
Unifying Functional Interpretations: Past and Future

Paulo Oliva

Queen Mary University of London

paulo.oliva@eecs.qmul.ac.uk

October 16, 2014

Abstract

This article surveys work done in the last six years on the unification of various functional in-
terpretations including Gödel’s dialectica interpretation, its Diller-Nahm variant, Kreisel modified
realizability, Stein’s family of functional interpretations, functional interpretations “with truth”,
and bounded functional interpretations. Our goal in the present paper is twofold: (1) to look
back and single out the main lessons learnt so far, and (2) to look forward and list several open
questions and possible directions for further research.

1 Introduction

When studying and working with the two main functional interpretations, namely the dialectica
[3, 24] and the modified realizability [36] interpretations, one notices a striking similarity in the
way the two interpretations behave. For instance, they both interpret ∀∃-statements in precisely the
same way, and their soundness (also called adequacy) proofs follow very similar patterns. Yet, for
all purpose these are two very different interpretations, validating different principles1, and having
different properties2. Several questions naturally arise. What is the common structure behind these
two functional interpretations? How are the different witnesses obtained from a given proof when
applying different interpretations related to each other?

It was with these questions in mind that I set out [39] to develop a general framework to unify
functional interpretations. This initial work was followed by several other articles [17, 19, 20, 22,
27, 40, 41, 42, 43, 44] further refining or generalising the original idea. These were mainly done in
collaboration with Gilda Ferreira, Jaime Gaspar and Mircea-Dan Hernest. What started as a small
modification of the dialectica interpretation to also capture realizability and the Diller-Nahm variant
[12] ended up as a very general hybrid functional interpretation of intuitionistic affine logic3, also

1For instance, the dialectica interpretation validates the Markov principle whereas modified realizability does not. On
the other hand, modified realizability validates full extensionality whereas the dialectica interpretation does not.

2For instance, realizability interpretations always have a so-called “truth” variant, whereas the dialectica interpretation
does not.

3Intuitionistic linear logic plus the weakening rule.



capturing Stein’s family of functional interpretations [50], functional interpretations “with truth” [22],
and bounded functional interpretations [14, 15, 16].

This article will survey the work mentioned above, singling out what I believe to be the key
lessons learnt so far. These are summarised as follows. For details see the corresponding sections and
the articles mentioned.

(§2) Modified realizability can also alternatively be presented as a relation between potential wit-
nesses and challenges, in a way very similar to the way the dialectica interpretation is presented.
This is originally observed in [39] and is key to extending realizability to affine logic [41].

(§3) Most functional interpretations of intuitionistic logic can be factored via affine logic. More
interestingly, all functional interpretations considered, when extended to affine logic, coincide
in the pure fragment, where modalities are absent. This factorisation allows us to clearly see
that the only difference between most of the functional interpretations is in the treatment of
contraction, which in affine logic is captured by !A. Although this was originally done in the
setting of classical affine logic [27, 40, 41, 43], it turned out that intuitionistic affine logic is
not only enough, but the unification becomes much simpler [17, 20, 22] (albeit at the cost of
losing symmetry).

(§4) When designing the unified functional interpretation of intuitionistic affine logic we were only
expecting to be able to capture the classic interpretations such as the dialectica, modified re-
alizability and Diller-Nahm. We were therefore surprised when we discovered [22] that even
the truth variants of functional interpretations fit in the framework almost effortlessly. Which
means that even proof interpretations with truth only differ from their “non-truth” variants in
the treatment of !A, but coincide in the treatment of all other connectives.

(§5) Because the bang (!) of affine logic is not canonical, one can then effectively combine all the
functional interpretations mentioned above, including their truth variants, into single interpre-
tations which we called hybrid functional interpretations [27, 44]. This means, for instance,
that in a single proof one can try to make use of both the dialectica interpretation in some parts
of the proof and modified realizability in others, combining their strengths to maximum benefit.

We will conclude (§6) by listing thirteen open questions which indicate possible interesting directions
for further research.

Acknowledgement. Most of the work presented here has been done in collaboration with Gilda
Ferreira, Jaime Gaspar and Mircea-Dan Hernest. I would also like to acknowledge previous work
done in this direction on which the current work builds, such as those of Martin Stein [50, 51], Valéria
de Paiva [46, 47], Masaru Shirahata [49] and Andreas Blass [10]. Finally, many thanks to Thomas
Powell, Jules Hedges and Gilda Ferreira for several comments and corrections on an earlier version
of this paper.

Notation. We use X :≡ A to say that X is defined by A. We use A ≡ B to mean A and B are
syntactically equal.



2 A Different View on Realizability

The first obvious difference between modified realizability [36] and the dialectica interpretation [24]
is that the first interprets formulas A as unary predicates Ar(x), normally written as “x realizes A”,
whereas the dialectica interpretation associates to formulas A binary predicates AD(x;y). Here x
and y denote tuples of variables x = x1, . . . , xn and y = y1, . . . , ym, where the length of the tuple
and the types of the variables depend on the logical structure of the formula A. The two formulas
Ar(x) and AD(x;y) are defined inductively as4

(A ∧B)r(x,y) :≡ Ar(x) ∧Br(y)

(A ∨B)r(x,y, b) :≡ Ar(x) 3bBr(y)

(A→ B)r(f) :≡ ∀x(Ar(x)→ Br(fx))

(∃zA)r(x, a) :≡ (A[a/z])r(x)

(∀zA)r(f) :≡ ∀zAr(fz)

(A ∧B)D(x,v;y,w) :≡ AD(x;y) ∧BD(v;w)

(A ∨B)D(x,v, b;y,w) :≡ AD(x;y) 3bBD(v;w)

(A→ B)D(f , g;x,w) :≡ AD(x; gxw)→ BD(fx;w)

(∃zA)D(x, a;y) :≡ (A[a/z])D(x;y)

(∀zA)D(f ;y, a) :≡ (A[a/z])D(fa;y).

with the base case (Aat)r(ε) = (Aat)D(ε; ε) = Aat, for atomic formulas Aat, with ε denoting the
empty tuple (henceforth omitted). Note that for tuples of variables f = f1, . . . , fn and x we write
fx for the tuple of terms f1x, . . . , fnx. Using these predicates Ar(x) and AD(x;y) we can define
two sets of “functionals”

A 7→ {x | Ar(x)} A 7→ {x | ∀yAD(x;y)}

which we will refer to as the “realizability witnesses” and the “dialectica witnesses”. The two func-
tional interpretations, modified realizability and dialectica, can be viewed as algorithms to turn an
intuitionistic proof of A into concrete (e.g. higher-order programs) elements of these sets.

The work on unifying different functional interpretations [39] started with the observation that
one can also view modified realizability as associating formulas with a binary predicate Arr(x;y)
(which I will call “relational realizability”) between two tuples x and y in a way very similar to the
dialectica interpretation, namely

(A ∧B)rr(x,v;y,w) :≡ Arr(x;y) ∧Brr(v;w)

(A ∨B)rr(x,v, b;y,w) :≡ Arr(x;y) 3bBrr(v;w)

(A→ B)rr(f ;x,w) :≡ ∀yArr(x;y)→ Brr(fx;w)

(∃zA)rr(x, a;y) :≡ (A[a/z])rr(x;y)

(∀zA)rr(f ;y, a) :≡ (A[a/z])rr(fa;y).

(1)

4We are using the abbreviation A 3b B :≡ (b = true → A) ∧ (b = false → B). We also use the same macro in the
context of affine logic where it stands for A 3b B :≡ (!(b = true) ( A)⊗ (!(b = false) ( B).



It is easy to show by induction on the formula A that these two different definitions of realizability
lead to the same interpretation as the following equivalence is intuitionistically provable:

Ar(x) ⇔ ∀yArr(x;y).

The relational presentation of realizability, however, makes it absolutely clear that realizability only
differs from the dialectica interpretation in the clause for implication A→ B. While the realizability
interpretation does not attempt to witness the universal quantifier ∀y in the clause for A → B, the
dialectica interpretation witnesses such quantifier via the extra tuple of functionals g.

The two main ideas behind the original unifying functional interpretation [39] are the introduction
of a common notation |A|xy for such binary predicates, and a parametrised interpretation of A → B.
That is achieved via an abstract formula constructor ∀x ≺ aA that takes a tuple of terms a and
a formula A (with free variables x) and produces a new formula where x are no longer free. A
parametrised functional interpretation can then be given as

|A ∧B|x,vy,w :≡ |A|xy ∧ |B|vw
|A ∨B|x,v,by,w :≡ |A|xy 3b |B|vw
|A→ B|f ,gx,w :≡ ∀y≺gxw |A|xy → |B|

fx
w

|∃zA|x,ay :≡ |A[a/z]|xy
|∀zA|fy,a :≡ |A[a/z]|fay .

(2)

Subject to a few conditions (cf. [39]) on ∀x≺ aA, one can then prove a uniform soundness theo-
rem for intuitionistic logic. When the formula constructor is instantiated one obtains the three main
functional interpretations as follows:

∀x≺aA Functional interpretation

A[a/x] Gödel’s dialectica interpretation
∀x∈aA Diller-Nahm interpretation
∀xA Kreisel modified realizability

In order to show that each of these three interpretations is sound one only needs to check that they
satisfy the required conditions mentioned above.

Remark 2.1 (Stein family of interpretations) Let M ∈ N ∪ {∞}. Given a tuple of variables x =
x0, . . . , xn let us denote by x≥M the tuple containing only the elements of x with type level ≥ M .
Similarly we denote by x<M the tuple containing only the elements of x with type level < M . Note
that x<∞ = x and x<0 is the empty tuple. Stein’s family of functional interpretations [50] also fits
in the above framework as we can take for each given M

∀x≺aA :≡ ∀x<M∀x≥M ∈aA

where a is a set indexed by the pure type M , i.e. a : M → ρ for some type ρ. When M = ∞
this coincides with modified realizability, whereas with M = 0 this is a variant of the Diller-Nahm
interpretation that allows for infinite (countable) sets, as a : N → ρ (N is the pure type having type
level 0).



3 Factoring Through Affine Logic

Reformulating realizability as a binary predicate as described in Section 2 was an important step
towards showing that modified realizability and the dialectica interpretation have much more in com-
mon than previously imagined. The fact is that they only differ on their handling of witnesses coming
from the premise of an implication. But that opens a new question: What is special about the premise
of an implication that allows for these different interpretations to exist? A satisfactory answer to this
question came from the analysis of functional interpretations via affine logic.

Intuitionistic affine logic (ALi) is a refinement of intuitionistic logic (IL) where particular at-
tention is paid to the contraction rule [6, 23]. We call this a refinement because the connectives of
intuitionistic logic can be recovered from a combination of those from affine logic. This is formally
expressed via Girard’s translations of intuitionistic logic into linear logic. The two most commonly
used are5

P ∗ :≡ P

(A ∧B)∗ :≡ A∗ ⊗B∗

(A ∨B)∗ :≡ !A∗⊕ !B∗

(A→ B)∗ :≡ !A∗ ( B∗

(∀xA)∗ :≡ ∀xA∗

(∃xA)∗ :≡ ∃x!A∗.

P ◦ :≡ !P

(A ∧B)◦ :≡ A◦ ⊗B◦

(A ∨B)◦ :≡ A◦ ⊕B◦

(A→ B)◦ :≡ !(A◦ ( B◦)

(∀xA)◦ :≡ !∀xA◦

(∃xA)◦ :≡ ∃xA◦.
The translations are such that if A is provable in IL then both !A∗ and A◦ are provable in ALi.

While working on [39], in the setting of intuitionistic logic, I came across de Paiva’s [47] dialec-
tica (and Diller-Nahm) interpretation of affine logic. It then occurred to me that one could use the
new formulation of realizability discussed in Section 2 to extend the realizabillity interpretation from
intuitionistic logic to affine logic. This was developed and presented in [40, 41]. The starting point is
the functional interpretation of pure affine logic (affine logic without the exponentials). As mentioned
in the introduction, we consider the intuitionistic fragment of affine logic:

|A⊕B|x,v,zy,w :≡ |A|xy 3z |B|vw
|A⊗B|x,vy,w :≡ |A|xy ⊗ |B|vw
|A( B|f ,gx,w :≡ |A|xgxw ( |B|fyw

|∀zA(z)|fy,a :≡ |A[a/z]|fay
|∃zA(z)|x,ay :≡ |A[a/z]|xy .

(3)

What one notices is that the parameter constructor ∀x≺aA used to interpret A→ B in (2) is in
fact the interpretation of the affine logic modality !A. So we can extend the basic interpretation (3) to
a parametrised interpretation of full intuitionistic affine logic as

|!A|xa :≡ !∀y≺a |A|xy . (4)

5The usual clause for (A ∧B)∗ is (A ∧B)∗ :≡ A∗ &B∗. We can take (A ∧B)∗ :≡ A∗ ⊗B∗ instead because we are
embedding intuitionistic logic into affine logic (linear logic with the weakening rule).



A

?

(·)◦

-

mod. realizability

A◦

Ar(x)

?

(·)◦

-
| · |

(3) + (5)
|A◦|x ≡ (Ar(x))◦

Figure 1: Factoring modified realizability

Via the translations (·)◦ and (·)∗ of IL into ALi one can recover the interpretations of intuitionistic
logic from those of intuitionistic affine logic as follows. For instance, consider the abbreviation
∀x≺aA :≡ ∀xA, so that (4) simplifies to

|!A|x :≡ !∀y|A|xy . (5)

We call the resulting interpretation a modified realizability interpretation of affine logic because the
diagram of Figure 1 commutes, i.e. given a formulaA of intuitionistic logic we can either apply mod-
ified realizability directly and translate the result into liner logic, or alternatively, we can first translate
A into affine logic, and then apply the interpretation with ∀x≺aA :≡ ∀xA. Both paths result in the
same formula. Note that we really mean syntactic equality, rather than logical equivalence.

Now, if instead of using the Girard translation A◦ we use instead the translation A∗ we obtain
a different diagram (Figure 2) which also commutes if we take in the upper arrow the relational
realizability instead.

A

?

(·)∗

-

rel. realizability

A∗

Arr(x;y)

?

(·)∗ (cf. Remark 3.1 below)

-
| · |

(3) + (5)
|A∗|xy ≡ (Arr(x;y))∗

Figure 2: Factoring the relational variant of modified realizability

In other words, the two ways of presenting modified realizability arise from the two possible ways
of translating intuitionistic logic into affine logic. In both cases the modified realizability interpreta-
tion of affine logic is fixed (the lower arrows of Figures 1 and 2). That illustrates how affine logic has
a more fundamental nature, as it is able to capture precisely the inherent structure of realizability.

Just as we have factored the realizability interpretation through affine logic, we can also do the
same for the dialectica interpretation by considering the abbreviation ∀x≺aA :≡ A[a/x] leading to
the interpretation of !A as

|!A|xy :≡ !|A|xy . (6)



Again, we say that (6) is a dialectica interpretation of affine logic because it corresponds to the di-
alectica interpretation of intuitionistic logic as depicted in the commuting diagram of Figure 3.

A

?

(·)∗

-

dialectica

A∗

AD(x;y)

?

(·)∗ (cf. Remark 3.1 below)

-
| · |

(3) + (6)
|A∗|xy ≡ (AD(x;y))∗

Figure 3: Factoring Gödel’s dialectica interpretation

Finally, a Diller-Nahm interpretation of affine logic is obtained by choosing the abbreviation

∀x≺aA :≡ ∀x∈aA,

where a is a tuple of finite sets, and x ∈ a denotes the usual set inclusion. For further details on the
factorisation of the main functional interpretations via affine logic see [17, 20].

Remark 3.1 In the diagrams of Figures 2 and 3 we are taking a simplified form of the (·)∗-translation,
namely, one where the clauses for disjunction and existential quantifier are simply

(A ∨B)∗ :≡ A∗ ⊕B∗

(∃xA)∗ :≡ ∃xA∗,

i.e. the bang is not used. The reason why we can work with this simpler translation of IL into ALi is
because we are considering ALi extended with the following two principles

!A⊕ !B ( !(A⊕B)

∃x!A( !∃xA.
(7)

These principles are harmless because they are interpretable by the interpretation |A|xy for any of the
three choices of ∀x≺ aA above. In general however, the combination of |A|xy with the translation
(·)∗ will lead to interpretations of disjunction and existential quantifier as

|A ∨B|x,v,by,w :≡ ∀y≺a |A|xy 3b ∀w≺c |B|vw
|∃zA|x,ac :≡ ∀y≺c |A[a/z]|xy .

(8)

This more general treatment is important for instance in the functional interpretation with truth as
discussed in the following section.



A

?

(·)◦

-

realizability with truth

A◦

Amrt(x)

?

(·)◦

-

(3) + (11)
|A◦|x ≡ (Amrt(x))◦

Figure 4: Factoring modified realizability with truth

4 Interpretations with Truth

The soundness of functional interpretations guarantees that from a proof ofA a tuple of terms t can be
extracted such that |A|ty. An important issue is that such a tuple t provides a witness to the statement
∃x∀y|A|xy , but not necessarily a witness to the original theorem A. For realizability interpretations
some variants have been developed so that a realiser for ∃zA also contains a witness for z. These are
the so-called q-realizability and realizability with truth [26, 31, 52]. In general what we would like is
that

∀y|A|xy → A (9)

is derivable without the need for the characterisation principles6 of the interpretation | · |, because then
we can extract actual witnesses from proofs of existential statements as follows

` ∃zA(z)
soundness⇒ ` |∃zA(z)|t,sy

(3)
≡ ` |A(s)|ty

(9)⇒ ` A(s).

In joint work with Jaime Gaspar [22] we have shown how interpretations with truth arise from a slight
modification of the abstract interpretation of !A from (4) to

|!A|xa :≡ !∀y≺a |A|xy ⊗ !A. (10)

For instance, if we take the realizability abbreviation ∀y≺aA :≡ ∀yA in this case we obtain

|!A|x :≡ !∀y|A|xy ⊗ !A. (11)

The composition of this affine logic interpretation with the translation (·)◦ gives us precisely the
modified realizability with truth [32, 34, 35], as described in the diagram of Figure 4.

Consider then the q-variant of the relational realizability (1) where the clauses for disjunction and
existential quantification are modified as

(A ∨B)qr(x,v, b; ) :≡ (∀yAqr(x;y) ∧A) 3b (∀wBqr(v;w) ∧B)

(∃zA)qr(x, a; ) :≡ ∀y(A[a/z])qr(x;y) ∧A[a/z].
(12)

6The characterisation principles are the extra logical principles needed to show the equivalence between A and its
interpretation ∃x∀y|A|xy .



The diagram of Figure 5 shows how such q-realizability corresponds to the (·)∗ translation, making
use in this particular case of the forgetful translation (·)F of affine logic back into intuitionistic logic
instead7.

A

?

(·)∗

-

q-realizability

A∗

Aqr(x;y) ≡ (|A∗|xy)F

6

(·)F

-

(3) + (11)
|A∗|xy

Figure 5: Factoring q-realizability

If one observes that the A◦ translation is affine logic equivalent to the “banged” A∗ translation, i.e.
A◦ ↔ !A∗, one obtains the following interesting (apparently unobserved) correspondence between
realizability with truth and q-realizability

Amrt(x)
IL⇔ ∀yAqr(x;y) ∧A.

A great benefit of this analysis of truth interpretations via affine logic is that it gave us a handle
to define truth variants of other functional interpretations. For instance, contrary to what was thought
[30], we can immediately obtain a Diller-Nahm with truth instantiating (10) as

|!A|xa :≡ !∀y∈a |A|xy ⊗ !A.

For more details on the unification of functional interpretations with truth see [22].

Remark 4.1 It is essential here that one uses the full (·)∗ translation, not the simplification of the
previous section (cf. Remark 3.1) as the choice of interpretation (10) for !A, although sound for affine
logic, it is not sound for the extra principles (7).

5 Putting it All Together

The analysis of different functional interpretations via affine logic not only provides a setting where
the precise differences between the interpretations can be clearly seen, but surprisingly it also al-
lows us to combine multiple interpretations when analysing a single proof. This follows because,

7In this case a diagram similar to the ones considered before would not lead to a commuting diagram (not even if logical
equivalence is taken instead of syntactic equality). The problem is that whereas A might contain existential quantifiers
its interpretation Aqr(x;y) does not. Hence, formulas which are duplicated in |A∗|xy because of the ! in ∃x!A are not
duplicated in (Aqr(x;y))

∗ because the existential quantifiers have disappeared. One way to solve this is presented in [22],
but uses logical equivalence. Here we present an alternative solution which is to use the forgetful translation that leads to a
commuting diagram with syntactic equality instead. Obviously this is a weaker result than the previous four diagrams, as
(AI)∗ ≡ (A∗)J implies AI ≡ ((A∗)J)F but not conversely.



as observed by Girard, the bang (!A) is not a canonical operator. One can add multiple instances
!′A, !′′A, . . . all with the same four rules without being able to show that any two are provably equiva-
lent. This observation led us [27, 44] to consider a system of multi-modal affine logic with a different
instance of !A for each of the functional interpretations discussed above. For instance, we could add
five different variants of !A and interpret each as follows:

|!kA|x :≡ !∀y|A|xy (Kreisel’s modified realizability)

|!dA|xa :≡ !∀y∈a|A|xy (Diller-Nahm interpretation)

|!gA|xy :≡ !|A|xy (Gödel’s dialectica interpretation)

|!ktA|x :≡ !∀y|A|xy ⊗ !A (Kreisel’s modified realizability with truth)

|!dtA|xa :≡ !∀y∈a|A|xy ⊗ !A (Diller-Nahm interpretation with truth)

This leads to what we have termed hybrid functional interpretations. If left completely unrelated,
however, it would be difficult to make any practical use of this idea. We can observe, however, that
there is a certain partial order between these different modalities, as for instance, a witness for !kA is
clearly also a witness for !dA. Therefore, we can add a rule that allows us to conclude !dA from !kA,
i.e.

Γ ` !kA

Γ ` !dA

In the diagram of Figure 5 we write !X above !Y if the interpretation of !XA implies the interpretation
of !YA. As such, we could say that modified realizability with truth and Gödel’s dialectica inter-
pretation are the two “extreme” interpretations amongst these five. For more details on these hybrid
functional interpretations see [22, 27, 44].

!g

!d
��

��
!k
��

��

!dt

!kt

Figure 6: Ordering between different interpretations of !A

6 Directions for Further Work

Let us conclude by outlining a few possible directions for further work. These are either directly
related to the unification of functional interpretation or to the actual nature and better understanding
of functional interpretations themselves.



6.1 Functional interpretations with forcing

The combination of realizability with Cohen’s notion of forcing was originally studied by Goodman
[25] who showed it to be an effective way to prove conservation results that cannot apparently be
shown by realizability alone. Goodman’s work is related to the interpretations with truth (cf. Section
4) as forcing is used precisely to recover the truth property (9). Although Goodman presented a single
combined interpretation, Beeson [5] showed that Goodman’s interpretation can actually be seen as a
simple composition of the Kleene number realizability based on Turing machines with oracles fol-
lowed by an application of forcing. Recently, another variant of realizability, called learning-based
realizability [2], has been developed providing an extension of realizability to classical arithmetic.
Although different from Goodman’s, the learning-based realizability has many similar features to
Goodman’s combination of realizability and forcing. For instance, the learning-based interpretation
of formulas is described relative to a memory, which can be understood as a forcing condition ap-
proximating a non-computable oracle. Ineffective formulas (formulas without computable realisers)
can be given an approximating realiser that works only when the memory has the correct information.
The main result is that from a proof one can extract an agent that will be able to smartly build an
approximation to the memory good enough to eventually produce a correct realiser. Finally, Alexan-
der Miquel [38] has been working on extending Krivine’s classical realizability with forcing, in the
context of second-order arithmetic. This raises a few questions:

(Q1) What underlies the combination of realizability and forcing in general? Can forcing be com-
bined with other functional interpretations, e.g. Diller-Nahm? What benefits could that bring?

(Q2) As with Goodman’s interpretation, could the learning-based realizability be decomposed into a
standard realizability interpretation followed by some variant of forcing?

6.2 Bounded-like interpretations

Very recently [7] variants of modified realizability and the dialectica interpretation have been pro-
posed which apply to proofs in nonstandard arithmetic. The main feature of the interpretation is to
extract from a proof of an existential statement a finite set of candidate witnesses (as in Herbrand’s
theorem), rather than a precise witness. The authors show that finite sets are the appropriate way
to interpret existential standard quantifiers, while unrestricted existential quantifiers are interpreted
uniformly (as in [8] and [37]).

Also recently, so-called bounded variants of the dialectica and modified realizability interpreta-
tions [14, 15, 16] have been proposed which make use of the Howard/Bezem strong majorizability
relation but in a more embedded way than Kohlenbach’s monotone interpretation. The original moti-
vation was to extend functional interpretations to deal with ineffective principles in analysis such as
weak König’s lemma even over weak fragments of analysis. The bounded modified realizability was
then extended into a confined variant [18] which looks both for upper and lower bounds. There are
striking similarities between the functional interpretation of non-standard arithmetic and the bounded
and confined interpretations, as pointed out in [7]. That raises the question:

(Q3) What is the common structure behind these bounded-like interpretations? In joint work with
Gilda Ferreira [19] we have extended the unifying framework to deal with the bounded and con-



fined interpretations, but unfortunately, this does not look to be general enough to include the
non-standard arithmetic interpretation [7], as they make crucial use of a new form of functional
application.

6.3 Type-free functional interpretations

We have so far only been discussing Kreisel’s version of realizability known as modified realizability.
The original realizability interpretation, however, due to Kleene [31], makes use of numbers (codes of
Turing machines) as realizers, rather than functionals of higher type. The crucial difference is that not
all codes n define a total function {n} : N → N. As such, the realizability of an implication A → B
was originally defined as

(A→ B)nr(n) :≡ ∀k(Anr(k)→ {n}(k)↓ ∧Bnr({n}(k))),

so {n} only needs to be defined on k if k is indeed a realizer8 for A. Let us refer to Kleene’s
original notion of realizability as number realizability. It is clear that a relational variant of number
realizability also exists. For instance, the clause for implication would be:

(A→ B)rnr(n; k) :≡ ∀mArnr(k0;m)→ {n}(k0)↓ ∧Brnr({n}(k0); k1)

where k0 and k1 denote the first and second projections inverses of the standard coding N× N→ N.
That raises the following questions:

(Q4) Is there a number realizability interpretation of affine logic? By that we mean an interpretation
which works on numbers rather than functionals of finite type, and makes use of the fact that
realizers might be partial. For instance, that might involve modifying the clause for A( B in
(3) as

|A( B|nk :≡ |A|k0{n1}(k) ( |B|{n0}(k0)
k1

.

But the question is when should we require that {n0}(k0) and {n1}(k) be defined so as to
obtain not only a sound interpretation but also possibly interpret new principles that are not
interpreted by Kreisel’s modified realizability? It seems none of the obvious choices work.
But that of course does not rule out more comprehensive changes which could lead to a sound
interpretation.

(Q5) Related to (Q4), can one in general show that every natural (e.g. modular) functional interpre-
tation of intuitionistic logic can be extended to an interpretation of intuitionistic affine logic?
And, even if this is not the case, is it always possible to relate functional interpretations in a sim-
ilar way to the one done in Section 5, perhaps using different parameters than the interpretation
of !A?

8To appreciate the difference between Kleene number realizability and Kreisel’s modified realizability it is enough to
point out that the former is sound for the Markov principle whereas the later isn’t. In fact, Kreisel developed modified
realizability [36] precisely to show that the Markov principle is independent of intuitionistic arithmetic.



(Q6) Is there a “number variant” of the other aforementioned interpretations? Beeson [4] has looked
at the question for the dialectica interpretation, which he calls a type-free dialectica. Beeson
points out that there cannot be one for the actual dialectica interpretation, as it requires decid-
ability of quantifier-free formulas whereas statements of the form {n}(k)↓ are not decidable in
general. He then suggests a type-free variant of the Diller-Nahm interpretation as

|A→ B|nk :≡ {n1}(k)↓ ∧ (∀i ∈ {n1}(k) |A|k0i → {n0}(k0)↓ ∧ |B|
{n0}(k0)
k1

).

In other words, he requires the counter-example functions to be total9, whereas the witnessing
functions might be partial. Could this be relaxed? Could this be translated to the setting of
affine logic? Would this lead to extra principles that go beyond those interpreted by the typed
Diller-Nahm interpretation?

6.4 Short games versus long games

The use of games between two players to model non-classical logics started with the work of Lorentzen
[13] where formulas were put in correspondence with debates/dialogues so that those provable in in-
tuitionistic logic corresponded to dialogues in which the first player had a winning “strategy”. This
idea was refined in the works of Blass [10], Abramsky [1] and several others, and led to complete
semantics for fragments of linear logic.

The connections between games and the functional interpretations such as Gödel’s dialectica have
been there from the start [48]. In the final section 8 of [10], Blass discusses at great length how one
can view de Paiva’s [47] categorical formulation of the Diller-Nahm interpretation of linear logic as
arising from Blass’ game semantics. Blass’ suggestion is that the functional interpretation of linear
logic arises by considering short two-move games combined according to his rules but including
“Skolemisation” steps whenever it may be necessary to bring a long game into a two-move game.

(Q7) I feel that a better understanding of the differences between long games with concrete moves
and the short games with higher-order moves is still lacking. Although Blass shows how one
can think of the dialectica category as arising from his game semantics, it is well known that
dialectica-like games are useful to interpret extra principles that go beyond the interpreted logic
such as the Markov principle, independence of premise and the axiom of choice. Blass long
games, however, capture precisely some fragments of the logic providing a sound and complete
semantics.

(Q8) Related to (Q7), can functional interpretations be used to build fully abstract models? Another
question that would provide guidance towards this is: How does the functional interpretation
of the propositional fragment of linear logic relate to other models of linear logic such as proof
nets, monoidal closed categories, coherent spaces and phase semantics?

9I confess to not have been able to completely verify the soundness of Beeson’s interpretation. The problem seems to
appear in the interpretation of the cut rule (A → B and B → C implies A → C) as the “positive” witnesses for A → B
need not be total, but that is used in building the “negative” witnesses for A→ C, which should be total (cf. [4] middle of
page 221).



(Q9) In the context of long games people have been able to fine tune the interpreted logic by re-
stricting the kind of strategies one or both of the players is allowed to play (e.g. innocent
[29], fair, history-free). Not much in this direction has been done in the setting of functional
interpretations, whereby one could consider restrictions on the class of realisers in order to
avoid interpreting certain principles. It seems hard, however, to think of any restrictions that
would make the interpretation not sound with respect to the axiom of choice, for instance, as
its realiser is the identity. But one could consider other restrictions such as linear functionals,
functionals of certain complexity, etc.

(Q10) Using the nomenclature of game theory [21], the long games considered by Blass and Abram-
sky are said to be in extensive form. Such games can be thought of as trees where each node
in the tree is assigned one of the players and terminal nodes determine which player has won.
Games in extensive form can be brought into a so-called normal form, a matrix specifying for
each given pair of strategies for the two players which of the two wins the game if they follow
these strategies. Games in normal form can also be thought of as two-move games. The two-
move game arising from a functional interpretation is obviously not going to be the same as
the normal form of the given strategic Blass/Abramsky game. Two questions arise: What is the
relation between these two different two-move games that come for the same logical formula
A? Moreover, could the functional interpretation way of constructing two-move games have
any relevance to game theory?

6.5 Treading between linear and intuitionistic logic

We have seen that we can better understand and generalise an interpretation of intuitionistic logic by
moving to the more general (and finer) setting of affine logic. There are, however, some interesting
logics in between linear (no contraction) and intuitionistic (full contraction) logic. For instance,
consider the following “intuitionistic” version of Łukasiewicz logic (ŁLi) obtained by adding to affine
intuitionistic logic the contraction schema

A( SBA⊗KBA (13)

where SBA :≡ B ( A and KBA :≡ (A ( B) ( B. Note that (13) clearly follows from
A ( A ⊗ A since A implies over affine logic both SBA and KBA. We can obtain “classical”
Łukasiewicz logic (ŁLc) by adding the double negation elimination (A⊥)⊥ ( A. If we denote by
CL = classical logic, IL = intuitionistic logic, ALi = intuitionistic affine logic, and ALc = classical
affine logic, the relation between these six logics is shown in the diagram below, where an arrow from
X to Y means that Y is an extension of X .

ALi
- ŁLi

- IL

ALc
- ŁLc

- CL

6 6 6



(Q11) Since ŁLi is a fragment of IL, obviously any interpretation of IL also interprets ŁLi. The ques-
tion, however, is whether one can make use of the fact that only limited contraction is available
in ŁLi and hence restrict the kind of functionals needed for the interpretation. For instance,
which kind of minimal fragment of the simply-typed lambda calculus would be sufficient to
provide a modified realizability interpretation of ŁLi? This is related to (Q9).

6.6 Endless possibilities?

The various functional interpretations discussed in Section 5 are only what one could call the “classic”
interpretations. As has been discussed in this Section 6, several other new and fascinating functional
interpretations have been discovered recently. Beyond those already mentioned one also has:

• Kohlenbach’s monotone functional interpretations [33]. These have been the cornerstone of
the successful programme of proof mining [35]. It exploits a powerful combination of Gödel’s
original dialectica interpretation with Howard’s (or Bezem’s) majorizability relation [9, 28].

• The Copenhagen interpretation [11]. A variant of the dialectica interpretation where essentially
in the interpretation of A → B the negative witnessing functional is allowed to “give up” and
not return a value. The original idea (apparently due to Martin Hyland) is that monads on
types can quite often be lifted into an interpretation of (the comonad) !A. The Copenhagen
interpretation carries this out for the monad TX = X + 1.

• Krivine classical realizability [37]. Realizability interpretation of classical second order arith-
metic, recently extended to countable choice. Krivine’s realizability can be viewed as a combi-
nation of negative translation with a simpler intuitionistic realizability interpretation [45].

We close with some final questions:

(Q12) Is there a common structure behind all functional interpretations? What would be the appropri-
ate way to define what functional interpretations are in general?

(Q13) Functional interpretations of classical logic have all been shown to arise from an interpretation
of intuitionistic logic combined with a negative translation. Can one show that this is always
the case?
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