
A DIRECT PROOF OF SCHWICHTENBERG’S
BAR RECURSION CLOSURE THEOREM

PAULO OLIVA AND SILVIA STEILA

Abstract. In [12], Schwichtenberg showed that the System T definable functionals are closed under a rule-
like version Spector’s bar recursion of lowest type levels 0 and 1. More precisely, if the functional Y which
controls the stopping condition of Spector’s bar recursor is T-definable, then the corresponding bar recursion of
type levels 0 and 1 is already T-definable. Schwichtenberg’s original proof, however, relies on a detour through
Tait’s infinitary terms and the correspondence between ordinal recursion for α < ε0 and primitive recursion over
finite types. This detour makes it hard to calculate on given concrete system T input, what the corresponding
system T output would look like. In this paper we present an alternative (more direct) proof based on an
explicit construction which we prove correct via a suitably defined logical relation. We show through an example
how this gives a straightforward mechanism for converting bar recursive definitions into T-definitions under the
conditions of Schwichtenberg’s theorem. Finally, with the explicit construction we can also easily state a sharper
result: if Y is in the fragment Ti then terms built from BRN,σ for this particular Y are definable in the fragment
Ti+max{1,level(σ)}+2.

§1. Introduction. In [3], Gödel interpreted intuitionistic arithmetic in a quantifier-free type
theory with primitive recursion in all finite types, the so-called System T. This interpretation
became known as “Dialectica”, the name of the journal where it was published. The Dialectica
interpretation of arithmetic was extended by Spector to classical analysis in the system “T+ bar
recursion” [13].
The schema of Spector’s bar recursion (for a pair of finite types τ, σ) is defined as

BRτ,σ(G,H, Y )(s) σ=
{

G(s) if Y (ŝ) < |s|

H(s)(λxτ .BR(G,H, Y )(s ∗ x)) otherwise
(1)

where s : τ∗, G : τ∗ → σ, H : τ∗ → (τ → σ) → σ and Y : (N → τ) → N. As usual ŝ denotes the
infinite extension of the finite sequence s with 0’s of appropriate type. For clarify of exposition we
prefer to separate the arguments that stay fixed during the recursion, namely G,H and Y , from
the mutable argument s.
In [12], Schwichtenberg proved that if Y,G and H are closed terms of system T, and if τ is of

type level 0 or 1, then the functional λs.BRτ,σ(G,H, Y )(s) is already T-definable.
Schwichtenberg’s original proof is based on the notion of infinite terms as introduced by Tait [14]

and his argument requires the normalization theorem for infinite terms and the valuation functional
provided in [11]. Schwichtenberg proves that bar recursions of type levels 0 and 1 are reducible to
α-recursion for some α < ε0. Hence, using an interdefinability result from Tait [14], he concludes
that they are also reducible to primitive recursions of higher types. Such detour makes it extremely
difficult to work out the T-definition of λG,H, s.BRτ,σ(G,H, Y )(s) for a given concrete T definable
Y , for instance, Y (α) = RecN(0, λk.α)(α(0)), where α : N→ N and k is a fresh variable.

In here we present a direct inductive proof of Schwichtenberg’s result which provides an explicit
method to eliminate bar recursion of type levels 0 and 1 when Y is a concrete system T term. The
focus of our result is syntactic: We describe an effective construction that given a term in T + BR,
satisfying the above restrictions, will produce an equivalent term in system T. We also strengthen
Schwichtenberg’s result by showing that when Y is T-definable and τ is of type level 0 or 1, then
the functional λG,H, s.BRτ,σ(G,H, Y )(s) is already T-definable (uniformly in G and H).

Our proof is composed of two main parts. In the first part (Section 2) we define a variant of bar
recursion which we call general bar recursion – a family of bar recursive functions parametrized
by bar predicates. We show that when the bar predicate “secures” the functional Y , then BR for
that Y can be defined from the general bar recursion. In the second part (Section 3) we present
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the main construction: Given a T-definable Y , we can T-define a general bar recursion for a bar
predicate which secures Y . The construction of the term which corresponds to the given T + BR
term is syntactic, as its definition is by induction on the structure of the input term. The proof
of equivalence is carried out in intuitionistic Heyting arithmetic in all finite types HAω. One
can, however, also view the result model-theoretically, by looking at models of HAω. Our result
establishes that restricted bar-recursive terms have a denotation which falls within the subset of
T-definable elements.
1.1. Spector’s bar recursion. The finite types are defined inductively, where N is the basic

finite type, τ0 → τ1 is the type of functions from τ0 to τ1, and τ∗0 is the type of finite sequences
whose elements are of type τ0. Note that we have, for convenience, enriched the type system with
the type of finite sequences. As usual, we often write τ τ0

1 for the type τ0 → τ1.
System T [3, 13] consists of the simply typed λ-calculus with natural numbers (0 and Succ) and

the recursor Recρ, for each finite type ρ, together with the associated equations:

Recρ(a, f)(n) ρ=
{

a if n = 0

f(m,Recρ(a, f)(m)) if n = Succ(m)
(2)

where a : ρ and f : N→ ρ→ ρ. When translating bar recursive terms into system T terms we will
also make use of a definitional extension of T with finite products τ × σ. When s : τ and t : σ we
write 〈s; t〉 for the element of type τ × σ.
As usual, N has type level 0; the type level of ρ→ η is the maximum between the type level of

ρ plus 1 and the type level of η; the type level of τ × σ is the maximum between the type level of
τ and the type level of σ; the type level of τ∗ is the type level of τ . We write level(τ) for the type
level of τ . The fragment of T where the recursor Recρ is restricted to types ρ with level(ρ) ≤ i is
denoted Ti.

Definition 1.1 (Spector’s bar recursion). For each pair of types τ, σ, let BRτ,σ be the universal
formula

BRτ,σ(ξ,G,H, Y ) def= ∀sτ
∗


Y (ŝ) < |s| → ξ(G,H, Y )(s) σ= G(s)

∧
Y (ŝ) ≥ |s| → ξ(G,H, Y )(s) σ= H(s)(λxτ .ξ(G,H, Y )(s ∗ x))


where

ξ : (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ (τN → N)→ τ∗ → σ

The extension of system T with Spector’s bar recursion consists of adding to the language of T
a family of constants BRτ,σ, for each pair of finite types τ, σ, together with the defining axioms
∀G,H, Y BRτ,σ(BRτ,σ, G,H, Y ). We speak of Spector bar recursion of type level i when τ has type
level i.

When we omit an argument of BRτ,σ(ξ,G,H, Y ) we will assume it is universally quantified, e.g.

BRτ,σ(ξ,G) def= ∀H,Y BRτ,σ(ξ,G,H, Y )

BRτ,σ(ξ) def= ∀G,H, Y BRτ,σ(ξ,G,H, Y )
We will also use named parameters in order to fix a particular parameter of ξ, e.g. if t is a term
having the same type as Y then BRτ,σ(ξ, Y = t) stands for the formula

∀G,H ∀sτ
∗


t(ŝ) < |s| → ξ(G,H)(s) σ= G(s)

∧
t(ŝ) ≥ |s| → ξ(G,H)(s) σ= H(s)(λxτ .ξ(G,H)(s ∗ x))


where we replace Y by t and omit the argument Y from ξ. Finally, when clear from the context
we will omit the superscript types, and write simply BR.

Remark 1.2 (Related work). A previous analysis by Kreisel (see e.g. [13]), together with the
reduction provided by Howard [4], guarantees that system T is not closed under the bar recursion
rule when τ has type level greater or equal to 2. Diller [2] presented a reduction of bar recursion
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to α-recursion for some bounded ordinal α, while Howard [5, 6] provided an ordinal analysis of
the constant of bar recursion of type level 0. Kreuzer [8] refined Howard’s ordinal analysis of bar
recursion in terms of Grzegorczyk’s hierarchy. In [7], Kohlenbach generalised Schwichtenberg’s
result by showing that if Y [~x, ~f ] : N is a term with variables ~x of type level 0 and ~f of type level
1, then the bar recursive functional of type level 0 provided by Y , is T-definable. Kohlenbach’s
argument is based on the observation that in Schwichtenberg’s result no restrictions are put on
the type σ, hence it is possible to relativize Schwichtenberg’s proof where Y is allowed to contains
parameters of type levels 0 and 1 in system T. The same argument can be carried over to our
construction below.

Notation 1.3. Throughout the paper we adopt the following conventions:
• We use τ, σ, ρ, η to denote finite types.
• We write a : τ or aτ to indicate that a is a term of type τ .
• A tuple of variables x1, . . . , xn will be denoted by ~x.
• The term 0τ denotes the standard inductively defined zero object of type τ .
• Given a finite sequence s : τ∗, ŝ : N→ τ denotes the extension of s with infinitely many 0τ .
• For any finite sequence s : τ∗ and any x : τ , s ∗ x denotes appending x to s.
• For any finite sequences s, s′ : τ∗, s ∗ s′ denotes their concatenation.
• Given s : τ∗ and an infinite sequence α : τN, we also write s ∗α to denote their concatenation.
• For any infinite sequence α : N→ τ , ᾱn denotes the finite sequence 〈α(0), . . . , α(n− 1)〉. We
also use the same notation for finite sequences s : τ∗ when n ≤ |s|.

§2. General Bar Recursion. Let us start by observing that if Y : (N→ N)→ N is a constant
function then bar recursion for such Y is T-definable, for any types τ, σ.

Lemma 2.1 (HAω). For each τ, σ, let i = max{1 + level(τ), level(σ)}, there is a closed term

Ψ: N→ (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ

in Ti such that for all k : N we have BR(Ψ(k), Y = λα.k).

Proof. We define a term Ψ and show it satisfies

Ψ(k)(G,H)(s) σ=
{

G(s) if |s| > k

H(s)(λxτ .Ψ(k)(G,H)(s ∗ x)) if |s| ≤ k

for all k,G,H and s. First define the functional

ϕ : (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ N→ τ∗ → σ

by primitive recursion as

ϕ(G,H)(n) def=
{

G if n = 0

λsτ
∗
.H(s)(λxτ .ϕ(G,H)(n− 1)(s ∗ x)) if n > 0.

(3)

Then, using ϕ, define the functional Ψ by cases as

Ψ(k)(G,H)(s) def=
{

G(s) if |s| > k

ϕ(G,H)(k + 1− |s|)(s) if |s| ≤ k.
(4)

Clearly the functional Ψ is T-definable, and only requires primitive recursion of type τ∗ → σ, so
it is in fact definable in Ti for i = max{1 + level(τ), level(σ)}. It remains for us to prove that
Ψ(k)(G,H) satisfies the above mentioned equation.
Let k,G,H and s be fixed. If |s| > k then

Ψ(k)(G,H)(s) (4)= G(s).
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When |s| ≤ k, we distinguish two cases. If (†) |s| = k then

Ψ(k)(G,H)(s) (4)= ϕ(G,H)(k + 1− |s|)(s)
(†)= ϕ(G,H)(1)(s)
(3)= H(s)(λxτ .ϕ(G,H)(0)(s ∗ x))
(3)= H(s)(λxτ .G(s ∗ x))
(4)= H(s)(λxτ .Ψ(k)(G,H)(s ∗ x)).

If |s| < k, we have

Ψ(k)(G,H)(s) (4)= ϕ(G,H)(k + 1− |s|)(s)
(3)= H(s)(λx.ϕ(G,H)(k + 1− |s| − 1)(s ∗ x))
= H(s)(λx.ϕ(G,H)(k + 1− |s ∗ x|)(s ∗ x))
(4)= H(s)(λx.Ψ(k)(G,H)(s ∗ x)).

a
A predicate S(sτ∗) is called a bar if it satisfies the following three conditions:

(i) Decidable: ∀sτ∗(S(s) ∨ ¬S(s))
(ii) Bar : ∀ατN∃nNS(ᾱn)

(iii) Monotone: ∀sτ∗ , tτ∗(S(s)→ S(s ∗ t))
We now introduce a variant of Spector’s bar recursion, which we call general bar recursion. These
are parametrized by a bar predicate S(sτ∗).

Definition 2.2 (General bar recursion). For each pair of types τ, σ, and a bar predicate S(sτ∗),
let GBRτ,σS be the formula

GBRτ,σS (ξ,G,H) def= ∀sτ
∗


S(s) → ξ(G,H)(s) σ= G(s)

∧
¬S(s) → ξ(G,H)(s) σ= H(s)(λxτ .ξ(G,H)(s ∗ x))

(5)

where ξ : (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ.

When clear from the context we will omit the superscript types, writing simply GBRS instead
of GBRτ,σS . And once again, we write GBRS(ξ) as a shorthand for ∀G,H GBRS(ξ,G,H).

Definition 2.3. We say that a bar S secures Y : τN → N if for all sτ∗

S(s) ⇒ λβ.Y (s ∗ β) is constant.

Theorem 2.4 (HAω). Let τ, σ be fixed, and i = max{1+level(τ), level(σ)}. Let also t : τN → N
be a fixed closed term in Ti. There is a Ti-term Φt such that for any bar S securing t

GBRS(∆) ⇒ BR(Φt(∆), Y = t)

Proof. Let t be fixed and assume (†) S is a bar securing t. First, define the construction
Ht : (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → (τ → σ)→ σ

as

Ht(G,H)(s)(fτ→σ) def=

G(s) if t(ŝ) < |s|

H(s)(f) otherwise,
(6)

and let Φt be the Ti-definable term:

Φt(∆)(G,H)(s) def= ∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s)(7)
where Ψ is the construction given in the proof of Lemma 2.1 and ∆ has type

(τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ.

Suppose ∆ is such that (‡) GBRS(∆). We must show BR(Φt(∆), Y = t). First we must show
that if t(ŝ) < |s| then Φt(∆) = G(s). So we assume t(ŝ) < |s| and consider two cases (using the
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decidability of the bar):
If S(s) then

Φt(∆)(G,H)(s) (7)= ∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s)
(‡)= Ψ(tŝ)(G,H)(s)

(L2.1)= G(s)
whereas if ¬S(s), then

Φt(∆)(G,H)(s) (7)= ∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s)
(‡)= Ht(G,H)(s)
(6)= G(s).

Secondly, we must show that when t(ŝ) ≥ |s| then
Φt(∆)(G,H)(s) = H(s)(λx.Φt(∆)(G,H)(s ∗ x)).

Again we assume t(ŝ) ≥ |s| and consider two cases:
If S(s) then, by our assumption (†), λβ.t(s ∗ β) is constant, and in particular (∗) t(ŝ ∗ x) = t(ŝ).
By monotonicity of the bar we also have S(s ∗ x). Hence

Φt(∆)(G,H)(s) (7)= ∆(λs′.Ψ(t(ŝ′))(G,H)(s),Ht(G,H))(s)
(‡)= Ψ(t(ŝ))(G,H)(s)
L2.1= H(s)(λx.Ψ(t(ŝ))(G,H)(s ∗ x))
(∗)= H(s)(λx.Ψ(t(ŝ ∗ x))(G,H)(s ∗ x))
(‡)= H(s)(λx.∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s ∗ x))
(7)= H(s)(λx.Φt(∆)(G,H)(s ∗ x)).

Otherwise, if ¬S(s) then

Φt(∆)(G,H)(s) (7)= ∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s)
(‡)= Ht(G,H)(s)(λx.∆(λs′.Ψ(t(ŝ′))(G,H)(s′),Ht(G,H))(s ∗ x))
(7)= Ht(G,H)(s)(λx.Φt(∆)(G,H)(s ∗ x))
(6)= H(s)(λx.Φt(∆)(G,H)(s ∗ x)).

a

§3. Main Result. We have just shown that Spector’s bar recursion, when Y is a fixed T-term
t, is T-definable in the general bar recursion for any predicate S securing t. We will now prove
that for τ = N or τ = N → N and for any fixed term t[α], there exists some predicate S securing
the closed term λα.t[α] such that there is a T-definable functional which satisfies the general bar
recursion equation GBRS . For the rest of the section, let τ and σ be fixed.

Definition 3.1. For each finite type η we associate inductively a new finite type η◦ as:
N◦ = (τN → N)× ((τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ)

(ρ0 → ρ1)◦ = ρ◦0 → ρ◦1

Since terms t of type N◦ in fact consist of a pair of functionals, we will use the terminology
• Valt : τN → N for the first component of t, and
• Bt : (τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ for the second component,

so that t = 〈Valt; Bt〉.

Lemma 3.2. level(η◦) = 2 + max{1 + level(τ), level(σ)}+ level(η).

Proof. By induction on the structure of η.
• η = N. First notice that the type level of N◦ is dictated by the component τ∗ → (τ → σ)→ σ.
Since

level(τ∗ → (τ → σ)→ σ) = max{2 + level(τ), 1 + level(σ)}



6 PAULO OLIVA AND SILVIA STEILA

we have that
level((τ∗ → σ)→ (τ∗ → (τ → σ)→ σ)→ τ∗ → σ) = 2 + max{1 + level(τ), level(σ)}

so level(N◦) = 2 + max{1 + level(τ), level(σ)}+ level(N).
• η = ρ0 → ρ1. By definition level(η◦) = max{1+level(ρ◦0), level(ρ◦1)}. By induction hypothesis
for i = 0, 1 we have

level(ρ◦i ) = 2 + max{1 + level(τ), level(σ)}+ level(ρi).
Therefore

level(η◦) = max{1 + level(ρ◦0), level(ρ◦1)}
= 2 + max{1 + level(τ), level(σ)}+ max{1 + level(ρ0), level(ρ1)}
= 2 + max{1 + level(τ), level(σ)}+ level(η).

a
3.1. Translation (case τ = N). For the rest of this sub-section we shall also assume that

τ = N, and that α is a special variable of type N → N. In Section 3.4 we describe which small
changes need to be made to treat the case τ = N→ N. Moreover, we assume σ to be an arbitrary
but fixed finite type.
Given a term t : N with the special variable α as the only free variable, our goal is to define a

term t◦ : N◦ in such a way that Valt◦ = λα.t, allowing us to evaluate t for concrete values of α, and
Bt◦ will be such that GBRS(Bt◦), for some bar S which secures λα.t. For a term t of a higher-type
we will define t◦ in such a way that this property is preserved at ground type.

Definition 3.3. Let Ψ(k) be the T-term defined in the proof of Lemma 2.1 (defining bar re-
cursion in the special case when Y is the constant functional λα.k). Assume a given mapping of
variables x : η to variables x◦ : η◦, and let α be a special variable of type N → τ , where in this
section τ is assume to be N. For any term t : ρ in system T, define t◦ : ρ◦ inductively as follows:

0◦ def= 〈λα.0;λG,H.G〉

Succ◦ def= λxN
◦
.〈λα.Succ(Valx(α)); Bx〉

α◦
def= λxN

◦
.〈λα.α(Valx(α));λG,H.Bx(λs′.Ψ(Valx(ŝ′))(G,H)(s′), H)〉

(xη)◦ def= x◦

(λxη.t)◦ def= λx◦.t◦

(uv)◦ def= u◦v◦

(Recη)◦ def= λaη
◦
, FN◦→η◦→η◦ , xN

◦
, vρ

◦
.〈λα.Valr[Valx(α)](α); B〉

where in the case of the Recη we assume η = ρ→ N, and r[n] and B are built from a, F, x and v as

• r[n] def= Recη
◦
(a, λkN.F (k◦))(n)(v)

• B(G,H)(s) def= Bx(λs′.B
r[Valx(ŝ′)](G,H)(s′), H)(s)

using the abbreviation k◦ def= 〈λα.k;λG,H.G〉 in the definition of r[n]. If η = N then we may omit
ρ and the variable vρ◦ , and should define r[n] def= Recη

◦
(a, λkN.F (k◦))(n).

Note that if t : N has variables α and x1, . . . , xn free, then t◦ will only have x◦1, . . . , x◦n free.
3.2. Verification. We will now show that for any term t[α] : N, the second component of (t[α])◦,

i.e. B(t[α])◦ , is a term in system T which defines a general bar recursion for some bar predicate S
which secures λα.t[α].

Theorem 3.4 (HAω + AC0). Let τ = N and t : N be a term of system T with only αN→τ as
free variable. Then there exists a bar S which secures λα.t such that GBRS(Bt◦).

Proof. Let ∼ρ⊆ ρ◦ × (NN → ρ) be the logical relation between terms of system T defined as:

fN
◦ ∼N g

NN→N def= Valf = g ∧ ∃S(S is a bar securing g and GBRS(Bf ))

fρ
◦
0→ρ

◦
1 ∼ρ0→ρ1 g

NN→(ρ0→ρ1) def= ∀xρ◦0∀yNN→ρ0(x ∼ρ0 y=⇒ f(x) ∼ρ1 λα.g(α)(yα))
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We prove that for any t with free variables ~x and (possibly) α, (λ~x.t)◦ ∼ρ λαλ~x.t by structural
induction over t, where ρ is the type of λ~x.t.
• t = 0. We need to show that

0◦ = 〈λα.0;λG,H, s.G(s)〉 ∼N λα.0.

Clearly we have Val0◦ = λα.0. Let S(s) def= true, which is a bar securing λα.0. Then, indeed
we also have GBRS(B0◦) since

B0◦(G,H)(s) = G(s).

• t = Succ. Let us show that Succ◦ ∼N→N λα.Succ, i.e. for all x : N◦ and gNN→N

x ∼N g =⇒ Succ◦(x) ∼N λα.Succ(gα)

The premise ensures that Valx = g and GBRSx(Bx) for some bar Sx securing g. Hence,
assuming the premise, and unfolding the definition of Succ◦, we need to show

〈λα.Succ(gα); Bx〉 ∼N λα.Succ(gα).

The only non-trivial part is to observe that if Sx secures g then it also secures λα.Succ(gα).
• t = zρ. When t is simply a free-variable z we must show that (λz.z)◦ ∼ρ→ρ λαλz.z. But this
follows directly from the definition of ∼ρ→ρ, noticing that (λzρ.z)◦ def= λzρ

◦
.z

• t = α. We need to show that α◦ ∼N→N λα.α, i.e. for all xN
◦ and gNN→N

x ∼N g =⇒ α◦(x) ∼N λα.α(gα).

Again, the premise x ∼N g implies that Valx = g and GBRSx(Bx), for some bar Sx securing
g. Hence, fix x and g such that x ∼N g. Unfolding the definition of α◦, we show

〈λα.α(gα);λG,H, s.Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s)〉 ∼N λα.α(gα)

where Ψ(g(ŝ′))(G,H) is the T-definition of BRτ,σ(G,H, λα.g(ŝ′)) (cf. Lemma 2.1). The first
conjunct of the definition of ∼N is trivially satisfied. Let

S(s) def= Sx(s) ∧ gŝ < |s|.

Since Sx(s) is a bar, and Sx secures g, it follows that S(s) is also a bar. Moreover, since Sx
secures g, it also follows that S secures λα.α(gα). Using the hypothesis (†)GBRSx(Bx), we
need to show

GBRS(λG,H.Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)).

Fix G,H and s. Consider two cases:
If S(s) then Sx(s) and gŝ < |s|. In this case we trivially have

Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s) (†)= Ψ(g(ŝ))(G,H)(s) = G(s)

If ¬S(s) then either ¬Sx(s) or gŝ ≥ |s|. We consider two cases:
If Sx(s) holds then gŝ ≥ |s|. Moreover, (‡) gŝ = g(ŝ ∗ y) for any y, since Sx secures g. By
monotonicity of Sx we also have Sx(s ∗ y) for any y. Hence

Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s) (†)= Ψ(g(ŝ))(G,H)(s)

= H(s)(λy.Ψ(g(ŝ))(G,H)(s ∗ y))
(‡)= H(s)(λy.Ψ(g(ŝ ∗ y))(G,H)(s ∗ y))
(†)= H(s)(λy.Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s ∗ y))

If ¬Sx(s) then

Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s) (†)= H(s)(λy.Bx(λs′.Ψ(g(ŝ′))(G,H)(s′), H)(s ∗ y))

• t = λxρ.u. Trivial by induction hypothesis.
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• t = uρ→τvρ. For simplicity let us assume u has free-variables xσ1
1 and xσ2

2 and v has free-
variables xσ2

2 and xσ3
3 , which is enough to illustrate how the difference in the set of free-

variables of u and v is handled. We must show that
(λx1, x2, x3.uv)◦ ∼(σ1×σ2×σ3)→τ λαλx1, x2, x3.uv.

By the definition of (·)◦ this is
λx◦1, x

◦
2, x
◦
3.u
◦v◦ ∼(σ1×σ2×σ3)→τ λαλx1, x2, x3.uv

By induction hypothesis we have λx◦1, x◦2.u◦ ∼(σ1×σ2)→(ρ→τ) λα, x1, x2.u, i.e. for all x◦1,x̃
NN→σ1
1 ,

x◦2,x̃
NN→σ2
2 and y◦, ỹNN→ρ

x◦1 ∼σ1 x̃1 ∧ x◦2 ∼σ2 x̃2 ∧ y◦ ∼ρ ỹ =⇒ u◦y◦ ∼τ λα.u[x̃1α/x1][x̃2α/x2](ỹα),

and λx◦2, x◦3.v◦ ∼(σ2×σ3)→ρ λα, x2, x3.v, i.e. for all x◦2, x̃
NN→σ2
2 , x◦3 and x̃N

N→σ3
2

x◦2 ∼σ2 x̃2 ∧ x◦3 ∼σ3 x̃3 =⇒ v◦ ∼ρ λα.v[x̃2α/x2][x̃3α/x3].

Therefore given for any j ∈ {1, 2, 3} x◦j and x̃N
N→σj
j such that xj ∼σj x̃j , we have

v◦ ∼ρ λα.v[x̃2α/x2][x̃3α/x3]
which we can plug into the first induction hypothesis to obtain

u◦v◦ ∼τ λα.u[x̃1α/x1][x̃2α/x2](v[x̃2α/x2][x̃3α/x3]))

= (λαλx1, x2, x3.uv)(α)(x̃1α)(x̃2α)(x̃3α).
• t = Recη. Without loss of generality we can assume that the recursor has type η = ρ → N
for some type ρ. It is easy to check that k◦ ∼N λα.k, for any variable k : N, where k◦ is the
abbreviation introduced at the end of Definition 3.3.
Assume x ∼N g, a ∼η A, F ∼N→η→η ψ, v ∼ρ V . We must show that

(Recη)◦(a, F )(x)(v) ∼N λα.Recη(Aα,ψα)(gα)(V α).
Or, unfolding the definition of (Recη)◦, that

〈λα.Valr[Valx(α)](α); B〉 ∼N λα.Recη(Aα,ψα)(gα)(V α)
where r[n] and B are as in Definition 3.3. Again we note that the premise x ∼N g implies
that Valx = g and (†)GBRSx(Bx), for a bar Sx securing g.
Claim 1. For all nN, Recη

◦
(a, λkN.F (k◦))(n) ∼η λα.Recη(Aα,ψα)(n).

Proof. By induction on n. If n = 0, since a ∼η A, then

Recη
◦
(a, λkN.F (k◦))(0) def= a ∼η A

def= λα.Recη(Aα,ψα)(0).
For n > 0, by induction hypothesis we have,

Recη
◦
(a, λkN.F (k◦))(n− 1) ∼η λα.Recη(Aα,ψα)(n− 1)

Since F ∼N→η→η ψ and (n− 1)◦ ∼N λα.n− 1, we have that for all b ∼η B
F ((n− 1)◦, b) ∼η λα.ψ(α)(n− 1, Bα).

Hence:
Recη

◦
(a, λkN.F (k◦))(n) def= F ((n− 1)◦,Recη

◦
(a, λkN.F (k◦)))(n− 1)

∼η λα.ψ(α)(n− 1,Recη(Aα,ψα)(n− 1))
def= λα.Recη(Aα,ψα)(n).

This concludes the proof of the first claim.

Claim 2. For all nN

r[n] ∼N λα.Recη(Aα,ψα)(n)(V α).
Proof. Immediate from Claim 1 and the assumption v ∼ρ V .
Claim 2 in particular implies (by the definition of ∼N) that for all nN

Valr[n](α) = Rec(Aα,ψα)(n)(V α)
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and (‡)GBRS(Br[n]), for some bar S securing λα.Recη(Aα,ψα)(n)(V α). By countable choice
AC0 we have a sequence of bars (Sn)n∈N. Taking n = gα we have

(i) Valr[gα](α) = Recη(Aα,ψα)(gα)(V α)
Let S(s) def= Sx(s) ∧ Sgŝ(s). We also have that

(ii) S is a bar securing λα.Recη(Aα,ψα)(gα)(V α)
Indeed, since S(s) implies that both g and λα.Recη(Aα,ψα)(gŝ)(V α) are secure, which implies
that λα.Recη(Aα,ψα)(gα)(V α) is secure.
Claim 3. GBRS(λG,H.Bx(λs′.B

r[g(ŝ′)](G,H)(s′), H)).
Proof. Fix G,H and s. We consider two cases:
If S(s), then Sx(s) and Sgŝ(s) also hold. Hence,

Bx(λs′.B
r[g(ŝ′)](G,H)(s′), H)(s) (†)= Br[g(ŝ)](G,H)(s)

(‡)= G(s).

If ¬S(s), then either ¬Sx(s) or ¬Sgŝ(s). We consider two cases:
If Sx(s) then ¬Sgŝ(s). Then, using that Sx(s) implies both (∗) gŝ = g(ŝ ∗ w) and (∗∗)Sx(s∗w),

Bx(λs′.B
r[g(ŝ′)](G,H)(s′), H)(s) (†)= Br[g(ŝ)](G,H)(s))

(‡)= H(s, λw.Br[g(ŝ)](G,H)(s ∗ w))
(∗)= H(s, λw.Br[g(̂s∗w)](G,H)(s ∗ w))

(†,∗∗)= H(s, λw.Bx(λs′.B
r[g(ŝ′)](G,H)(s′), H)(s ∗ w)).

Finally, if ¬Sx(s) then the result follows directly by (†).
a

By combining Theorems 2.4 and 3.4 we obtain:

Corollary 3.5 (HAω). Let τ = N and t : N be a T-term with only α : τN as free variable. Then
BR(Φt(Bt◦), Y = t). Moreover, if t ∈ Ti then Φt(Bt◦) ∈ Tj, where j = 2 + max{1, level(σ)}+ i.

Proof. By Theorem 3.4, we have GBRS(Bt◦) for a bar predicate S securing λα.t[α]. By
Theorem 2.4 it then follows that BR(Φt(Bt◦), Y = t). It remains to notice that if t uses a recursor
of type η then t◦ uses a recursor of type η◦. Hence, if i = level(η), by Lemma 3.2 we have that
level(η◦) = 2 + max{1 + level(τ), level(σ)} + level(η). Since level(τ) = 0 and level(η) = i we are
done. Although we have used countable choice AC0 in the proof of Theorem 3.4, by modified
realizability we can eliminate it here since this corollary is purely universal, so the verification
proof that Φt(Bt◦) is a T-definition of bar recursion for Y = t can actually be carried out within
HAω. a

Remark 3.6. Note that our construction is parametric in G and H, in the sense that we do not
require G and H to be T-definable. But once we consider concrete T terms Y,G and H, we get
as a corollary Schwichtenberg’s result that the functional λs.BR(G,H, Y )(s) is also T-definable.
Unfortunately our construction might not give the “optimal” T-definition of λs.BR(G,H, Y )(s).
Indeed, when Y,G and H are in T0 we obtain a definition of λs.BR(G,H, Y )(s) in T3. Howard’s
analysis [5] suggests that in such cases a definition λs.BR(G,H, Y )(s) already in T1 exists. This
seems to be the price we need to pay for having a more general construction that works uniformly
in G and H.

Remark 3.7. Our original motivation for this work started with our bar-recursive bound [1] for
the Termination Theorem by Podelski and Rybalchenko [9]. The Termination Theorem char-
acterizes the termination of transition-based programs as a properties of well-founded relations.
Its classical proof requires Ramsey’s Theorem for pairs [10]. By using Schwichtenberg’s result, we
proved that under certain hypotheses our bound is in system T. By applying the main construction
from this paper we can obtain explicit constructions of the bounds in system T.
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3.3. Illustrative Example. Corollary 3.5 is a generalization of the result obtained by Schwicht-
enberg in [12], but note that our construction is much more explicit, and one we can easily replace
bar recursive definitions by their equivalent system T ones (under the conditions of Schwichten-
berg’s result).
Let us go back to the example alluded to in the introduction, i.e. Spector’s bar recursion for

t[α] = RecN(0, λk.α)(α(0)), where λk.α is ignoring the first argument k so that

t[α] = α(α(. . . (α(0)) . . . )

with α(0) applications of α. In order to work out the T-definition of the bar recursive functional
λG,H, s.BRN,N(G,H, λα.t[α])(s) we first calculate Bt◦ ,

B(t[α])◦(G,H)(s) = B(α(0))◦(λs′.Br[Val(α(0))◦ (ŝ′)](G,H)(s′), H)(s) = B(α(0))◦(λs′.Br[ŝ′(0)](G,H)(s′), H)(s)

where r[n] = RecN
◦
(0◦, λk.α◦)(n). By Corollary 3.5, GBRS(B(t[α])◦) for some bar S which secures

λα.t[α]. Hence, BRN,N(G,H, λα.t[α]) can be T-defined as
BRN,N(G,H, λα.t[α]) = Φλα.t[α](λG,H.Bt◦(G,H))(G,H)

with Φλα.t[α] as in the proof of Theorem 2.4, i.e.
BRN,N(G,H, λα.t[α]) = Bt◦(λs′.Ψ(t[ŝ′])(G,H)(s′),Hλα.t[α](G,H))

where

HY (G,H)(s)(fN→N) def=

G(s) if Y (ŝ) < |s|

H(s)(f) otherwise.
3.4. The Case τ = N→ N. We now discuss how to extend the construction given in Definition

3.3, and the proof of Theorem 3.4, so that Corollary 3.5 also holds when τ = N→ N. In this case
α has type N → (N → N). First, in Definition 3.3, when τ = N → N we modify the definition of
α◦ as

α◦
def= λxN

◦
yN
◦
.〈Val; B〉

where
• Val(α) def= α(Valx(α))(Valy(α)),
• B(G,H)(s) def= By(Bx(λs′.Ψ(max

{
Valx(ŝ′),Valy(ŝ′)

}
)(G,H)(s′), H), H)(s).

We also need to modify the proof of Theorem 3.4 in the place where the case α is treated. Let
x◦ ∼ g and y◦ ∼ h. This implies that (†) GBRSx(Bx) for a bar Sx securing g, and (‡) GBRSy (By)
for a bar Sy securing h. Define the predicate:

S(s) def= Sx(s) ∧ Sy(s) ∧max {Valx(ŝ),Valy(ŝ)} < |s|.

That S(s) is a bar follows directly from the assumptions that Sx and Sy are bars. We show that
GBRS(B). Consider two cases:
If S(s) holds, then Sx(s) ∧ Sy(s) ∧max {g(ŝ), h(ŝ)} < |s|. In this case we trivially have

B(G,H)(s) (‡)= Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H)(s)

(†)= Ψ(max {g(ŝ), h(ŝ)})(G,H)(s)
= G(s).

If ¬S(s) holds, we consider three cases:
If ¬Sy(s) then

B(G,H)(s) def= By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s)

(‡)= H(s)(λz.By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s ∗ z))

def= H(s)(λz.B(G,H)(s ∗ z)).
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If Sy(s) but ¬Sx(s) then, by monotonicity we have also Sy(s ∗ z) for every z. Thus:

B(G)(s) def= By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s)

(‡)= Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H)(s)

(†)= H(s)(λz.Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H)(s ∗ z))

(‡)= H(s)(λz.By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s ∗ z))

def= H(s)(λz.B(G,H)(s ∗ z)).

If Sy(s) and Sx(s) and max {g(ŝ), h(ŝ)} ≥ |s|. From Sy(s) and Sx(s) we have (∗) g(ŝ ∗ z) =
g(ŝ)∧ h(ŝ ∗ z) = h(ŝ) for every z. Moreover, by monotonicity we have also Sy(s ∗ z) and Sx(s ∗ z).

B(G,H)(s) def= By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s)

(‡)= Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H)(s)

(†)= Ψ(max {g(ŝ), h(ŝ)})(G,H)(s)
def= H(s)(λz.Ψ(max {g(ŝ), h(ŝ)})(G,H)(s ∗ z))
(∗)= H(s)(λz.Ψ(max {g(ŝ ∗ z), h(ŝ ∗ z)})(G,H)(s ∗ z))
(†)= H(s)(λz.Bx(λs′.Ψ(max

{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H)(s ∗ z))

(‡)= H(s)(λz.By(Bx(λs′.Ψ(max
{
g(ŝ′), h(ŝ′)

}
)(G,H)(s′), H), H)(s ∗ z))

def= H(s)(λz.B(G,H)(s ∗ z)).
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