTION

It is an open problem whether ONNILLI-formulas are exactly the ones that are preserved under order-preserving preserving maps of models.
THE END

THANKS!