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Abstract

The multi-valued logic of  Lukasiewicz is a substructural logic that has been widely
studied and has many interesting properties. It is classical, in the sense that it ad-
mits the axiom schema of double negation elimination, [DNE]. However, our un-
derstanding of  Lukasiewicz logic can be improved by separating its classical and
intuitionistic aspects. The intuitionistic aspect of  Lukasiewicz logic is captured in
an axiom schema, [CWC], which asserts the commutativity of a weak form of con-
junction. We explain how this axiom is equivalent to a restricted form of contraction.
We then show how  Lukasiewicz Logic can be viewed both as an extension of classical
affine logic with [CWC], or as an extension of what we call intuitionistic  Lukasiewicz
logic with [DNE], intuitionistic  Lukasiewicz logic being the extension of intuitionistic
affine logic by the schema [CWC]. At first glance, intuitionistic  Lukasiewicz logic
seems to be a very weak fragment of intuitionistic logic. We show that [CWC] is a
surprisingly powerful (restricted) form of contraction, implying for instance all the
intuitionistically valid De Morgan’s laws. However the proofs can be very intricate.
These results are presented using derived connectives to clarify and motivate the
proofs. Applications include: a simpler proof of the Ferreirim-Veroff-Spinks theo-
rem, proof that idempotent elements of a hoop form a sub-hoop, proof that double
negation is a hoop homomorphism, and proofs for the above mentioned De Morgan
dualities. We conclude by showing that our homomorphism result on the double-
negation mapping in particular implies that all negative translations of classical into
intuitionistic  Lukasiewicz coincide (as they do in full intuitionistic logic). This is
in contrast with affine logic for which we show, by appeal to results on semantics
proved in a companion paper, that both the Gentzen and the Glivenko translations
fail.

1 Introduction

This paper studies two fragments of  Lukasiewicz logic  LLc, which we have called mini-
mal  Lukasiewicz logic  LLm and intuitionistic  Lukasiewicz logic  LLi. Just as  Lukasiewicz
logic [14] is a subsystem of classical (Boolean) logic, minimal and intuitionistic  Lukasiewicz
logic are subsystems of minimal and intuitionistic logic, respectively [20]. Our approach,
however, is the study these three systems as extensions of minimal affine logic, i.e.
the fragment of linear logic [11] containing implication (() and the multiplicative con-
junction (⊗) together with the weakening rule but without the constant for falsehood,
and hence without negation. A similar sequent calculus for  Lukasiewicz logic based on
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ALc −−−−→  LLc −−−−→ BLx x x
ALi −−−−→  LLi −−−−→ ILx x x
ALm −−−−→  LLm −−−−→ ML

Figure 1: Relationships between the Logics

affine logic has been proposed in [7]. The main differences are that we work on the
implication-conjunction fragment of affine logic, and take minimal affine logic as the
starting point. As it will be clear, we also focus on the minimal and intuitionistic frag-
ments of  Lukasiewicz logic, and aim to prove theorems of these system, rather than
theorems about the system (meta-theorems).

As shown in Figure 1, we shall view minimal  Lukasiewicz logic  LLm as sitting in
between minimal affine logic ALm and (the usual) minimal logic ML. Starting from
one of the “minimal” fragments, an intuitionistic variant is obtained by adjoining the
constant for falsehood (1 in our case) and the principle ex falso quodlibet

1 ` A

The adjoining of ex falso quodlibet takes us from the lowest row in Figure 1 to the middle
row where again intuitionistic  Lukasiewicz logic  LLi can be placed between intuitionistic
affine logic ALi and the usual (implication-conjunction fragment of) intuitionistic logic
IL. In the intuitionistic systems we consider, negation will be defined via implication
and falsehood as A⊥ = A( 1.

From the intuitionistic systems we can obtain “classical” counterparts by adding the
law of double negation elimination

A⊥⊥ ` A

again moving us one level up in the diagram above. In order to move horizontally on the
diagram from the left-most column (affine system) to the right-most column (minimal
ML, intuitionistic IL and Boolean logic BL) one adds the contraction axiom

A ` A⊗A

The  Lukasiewicz logical systems sit in between affine systems, where no contraction is
permitted, and the full systems which contain the contraction axiom for all formulas.

One of our motivations for the present work was to identify precisely what amount
of contraction needs to be added to affine logic, in order to obtain  Lukasiewicz logic. As
the presence of classical logic can often obscure the role of contraction, we were naturally
led in our investigation to move to systems where no classical logic (double negation
elimination) and even no falsehood constant is assumed, leading us to this minimal logic
variant of  Lukasiewicz logic.
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What we have discovered is that the three  Lukasiewicz systems  LLm,  LLi and  LLc,
can be obtained from their affine counterparts (namely ALm,ALi and ALc) by adjoin-
ing the axiom of commutativity of weak conjunction

A⊗ (A( B) ` B ⊗ (B ( A)

which is a simple consequence of contraction, but is strictly weaker than it. This is
the well-known axiom of divisibility, so called because it says intuitively that when A is
greater than B (i.e. A ( B) then A can divided into two components namely B and
B ( A.

The reason we call A ⊗ (A ( B) a weak form of conjunction can be explained as
follows: Note that A ⊗ (A ( B) implies both A and B, but without contraction (so
that A can be used twice), we do not have in general A ⊗ (A ( B) ` A ⊗ B. On
the other hand, due to the presence of weakening in the affine systems, we always have
A⊗B ` A⊗(A( B). Hence, A⊗(A( B) is strictly weaker than the usual multiplicative
conjunction A⊗B. The axiom above states that this conjunction is commutative.

This permitted us to separate the “amount of classical logic” available in  LLc from
the weak form of contraction that is present there, allowing us to see  Lukasiewicz logic
 LLc as the combination of classical affine logic. ALc with minimal  Lukasiewicz logic
 LLm. The first system contains full double negation elimination [DNE] but no contrac-
tion, whereas the second does not valid [DNE] in general but contains a certain amount
of contraction as expressed by the commutativity of weak conjunction.

The intuitionistic component of  LLc, which we call intuitionistic  Lukasiewicz Logic
 LLi has been studied before, under different names. For instance, Blok and Ferreirim
[3] refer to it as SHO.

We express here our gratitude to the late Bill McCune for the development of Prover9
and Mace4, which we have extensively used in both trying to find derivations or counter-
examples to our various conjectures. Most of the derivations found in this paper were
initially found by Prover9. The authors’ contribution was to propose conjectures to
Prover9, to study the machine-oriented proofs it found and to present the proofs in a
human-intelligible form by breaking them down into structurally interesting lemmas.
This was an iterative process since often Prover9 was able to find simpler proofs of a
lemma when presented with it as a conjecture in isolation. In cases when Prover9 was
unable to find a proof, Mace4 was often able to find a counter-example: a finite model
of the logic in question in which the conjecture can be seen to fail. See our companion
paper [1] for examples of models found by Mace4.

In fact, this second component of our work, namely extracting “meaning” from the
machine-oriented proofs found by Prover9, led to the identification of four important
derivable connectives that showed up again and again in the proofs. These are,

A ∧B ≡ A⊗ (A( B) (weak conjunction)

A ∨B ≡ (B ( A) ( A (strong disjunction)

A⇒ B ≡ A( A⊗B (strong implication)

A ↓ B ≡ A⊥ ⊗ (B ( A) (NOR binary connective)
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Γ, A ` B
[(I]

Γ ` A( B

Γ ` A ∆ ` A( B
[(E]

Γ,∆ ` B

Γ ` A ∆ ` B
[⊗I]

Γ,∆ ` A⊗B

Γ ` A⊗B ∆, A,B ` C
[⊗E]

Γ,∆ ` C

Figure 2: Sequent Calculus Rules

It is easy to check that classically these are indeed equivalent to A and B, A or B, A
implies B, and neither A nor B, respectively. In Sections 3 and 4 we prove importants
results in  LLm and  LLi, respectively, most of these are properties relating the various
derived connectives or relating derived connectives with the primitive connectives, ⊗ and
(.

We give several applications of the our results, including: (1) A simpler and more
abstract version of a proof, originally found by Veroff and Spinks [22], of one of Ferreirim’s
theorem [9] (cf. Section 3.4), (2) a proof that the idempotent elements of a hoop form
a sub-hoop (cf. Section 3.5), (3) homomorphism properties for the double negation
operator in intuitionistic  Lukasiewicz logic (cf. Sections 4.3 and 4.5), and (4) a collection
of De Morgan properties for intuitionistic  Lukasiewicz logic (cf. Section 4.6).

Finally, in Section 5 we make use of the homomorphim properties of the double
negation to show that both the Gentzen and the Glivenko translations, while they fail for
affine logic, surprisingly still work as a double negation translation of classical  Lukasiewicz
logic into intuitionistic  Lukasiewicz logic.

The reader with model-theoretic inclinations is invited to consult our companion pa-
per [1] in which we investigate algebraic semantics for the logics studied here. This leads
to a novel indirect method for demonstrating that a formula is provable in  Lukasiewicz
Logic, a method which we have used extensively in parallel with attempts to find explicit
proofs and counter-examples with Prover9 and Mace4.

2 Definitions of the Logics

We work in a language, L, built from a countable set of propositional variables Var =
{V1, V2, . . .}, the constant 1 (falsehood) and the binary connectives ( (implication) and
⊗ (conjunction). We write A⊥ for A ( 1 and 0 for 1 ( 1. Our choice of notation
for connectives is that commonly used for affine logic, since all the systems we consider
will turn out to be extensions of (minimal) affine logic. Our use of 1 rather than 0 for
falsehood is taken from continuous logic [2], which motivated our work in this area. In
keeping with this convention, we will order propositions by increasing logical strength,
so that A ≥ B means A is at least as strong as B, i.e. that A( B is provable.

As usual, we adopt the convention that ( associates to the right and has lower
precedence than ⊗, which in turn has lower precedence than (·)⊥. So, for example, the
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brackets in (A ⊗ (B⊥)) ( (C ( (D ⊗ F )) are all redundant, while those in (((A (
B) ( C)⊗D)⊥ are all required.

[ASM]
Γ, A ` A

[CON]
Γ, A ` A⊗A

[EFQ]
Γ, 1 ` A

[DNE]
Γ,¬¬A ` A

[CWC]
Γ, A,A( B ` B ⊗ (B ( A)

Figure 3: Sequent Calculus Axioms

2.1 The sequent calculi

In this section we define the nine sequent calculi mentioned in the paper, though we
will be mostly working with the two fragments  LLm and  LLi of  Lukasiewicz logic. The
judgments of the calculi are sequents Γ ` A where the context Γ is a multiset of formulas
and A is a formula. The rules of inference for all the calculi comprise the sequent
formulation of a natural deduction system shown in Figure 2.

We will define the nine calculi by adding to the rules above some or all of the following
axiom schemata: assumption [ASM], contraction [CON], ex falso quodlibet [EFQ], double
negation elimination [DNE], and commutativity of weak conjunction [CWC], defined in
Figure 3. The nine calculi and their axiom schemata are as defined in the following table:

Calculus Axiom Schemata

ALm [ASM]

ALi [ASM], [EFQ]

ALc [ASM], [EFQ], [DNE]

 LLm [ASM], [CWC]

 LLi [ASM], [CWC], [EFQ]

 LLc [ASM], [CWC], [EFQ], [DNE]

ML [ASM], [CON]

IL [ASM], [CON], [EFQ]

BL [ASM], [CON], [EFQ], [DNE]

The systems ALm, ALi, ALc,  LLm,  LLi and  LLc are minimal, intuitionistic and
classical variants of affine logic and  Lukasiewicz logic. ML, IL and BL stand for minimal,
intuitionistic and boolean logic for reasons to be made clear in Theorem 2.1.1. The
relationship between the nine logics is depicted in Figure 1.

As our axiom schemata all allow additional premisses Γ in the context, the following
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rule of weakening
Γ ` B

[WK]
Γ, A ` B

is admissible in all our logics, since given a proof tree with Γ ` B at the root, we may
obtain a proof of Γ, A ` B by adding A to the context of every sequent on some path
from the root to a leaf (axiom). Also, note that in minimal affine logic ALm, and hence
in all the logics, the contraction axiom [CON] is inter-derivable with the contraction rule

Γ, A,A ` B
[CONr]

Γ, A ` B
This proves the following theorem.

Theorem 2.1.1 ML, IL and BL are the implication-conjunction fragments of the usual
minimal, intuitionistic and boolean logics.

Most of the results in this paper involve the derivability of a sequent in one of our
calculi above. When deriving these, instead of writing proof trees we will typically adopt
a form of equational reasoning, using the notations of the following definition.

Definition 2.1.1 Let T be an extension of ALm. We write A ≥T B if A ` B can be
derived in T . We write A 'T B if A ≥T B and B ≥T A. When the T in question is
clear from the context we just write ≥ and '.

Lemma 2.1.2 Let T be an extension of ALm. Then ≤T is symmetric and transitive,
'T is an equivalence relation, and, for any formulas A, B and C, such that A ≥T B,
the following hold:

B ( C ≥T A( C

C ( A ≥T C ( B

A⊗ C ≥T B ⊗ C
C ⊗A ≥T C ⊗B.

Hence, ' is a congruence with respect to both ( and ⊗, i.e., if A ' B then we have:

B ( C 'T A( C

C ( A 'T C ( B

A⊗ C 'T B ⊗ C
C ⊗A 'T C ⊗B.

Moreover, we have:

A⊗ (B ⊗ C) 'T (A⊗B)⊗ C
A⊗B 'T B ⊗A
A⊗ 0 'T A.

and A is provable iff 0 ≥T A iff A 'T 0.
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Proof: Straightforward, recalling that 0 abbreviates 1 ( 1.

When deriving an “equation” such as A 'T B or an “inequality” such as A ≥T B we
will often use the fact that A ' A⊗ 0. For instance, assume we are given some formula
B which is provable in T , so that B 'T 0. We can then conclude A⊗B 'T A.

Notation. Whenever, in a chain of equalities or inequalities, we make use of B 'T 0
in the manner above, we will highlight the formula B which (dis)appears by underlining
it. Moreover, so that we can omit the subscript T from ≤T and 'T , we will generally
specify T in brackets at the beginning of the statement of each lemma or theorem. The
following lemma, which will be used later, illustrates both of these conventions.

Lemma 2.1.3 ( LLm) If C ≥ A and C ≥ B then C ≥ A⊗ (A( B).

Proof: Assume (a) C ≥ A (and hence C ( A ' 0) and (b) C ≥ B. We derive the
conclusion as follows:

C ' C ⊗ (C ( A) (a)

' A⊗ (A( C) ([CWC])

≥ A⊗ (A( B) (b)

invoking Lemma 2.1.2 to use (b) in the last step.

Remark 2.1.1 The rules of Figure 2 and the axioms of Figure 3 are closed under sub-
stitution of formulas for variables. Hence a substitution instance of a theorem in any of
our logics is again a theorem of that logic. When reading a result such as Lemma 2.1.3,
it is immaterial whether one views the letters A, B and C as metavariables ranging over
L or as specific variables in Var ⊂ L.

2.2 Hilbert-style systems

Particularly in the literature on  Lukasiewicz logic, the systems that we have presented as
sequent calculi are traditionally presented as Hilbert-style systems with modus ponens as
the only rule of inference. The following table defines the axiom schemata composition,
commutativity of conjunction, currying, uncurrying, weakening, ex falso quodlibet, double
negation elimination, commutativity of weak conjunction and contraction that feature in
these systems:

(Comp) (A( B) ( (B ( C) ( (A( C)

(Comm) A⊗B ( B ⊗A
(Curry) (A⊗B ( C) ( (A( B ( C)

(Uncurry) (A( B ( C) ( (A⊗B ( C)

(Wk) A⊗B ( A

(EFQ) 1 ( A

(DNE) A⊥⊥ ( A

(CWC) A⊗ (A( B) ( B ⊗ (B ( A)

(Con) A( A⊗A
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We can then define nine Hilbert-style axiom systems as follows:

ALh
m (Comp) + (Comm) + (Curry) + (Uncurry) + (Wk)

ALh
i ALh

m + (EFQ)

ALh
c ALh

i + (DNE)

 LLh
m ALh

m + (CWC)

 LLh
i  LLh

m + (EFQ)

 LLh
c  LLh

i + (DNE)

MLh ALh
m + (Con)

ILh MLh + (EFQ)

BLh ILh + (DNE)

The following theorem makes it precise the sense in which these are Hilbert-style versions
of the nine sequent-style calculi presented in the previous section.

Theorem 2.2.1 For any formula A ∈ L, the sequent

C1, . . . , Ck ` A

is provable in the sequent calculus ALm (resp. ALi, ALc,  LLm,  LLi,  LLc, ML, IL,
BL) iff the formula

C1 ( C2 ( . . .( Ck ( A

is derivable using modus ponens from the axiom systems ALh
m (resp. ALh

i , ALh
c,  LLh

m,

 LLh
i ,  LLh

c, MLh, ILh and BLh).

Proof: We sketch the proof for ALm, the proofs for the other calculi being straightfor-
ward extensions of this. Let us write A ≥h B if A ( B is derivable from ALh

m using
modus ponens and let us write A 'h B if A ≥h B and B ≥h A. It is shown in [1] that
≥h is a pre-order and hence that 'h is an equivalence relation and that the equivalence
classes of L under 'h form what is known as a pocrim: an algebra T comprising (i) an
ordered commutative monoid under an operation + induced by ⊗ ([A] + [B] = [A⊗B]),
with the equivalence class [0] as the identity element ([0]⊗ [A] = [A]) and least element
([A] ≥ [0]) and (ii) an operation → induced by ( ([A]→[B] = [A ( B]) such that
A ≥h B iff [A] ≥ [B] iff [A] ( [B] = [0] and such that the residuation property holds:
[A]⊗ [B] ≥ [C] iff [A] ≥ [B] ( [C]. It is then easy to see that C1, . . . Ck ` A is provable
in ALm iff [C1] + . . . + [Ck] ≥ [A] in T iff C1 ⊗ . . . ⊗ Ck ( A is derivable from ALh

m
using modus ponens. For example, the soundness of [⊗E] is equivalent to the property
that γ ≥ a+b and δ+a+b ≥ c implies γ+δ ≥ c which holds in any ordered commutative
monoid, while the soundness of [(I] is equivalent to the residuation property.

Remark 2.2.1  Lukasiewicz specified the logic that bears his name using a standard se-
mantics in which the truth values range over real numbers in the interval [0, 1] and
conjectured that a certain Hilbert-style system was complete for this semantics. A proof
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of this conjecture was apparently given in the 1930s by Wajsberg but has been lost. In the
1950s Rose and Rosser [18] (and also, by a rather more insightful method, Chang [6])
proved an improved version of the conjecture, namely that the Hilbert-style system  L with
modus ponens as the only inference rule and the following axiom schemata is complete
for the standard semantics.

(A1) A( (B ( A)

(A2) (A( B) ( (B ( C) ( (A( C)

(A3) ((A( B) ( B) ( ((B ( A) ( A)

(A4) (A⊥ ( B⊥) ( (B ( A)

In  L, implication and negation are the primitive connectives1 Conjunction A⊗B can be
defined in  L as (A ( B⊥)⊥. In [1], we show that the system  LLh

c is equivalent to  L,
justifying our identification of  LLh

c and hence of  LLc with (classical)  Lukasiewicz logic.

2.3 Derived connectives

In additon to the primitive connectives ⊗ and (, we will make extensive use of the
following four derived binary connectives

A ∧B ≡ A⊗ (A( B)

A ∨B ≡ (B ( A) ( A

A⇒ B ≡ A( A⊗B

A ↓ B ≡ A⊥ ⊗ (B ( A)

Recall that we are assuming conjunction ⊗ binds more strongly than the implication (,
so that A⇒ B is A( (A⊗B). For the new connectives we will also use the convention
that ∧,∨ and ↓ all bind more strongly than ⇒. So (A ∨ B) ⇒ (C ∧D), for instance,
may be written as A ∨B ⇒ C ∧D.

We justify our notation by observing that when⊗ and ( are replaced by the standard
conjunction and implication of classical logic then A ∧ B,A ∨ B,A ⇒ B are indeed
equivalent to the standard conjunction, disjunction and implication. Moreover, A ↓ B
is equivalent to the NOR binary connective. In affine linear logic, however, even the
commutativity of A∧B and A∨B are not derivable! The commutativity of A∧B is the
axiom schema [CWC] that defines  LLi, while the commutativity of A∨B is axiom (A3)
of Remark 2.2.1.

We have chosen our notation so that in each of the derived connectives the left
operand appears both positively and negatively while the right operand appears only
positively in ∧,∨ and ⇒ and only negatively in ↓. Monotonicity properties for the left
operand of these connectives have interesting connections with algebraic properties such
as commutativity and associativity. For example, for ∧, we have the following lemma:

1Following  Lukasiewicz, Rose and Rosser used Polish notation, writing CAB for our A ( B and NA
for our A⊥, as did Chang in the relatively few fragments of syntax that appear in his treatment.
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Lemma 2.3.1 (ALm) Consider the following two axiom schema: the monotonicity of
weak conjunction in its left operand

[MWC]
Γ, A( B,A ∧ C ` B ∧ C

and (one direction of) the associativity of weak conjunction

[AWC]
Γ, (A ∧B) ∧ C ` A ∧ (B ∧ C)

Over ALm the axiom schema [CWC] is equivalent to either of these two.

Proof: We have

[MWC] implies [CWC]: It is easy to check that if X ≥ Y then X ' X ∧Y . Hence, taking
X to be A ∧ B and Y to be A, we have A ∧ B ' (A ∧ B) ∧ A. But using [MWC] then,
as A ∧B ≥ B, we have (A ∧B) ∧A ≥ B ∧A.

[CWC] implies [MWC]: This is clear since ∧ is monotonic in its right operand.

[AWC] implies [CWC]: As above we have that A ∧ B ' (A ∧ B) ∧ A. By [AWC] we have
(A ∧B) ∧A ≥ A ∧ (B ∧A) ≥ B ∧A.

[CWC] implies [AWC]: Easy using Lemma 2.1.3, which says that, given [CWC], the con-
junction A ∧B is a least upper bound of A and B.

Note that since, by Lemma 2.3.1, [AWC] implies [CWC], [AWC] also implies the other
direction of the associativity of weak conjunction: Γ, A ∧ (B ∧ C) ` (A ∧B) ∧ C.

Remark 2.3.1 A similar result to Lemma 2.3.1 can be shown for ∨, i.e. over ALm
the commutativity of ∨ is equivalent to either its monotonicity of its left operand or its
associativity. The operator ↓ is not associative in any consistent extension of ALm.
However, over ALi it can be shown that ↓ is anti-monotonic in its left operand iff it is
commutative, and over ALc, its commutativity is equivalent to [CWC].

We conclude this section with a short list of theorems of minimal affine logic ALm
which will be used again and again in the proofs in Sections 3 and 4.

Lemma 2.3.2 The following are provable in ALm

(i) A ≥ B ∨A

(ii) A ≥ B ⇒ A

(iii) A⊗B ' A⊗ (A⇒ B)

(iv) A⊗ (B ( C) ≥ (A( B) ( C

(v) C ∨ (A( B) ≥ (C ∨A) ( (C ∨B)

(vi) A ∨B ( A ' B ( A.

Proof: Easy.
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3 Minimal  Lukasiewicz Logic

In this section we investigate minimal  Lukasiewicz logic  LLm, i.e. we investigate what is
provable over affine logic using commutativity of weak conjunction alone, with neither ex
falso quodlibet nor double negation elimination. In  LLm, the constant 1 has no special
properties and could be omitted.

We start the section by presenting an alternative axiomitisation of  LLm over ALm,
whereby instead of [CWC] we may take a restricted form of the contraction axiom, which
we term weak contraction. We apply this to give a short proof of a known result, Blok
and Ferreirim’s axiom L (Section 3.2). We then prove three important results about the
derived connectives ∨,∧ and ⇒ (Section 3.3). We conclude with another application to
a known result, a theorem of Ferreirim, Veroff and Spinks (Section 3.4), and a new result
about idempotent formulas, i.e. formulas A such that A ' A⊗A (Section 3.5).

3.1 The weak contraction axiom [wCON]

Notice that even over ALm we have both

A ` B ∨A and A ` B ∨A( A.

The first sequent is Lemma 2.3.2 (i), whereas the second is a straightforward consequence
of weakening [WK]. Hence, B ∨ A and B ∨ A ( A are two immediate consequences of
A. In this section we show that in order to capture  Lukasiewicz logic over affine logic we
could have alternatively added to affine logic the following weak form of contraction

[wCON]
Γ, A ` (B ∨A)⊗ (B ∨A( A)

Compare this with the standard contraction axiom Γ, A ` A⊗A. Rather than duplicating
A, the weak contraction axiom says that we can replace A by two weakenings of A. The
converse of the implication is obvious, which means that [wCON] implies (over ALm)

A ' (B ∨A)⊗ (B ∨A( A).

Remark 3.1.1 We note that the weak contraction axiom can also be nicely described
via what we propose as the weak contraction rule

Γ, B ∨A( A ` B ∨A( C

Γ, A ` C

It says that in order to prove that A implies C, it is sufficient to prove that the weakening
of C by B ∨ A follows from the weakening of A by the same “amount”, and this holds
for any choice of B.

Theorem 3.1.1  LLm (resp.  LLi and  LLc) is equivalent to ALm + [wCON] (resp.
ALi + [wCON] and ALc + [wCON]).
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Proof: We show that the axioms [CWC] and [wCON] are interderivable over ALm.
[CWC] may be derived from [wCON] as follows:

A⊗ (A( B) ' (B ∨A)⊗ (B ∨A( A)⊗ (A( B) ([wCON])

≥ (B ∨A)⊗ (B ( A)⊗ (A( B) (B ≥ B ∨A)

' ((A( B) ( B)⊗ (B ( A)⊗ (A( B) (def ∨)

≥ B ⊗ (B ( A). (easy)

Conversely, in ALm + [CWC] we have

A ' A⊗ (A( B ∨A) (Lemma 2.3.2 (i))

' (B ∨A)⊗ (B ∨A( A). [CWC]

As discussed above, it is easy to see that rule [wCON] can be derived from A ' (B ∨
A)⊗ (B ∨A( A).

3.2 Application: Deriving axiom L

It is known that in  Lukasiewicz logic one can prove (A( B) ∨ (B ( A). This is called
axiom L by Blok and Ferreirim [3], who give a proof due to Bosbach [4] of an algebraic
law equivalent to this result. Here we prove it using the weak contraction axiom [wCON].

Theorem 3.2.1 ( LLm) (B ( A) ( (A( B) ' A( B

Proof: A ( B ≥ (B ( A) ( (A ( B) follows directly by [WK]. The other direction
is derivable as

(B ( A) ( (A( B) ' (B ( A) ( B ∨A( B (Lemma 2.3.2 (vi))

' (B ∨A)⊗ (B ( A) ( B (easy)

≥ (B ∨A)⊗ (B ∨A( A) ( B (B ≥ B ∨A)

' A( B. ([wCON])

Hence it follows that

((A( B) ( (B ( A)) ( (B ( A) = (A( B) ∨ (B ( A) ' 0.

3.3 Basic identities involving ∨,∧ and ⇒

In this section we prove three basic identities that are valid in  LLm. The main identity
is A⊗B ' A⊗ (B ∨ (A⇒ B)) which will be extensively used throughout the rest of the
paper. The left-to-right implication is obvious, as B ≥ B ∨ (·). The converse, however,
says that in the context A⊗(·) we have B∨(A⇒ B) ≥ B, which is somewhat surprising.
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Lemma 3.3.1 ( LLm) A ' (A ∨B)⊗ (B ( A)

Proof: We have

A ' A⊗ (A( (B ( A)) ([WK])

' ((B ( A) ( A)⊗ (B ( A) ([CWC])

' (A ∨B)⊗ (B ( A). (def ∨)

Recall that we underline easily proven conjuncts which are either inserted or deleted.

Theorem 3.3.2 ( LLm) A⊗B ' A⊗ (B ∨ (A⇒ B))

Proof: Let X = ((A⇒ B) ( B) ( A. We have

A⊗B ' (A⇒ B)⊗A (Lemma 2.3.2 (iii))

' (A⇒ B)⊗A⊗ (A( ((A⇒ B) ( B)) (easy)

' (A⇒ B)⊗ ((A⇒ B) ( B)⊗X ([CWC])

' B ⊗ (B ( (A⇒ B))⊗X ([CWC])

' B ⊗X (Lemma 2.3.2 (ii))

' (B ∨ (A⇒ B))⊗ ((A⇒ B) ( B)⊗X (Lemma 3.3.1)

' (B ∨ (A⇒ B))⊗A⊗ (A( ((A⇒ B) ( B)) ([CWC])

' A⊗ (B ∨ (A⇒ B)). (easy)

Finally, we prove the following lemma which is used in Section 4.4.

Lemma 3.3.3 ( LLm) (A( C)⊗ (C ( B) ≥ (A( B)⊗ (A ∧B ( C)

Proof: We have

(A( C)⊗ (C ( B) ≥ (A( C)⊗ ((A( C) ( (A( B)) (easy)

' (A( B)⊗ ((A( B) ( (A( C)) ([CWC])

' (A( B)⊗ (A⊗ (A( B) ( C) (easy)

' (A( B)⊗ (A ∧B ( C). (def)

13



3.4 Application: The Ferreirim-Veroff-Spinks theorem

Ferreirim [9] proved an algebraic formulation of the following theorem, under extra as-
sumptions, using model-theoretic methods. With the assistance of the Otter system [17]
and Veroff’s method of proof sketches [22], Veroff and Spinks [21] found a syntactic proof
of the theorem in full generality. An indirect proof of the general result using algebraic
methods is given in our companion paper [1]. Here we give a simplified and more ab-
stract version of the syntactic proof found by Veroff and Spinks, obtaining the result as
a straightforward consequence of the identity of Theorem 3.3.2. (Our work in this area
was in part inspired by a desire to understand the Veroff-Spinks proof.)

Theorem 3.4.1 ( LLm)

(A( A⊗A)⊗ (A( B ⊗ C) ≥ (A( B)⊗ (A( C)

Proof: Let X ≡ A( B ⊗ C and Y = (A( B)⇒ (A( C). Note that

(∗) (A( A⊗A)⊗ (A( ((A( Z) ∨W )) ≥ (A( Z) ∨W

for any Z and W . Hence

X ' X ⊗ (X ( (A( B)) (easy)

' (A( B)⊗ ((A( B) ( X) ([CWC])

≥ (A( B)⊗ ((A( B) ( A( ((A( B)⊗ (A( C))) ([WK])

' (A( B)⊗ (A( Y ) (def ⇒)

≥ (A( B)⊗ (A( ((A( C) ∨ Y )) (Lemma 2.3.2 (i))

≥ (A( B)⊗ ((A( C) ∨ Y ) (∗)

' (A( B)⊗ (A( C). (Theorem 3.3.2)

3.5 Application: Idempotent Sub-Hoops

Let us call a formula A idempotent if A ( A ⊗ A is provable in  LLm. Recalling our
abbreviation A⇒ B = A( A⊗B the property of being idempotent can be written as
A⇒ A. It is clear that the set of idempotent formulas is closed under conjunction (⊗).
In this section we show that it is also closed under implication ((). This in particular
implies that the set of idempotent elements of a hoop form a sub-hoop – a result similar
to that of Jipsen and Montagna [15] for the idempotent elements of a GBL algebra. We
remark that although hoops are retracts of commutative GBL algebras, our proof does
not seem to be related to theirs since they make essential use the existence of joins in
GBL algebras (while joins not necessarily exist in hoops).

Lemma 3.5.1 ( LLm) A ∨ (A⇒ A) ≥ A⇒ A.

14



Proof: Immediate from Lemma 3.3.2.

Theorem 3.5.2 ( LLm) (A⇒ A)⊗ (B ⇒ B) ( ((A( B)⇒ (A( B)).

Proof: Asumme (i) A ' A ⊗ A and (ii) B ' B ⊗ B. Abbreviating BA ≡ A ( B we
have

0 ' A⊗ (A( B) ( B (easy)

' A⊗ (A( (A( B)) ( B (i)

' A⊗ (A( (BA ( B) ( B)) ( B (easy)

' A⊗ (A( (BA ( B ⊗B) ( B)) ( B (ii)

≥ A⊗ (A( (BA ( BA ⊗BA) ( B)) ( B (easy)

' ((BA ⇒ BA) ( (A( B)) ( (A( B) (easy)

≥ BA ⇒ BA. (Lemma 3.5.1)

4 Intuitionistic  Lukasiewicz Logic

In this section, the constant 1 starts to play a part: we add ex falso quodlibet to  LLm,
giving rise to what we call intuitionistic  Lukasiewicz logic  LLi. Recall that we define
negation by A⊥ = A( 1. Many of the results of this section attempt to unveil interesting
properties which are provable in  LLi “under” a negation. These include: some basic
properties of ∨,⇒ and ∧ (Section 4.1); the duality between ∨ and ↓ (Section 4.2);
homomorphism properties of double negation with respect to both implication (Section
4.3) and conjunction (Section 4.5); and, finally, a collection of “De Morgan” properties
(Section 4.6).

4.1 Basic identities on ∨,⇒,∧ and negation

We start by establishing some basic identities about ∨,⇒ and ∧ in  LLi. The main result
in this section is that the strong implication ⇒ is a dual of a weak conjunction ∧ in the
sense that (B ∧ A)⊥ ' A ⇒ B⊥. This is akin to the relation between conjunction and
implication (A ⊗ B)⊥ ' A ( B⊥ which one obtains in ALi simply by currying and
uncurrying.

Lemma 4.1.1 ( LLi) A⊥ ⊗ (B ∨A) ' A⊥ ⊗B

Proof: The right-to-left direction follows directly from B ≥ B ∨ A. For the other
direction, note that by [EFQ] we have A ≥ A⊥ ⇒ B. Hence, B ∨ A ≥ B ∨ (A⊥ ⇒ B).
Therefore, the result follows directly from Theorem 3.3.2.

Theorem 4.1.2 ( LLi) (A ∧B)⊥ ' A⇒ B⊥.
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Proof: Observe that by Lemma 4.1.1 (with B and A interchanged) it follows that (∗)
B⊥ ≥ A ∨B ( A⊗B⊥. Hence

(A ∧B)⊥ ' (A⊗ (A( B))⊥ (def ∧)

' (B ⊗ (B ( A))⊥ ([CWC])

' (B ( A) ( B⊥ (easy)

≥ (B ( A) ( (A ∨B) ( A⊗B⊥ (∗)

' A( (A( (B ( A)) ( A⊗B⊥ ([CWC])

' A( A⊗B⊥. ([WK])

' A⇒ B⊥. (def ⇒)

The converse implication is straightforward.

Corollary 4.1.3 ( LLi) A⇒ B⊥ ' B ⇒ A⊥

Proof: Direct from Theorem 4.1.2, since ∧ is commutative (i.e. [CWC]).

4.2 Symmetries of ∨ and ↓ and [DNE]

Although the commutativity of ∨ is clearly a classical principle, it is perhaps surprising
that commutativity of B ↓ A can be proven intuitionistically.

Theorem 4.2.1 ( LLi) B ↓ A ' A ↓ B

Proof: By symmetry it is enough to prove B ↓ A ≥ A ↓ B. We have

(B ( A)⊗A⊥ ' (B ( A)⊗A⊥ ⊗ (A⊥ ( (A( B)) ([EFQ])

' (B ( A)⊗ (A( B)⊗ ((A( B) ( A⊥) ([CWC])

' (B ( A)⊗ (A( B)⊗ ((A( B)⊗A)⊥ (easy)

' (B ( A)⊗ (A( B)⊗ (B ⊗ (B ( A))⊥ ([CWC])

' (A( B)⊗ (B ( A)⊗ ((B ( A) ( B⊥) (easy)

≥ (A( B)⊗B⊥. (easy)

Recall that we underline easily proven conjuncts which are either inserted or deleted.

A surprising consequence of this is that the double negation of the classical axiom
[DNE] is provable intuitionistically, i.e. in  LLi. It is well known that this is true for
full intuitionistic logic2 IL, but that proof makes apparently essential use of the full

2In IL the proof goes as follows: Assuming (1) (A⊥⊥ ( A)⊥ we must derive a contraction. First use
(1) to derive A⊥, by [WK]. Assume also (2) A⊥⊥. From (2) and A⊥ we obtain 1, and hence A. Hence,
discharging the assumption (2) we have A⊥⊥ ( A, which by (1) gives a contradiction. Note, however,
that assumption (1) was used twice.
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contraction axiom. That the result can be proved using only the weak form of contraction
permitted by [CWC] is rather amazing.

Corollary 4.2.2 ( LLi) (A⊥⊥ ( A)⊥⊥

Proof: Note that, since 1 ' A⊗ A⊥ we have (∗) A⊥⊥ ' A⊥ ⇒ A. Moreover, it is easy
to check that (∗∗) X ↓ (Y ( X) ' X⊥ ⊗ (X ∨ Y ), for all X and Y . Hence

(A⊥⊥ ( A)⊥ ' ((A⊥ ⇒ A) ( A)⊥ (∗)

' ((A⊥ ⇒ A) ( A)⊥ ⊗ (A( ((A⊥ ⇒ A) ( A)) ([WK])

' ((A⊥ ⇒ A) ( A) ↓ A (def ↓)

' A ↓ ((A⊥ ⇒ A) ( A) (Theorem 4.2.1)

' A⊥ ⊗ (A ∨ (A⊥ ⇒ A)) (∗∗)

' A⊥ ⊗A (Lemma 3.3.2)

' 1.

Finally, the following theorem shows that the NOR connective ↓ is indeed the negation
of the disjunction ∨, a fact which holds in full intuitionistic logic IL, but again, the
simplest proof seems to make essential use of the full contraction axiom.

Theorem 4.2.3 ( LLi) (A ∨B)⊥ ' A ↓ B

Proof: By Lemma 2.3.2 (i) we have B ( A∨B; and by [EFQ] we have 1 ( A. Hence,
(∗) (A ∨B)⊥ ( (B ( A). Therefore

(A ∨B)⊥ ' (A ∨B)⊥ ⊗ ((A ∨B)⊥ ( (B ( A)) (∗)

' (B ( A)⊗ ((B ( A) ( (A ∨B)⊥) ([CWC])

' (B ( A)⊗ ((B ( A)⊗ (A ∨B))⊥ (easy)

' (B ( A)⊗ (A⊗ (A( (B ( A)))⊥ ([CWC])

' (B ( A)⊗A⊥. ([WK])

Finally, the results above imply the commutativity of ∨ under a negation.

Theorem 4.2.4 ( LLi) (A ∨B)⊥ ' (B ∨A)⊥

Proof: Direct from Theorems 4.2.1 and 4.2.3.
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4.3 Double negation homomorphism: Implication

We now show (in  LLi) that the double negation operation (·)⊥⊥ is a homomorphism for
implication, i.e.

(A( B)⊥⊥ ' A⊥⊥ ( B⊥⊥.

We will show the same for conjunction in Section 4.5.
Note that 1∨A = A⊥⊥. Hence, it follows from Lemma 2.3.2 (v) that (A( B)⊥⊥ ≥

A⊥⊥ ( B⊥⊥ and hence (A ( B)⊥⊥ ≥ A ( B⊥⊥ is provable already in ALm, i.e.
without making use of [EFQ]. In this section we show that the converse implications hold
in  LLi. Again, the fact that this holds in full intuitionistic logic is well known. See [19],
page 9, for instance, for an IL-derivation of Theorem 4.3.1. That derivation, however,
uses the assumption (A( B)⊥ twice, and hence cannot be formalised in  LLi.

Theorem 4.3.1 ( LLi) A⊥⊥ ( B⊥⊥ ≥ (A( B)⊥⊥

Proof: We have

A⊥⊥ ( B⊥⊥ ≥ A( B⊥⊥ (A ≥ A⊥⊥)

≥ (B⊥⊥ ( B) ( (A( B) (easy)

≥ (A( B)⊥ ( (B⊥⊥ ( B)⊥ (easy)

' (A( B)⊥ ( 1 (Corollary 4.2.2)

' (A( B)⊥⊥. (def (·)⊥)

4.4 Application: Basic Logic

We have seen in Section 3.2 that in minimal  Lukasiewicz logic  LLm we can prove the
disjunction (A ( B) ∨ (B ( A). It is well known that in  LLc one can also prove the
following (stronger) result3

(A( B) ( C, (B ( A) ( C ` C

which is axiom (A6) of basic logic [14]. However, it is easy to construct a counter-example
(bounded hoop) showing that (A6) is not provable in  LLi in general. Nevertheless, we
show that this can be derived in  LLi plus one single application of [DNE], i.e. we show
that the following sequent is provable in  LLi:

(A( B) ( C, (B ( A) ( C ` C⊥⊥.

Lemma 4.4.1 ( LLi) A⊥ ' (A( B)⊗ (A ∧B)⊥.

3This result does not hold intuitionistically. Consider the Kripke structure with three nodes w0, w1, w2

with w0 < w1, w2 and w0 = { }, w1 = {P,R}, w2 = {Q,R}. Although both (P ( Q) ( R and
(Q ( P ) ( R hold in w0, R fails to hold at w0.
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Proof: Left-to-right follows directly from Lemma 3.3.3, taking C = 1. For the converse
observe that (A ∧B)⊥ ' A( (A( B)⊥.

Theorem 4.4.2 ( LLi) (A( B) ( C, (B ( A) ( C ` C⊥⊥

Proof: We will prove equivalently that the following holds:

((A( B) ( C)⊗ ((B ( A) ( C)⊗ C⊥ ' 1.

Let X = (A( B) ( C and Y = (B ( A) ( C. We have

X ⊗ Y ⊗ C⊥ ' X ⊗ Y ⊗ (C ( (B ( A))⊗ (C ∧ (B ( A))⊥ (Lemma 4.4.1)

' X ⊗ Y ⊗ (C ( (B ( A))⊗ ((B ( A) ∧ C)⊥ ([CWC])

≥ Y ⊗ ((A( B) ( (B ( A))⊗ (Y ( (B ( A)⊥) (easy)

' Y ⊗ (B ( A)⊗ (Y ( (B ( A)⊥) (Theorem 3.2.1)

≥ (B ( A)⊗ (B ( A)⊥ (easy)

' 1. (easy)

4.5 Double negation homomorphism: Conjunction

As done in Section 4.3 for implication, we now show that (in  LLi) the double negation
operation (·)⊥⊥ is also a homomorphism for conjunction, i.e.

(A⊗B)⊥⊥ ' A⊥⊥ ⊗B⊥⊥.

This result will follow immediately from the following surprising duality between impli-
cation (() and conjunction (⊗).

Theorem 4.5.1 ( LLi) (A⊥ ( B)⊥ ' A⊥ ⊗B⊥

Proof: The implication from right to left is easy. Since, by [EFQ] we have A⊥ ( 1 ≥
A⊥ ( B, we obtain

(∗) A⊥⊥ ( (A⊥⊥ ⊗ (A⊥ ( B)⊥) ≥ A⊥⊥ ( (A⊥⊥ ⊗A⊥⊥⊥) ' A⊥⊥⊥.
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Hence, taking A′ = A⊥ ( B and B′ = A⊥⊥ in Lemma 4.4.1, we have the first line of
the following chain

(A⊥ ( B)⊥ ' ((A⊥ ( B) ( A⊥⊥)⊗ ((A⊥ ( B) ∧A⊥⊥)⊥

' ((A⊥ ( B) ( A⊥⊥)⊗ (A⊥⊥ ⇒ (A⊥ ( B)⊥) (Theorem 4.1.2)

≥ ((A⊥ ( B) ( A⊥⊥)⊗A⊥⊥⊥ (∗)

' (A⊥ ⊗ (A⊥ ( B))⊥ ⊗A⊥ (easy)

' (A⊥ ∧B)⊥ ⊗A⊥ (def ∧)

' (B ⇒ A⊥⊥)⊗A⊥ (Theorem 4.1.2)

' (A⊥ ⇒ B⊥)⊗A⊥ (Corollary 4.1.3 (i))

≥ A⊥ ⊗B⊥. (easy)

Theorem 4.5.2 ( LLi) (A⊗B)⊥⊥ ' A⊥⊥ ⊗B⊥⊥

Proof: By Theorem 4.5.1, since (A⊗B)⊥⊥ ' (A⊥⊥ ( B⊥)⊥.

4.6 Some De Morgan properties

Let us conclude this section on  LLi with a list of De Morgan laws for the all our con-
nectives (primitive and derived). For conjunction (⊗) this is a trivial consequence of
(un)currying, whereas for the weak conjunction (∧) this is shown in Theorem 4.1.2. We
prove here similar results for the other connectives.

Theorem 4.6.1 The following “De Morgan dualities” hold in intuitionistic  Lukasiewicz
logic  LLi

(A⊗B)⊥ ' A( B⊥

(A( B)⊥ ' A⊥⊥ ⊗B⊥

(A ∧B)⊥ ' A⇒ B⊥

(A⇒ B)⊥ ' A⊥⊥ ∧B⊥

(A ∧B)⊥ ' A⊥ ∨B⊥

(A ∨B)⊥ ' A⊥ ∧B⊥

(A ↓ B)⊥ ' A⊥ ⇒ B⊥⊥.
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Proof: The first equation (A ⊗ B)⊥ ' A ( B⊥ follows directly from currying and
uncurrying. For the second equation we calculate as follows

(A( B)⊥ ' (A( B)⊥⊥⊥ (easy)

' (A⊥⊥ ( B⊥⊥)⊥ (Theorem 4.3.1)

' (B⊥ ( A⊥)⊥ (easy)

' A⊥⊥ ⊗B⊥. (Theorem 4.5.1)

The third equation follows from Theorem 4.1.2 and [CWC]. The fourth equation can be
derived as:

(A⇒ B)⊥ ' (A( A⊗B)⊥ (def ⇒)

' A⊥⊥ ⊗ (A⊗B)⊥ (duality of ()

' A⊥⊥ ⊗ (B ( A⊥) (duality of ⊗)

' A⊥⊥ ⊗ (B ( A⊥⊥⊥) (A⊥ ' A⊥⊥⊥)

' A⊥⊥ ⊗ (A⊥⊥ ( B⊥) (easy)

' A⊥⊥ ∧B⊥. (def ∧)

The fifth equation follows by:

(A ∧B)⊥ ' (A⊗ (A( B))⊥ (easy)

' (A( B)⊥⊥ ( A⊥ (easy)

' (A⊥⊥ ( B⊥⊥) ( A⊥ (Theorems 4.3.1)

' (B⊥ ( A⊥) ( A⊥ (easy)

' A⊥ ∨B⊥.

For the sixth equation we proceed as follows:

(B ∨A)⊥ ' ((A( B) ( B)⊥ (def ∨)

' (A( B)⊥⊥ ⊗B⊥ (duality of ()

' (A⊥⊥ ⊗B⊥)⊥ ⊗B⊥ (duality of ()

' (B⊥ ( A⊥⊥⊥)⊗B⊥ (duality of ⊗)

' (B⊥ ( A⊥)⊗B⊥ (A⊥ ' A⊥⊥⊥)

' B⊥ ∧A⊥. (def ∧)

Finally, the last equation follows from Theorem 4.2.3 and the laws for ∧ and ∨.

Corollary 4.6.2 ( LLi) A ↓ B ' A⊥ ∧B⊥

21



Proof: Immediate from Theorem 4.2.3 and the last identity of Theorem 4.6.1 above.

Unfolding the definitions of ↓ and ∧ the corollary says

A⊥ ⊗ (B ( A) ' A⊥ ⊗ (A⊥ ( B⊥)

which means that in the context A⊥ ⊗ (·) the two implications B ( A and A⊥ ( B⊥

are intuitionistically equivalent.

4.7 Application: k-contradiction implies [DNE]

The sequent A⊥, A⊥⊥ ` A is obviously provable. Model-theoretic considerations suggest
that this sequent is the first in a sequence of provable sequents in which the hypothesis
A⊥ is weakened to (A ⊗ A)⊥, (A ⊗ A ⊗ A)⊥, . . . . See [1] for further discussion and
a model-theoretic proof. Finding syntactic proofs of these sequents is an interesting
application of many of the results we have proven so far.

Theorem 4.7.1 ( LLi) Whenever k ≥ 1 copies of A lead to a contradiction, then we
must have [DNE] for A, i.e.

(A⊗ . . .⊗A︸ ︷︷ ︸
k times

)⊥, A⊥⊥ ` A.

Proof: By induction on k. The base case k = 1 is trivial, i.e. A⊥, A⊥⊥ ` A. For the
induction hypothesis we will show that the following rule is derivable for k ≥ 1.

(Ak)⊥, A⊥⊥ ` A
================
(A⊗Ak)⊥, A⊥⊥ ` A

In fact, we show the much stronger result that the following rule is derivable:

B⊥, A⊥⊥ ` A
===============
(A⊗B)⊥, A⊥⊥ ` A

The derivation is immediate from Lemma 4.7.2 below.

Lemma 4.7.2 ( LLi) B⊥ ( A⊥⊥ ( A ≥ (A⊗B)⊥ ( A⊥⊥ ( A.
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Proof: Let X ≡ B⊥ ( A⊥⊥ ( A and Y ≡ (A⊗B)⊥ ⊗A⊥⊥. We have

X ⊗ Y ' (A⊥⊥ ( B⊥ ( A)⊗A⊥⊥ ⊗ (A( B⊥) (easy)

' (B⊥ ( A)⊗ ((B⊥ ( A) ( A⊥⊥)⊗ (A( B⊥) ([CWC])

' (B⊥ ( A)⊗ (A⊥ ( (B⊥ ( A)⊥)⊗ (A( B⊥) (easy)

' (B⊥ ( A)⊗ (A⊥ ( A⊥ ⊗B⊥)⊗ (A( B⊥) (Theorem 4.5.1)

' (B⊥ ( A)⊗ (A⊥ ⇒ B⊥)⊗ (A( B⊥) (def ⇒)

' (B⊥ ( A)⊗ (B ∧A⊥)⊥ ⊗ (A( B⊥) (Theorem 4.6.1)

' (B⊥ ( A)⊗ ((A⊗B)⊥ ( B⊥)⊗ (A⊗B)⊥ (easy)

' (B⊥ ( A)⊗B⊥ ⊗ (B⊥ ( (A⊗B)⊥) ([CWC])

' (B⊥ ( A)⊗B⊥. (easy)

≥ A. (easy)

5 Classical  Lukasiewicz Logic

In this section we investigate how the well-known double negation translations [8] of
classical (Boolean) logic BL into IL map over to the setting of  Lukasiewicz Logic. Our
starting assumption was that due to the widespread use of contraction in the proof of
soundness for these translations, we would find at least one double negation translation
of BL into IL which would fail as a translation of  LLc into  LLi. Therefore, we were
amazed to discover that in fact all of the well-known double negation translations of
classical logic also work in the presence of the weak contraction available in  Lukasiewicz
Logic. This is a non-trivial result, since as we will also shown, some of these translation do
fail when no contraction is available, as for instance in affine logic. The crucial property
needed here is that the double negation mapping A 7→ A⊥⊥ is a homomorphism, as
shown in Sections 4.3 and 4.5.

5.1 Double negation translations

We adapt Troelstra’s definition (cf. [19], section 10) which imposes three requirements
on a double negation translation.

Definition 5.1.1 Let A be an extension of ALi. A formula translation (·)† : L → L
is a double negation translation for A if the following hold for every formula A in the
language of A

(DNS1) A + [DNE] proves A† ` A and A ` A†.

(DNS2) if A + [DNE] proves ` A then A proves ` A†.
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(DNS3) A proves4 (A†)⊥⊥ ` A†.

First of all, we show that both the Kolmogorov and the Gödel translations are in fact
double negation translations for affine logic, i.e. no contraction is necessary to prove
Troelstra’s three requirements. Let L be the language of the theories ALc and ALi.

Definition 5.1.2 (Kolmogorov translation [16]) For each formula A ∈ L associate
a formula AK ∈ L inductively as follows:

PK ≡ P⊥⊥ (P atomic)

1K ≡ 1

(A⊗B)K ≡ (AK ⊗BK)⊥⊥

(A( B)K ≡ (AK ( BK)⊥⊥.

Definition 5.1.3 (Gödel translation [13]) For each formula A ∈ L associate a for-
mula AGö ∈ L inductively as follows:

PGö ≡ P (P atomic)

1Gö ≡ 1

(A⊗B)Gö ≡ AGö ⊗BGö

(A( B)Gö ≡ (AGö ⊗ (BGö)⊥)⊥.

Recalling that A⊥ = A ( 1, one may check that (A⊥)
K

and (A⊥)
Gö

are equivalent to
(AK)⊥ and (AGö)⊥ respectively.

Theorem 5.1.1 Both the Kolmogorov translation (·)K and the Gödel translation (·)Gö
are double negation translations for ALi.

Proof: We sketch the proof for the Kolmogorov translation, leaving the Gödel trans-
lation as an exercise for the reader. Clearly ALi + [DNE] proves A ' AK, hence we
have (DNS1). Using the fact that A⊥⊥⊥ ' A⊥ one can show (AK)⊥⊥ ' AK, and hence
(DNS3). Finally, in order to show (DNS2) we prove a slightly stronger result, that if
Γ ` A is provable in ALc then ` (Γ ( A)K is provable in ALi, where Γ ( A abbreviates
B0 ( . . . ( Bn ( A. This can easily be shown by induction on the derivation of the
sequent Γ ` A, noting that (A⊥⊥ ( B⊥⊥)⊥⊥ ' A⊥⊥ ( B⊥⊥ and A⊥⊥⊥ ' A⊥ are
both provable in ALi.

4Troestra’s third condition (DNS3) is slightly different in that it requires A† to be built of double
negated atoms from “negative connectives” (so as to rule out existential quantifiers and disjunction). In
our setting where affine linear logic is the starting point, this complication does not arise.
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5.2 Gentzen and Glivenko translations of  LLc into  LLi

For both the Gentzen and the Glivenko translations (defined below) a corresponding
Theorem 5.1.1 no longer holds. These translation rely on uses of contraction which
are not available in affine logic. Nevertheless, we show that the amount of contraction
available in  Lukasiewicz logic is sufficient for these translations to go through.

Definition 5.2.1 (Gentzen translation [10]) Let L be the language of  LLi and  LLc.
For each formula A ∈ L associate a formula AGen ∈ L inductively as follows:

PGen ≡ P⊥⊥ (P atomic)

1Gen ≡ 1

(A⊗B)Gen ≡ AGen ⊗BGen

(A( B)Gen ≡ AGen ( BGen.

Recall that A⊥ = A( 1, hence we have that (A⊥)
Gen

is equivalent to (AGen)⊥.

Theorem 5.2.1 The Gentzen translation (·)Gen is a double negation translation for  LLi.

Proof: We show by induction on the structure of A that AGen is equivalent over  LLi to
AK. The result will then follow by Theorem 5.1.1. The non-trivial cases are implication
and conjunction. For implication we have

(A( B)Gen ' AGen ( BGen (def (·)Gen)

' AK ( BK (IH)

' ((AK)⊥⊥ ( (BK)⊥⊥) ((DNS3) for (·)K)

' (AK ( BK)⊥⊥ (Theorem 4.3.1)

' (A( B)K. (def (·)K)

Similarly for conjunction in this case using Theorem 4.5.2.

Theorem 5.2.2 The translation (·)Gen is not a double negation translation for ALi.

Proof: We show that (DNS2) fails for the Gentzen translation on ALi. Let P,Q be
atomic formulas. Note that the Gentzen translation of (P ⊗ Q)⊥⊥ ( (P ⊗ Q) (an
instance of [DNE]) is

(P⊥⊥ ⊗Q⊥⊥)⊥⊥ ( (P⊥⊥ ⊗Q⊥⊥)

but that is not provable in ALi, as shown in [1].

Definition 5.2.2 (Glivenko translation [12]) Given a formula A ∈ L define its Glivenko
translation AGli as AGli = A⊥⊥.

Theorem 5.2.3 The Glivenko translation (·)Gli is a double negation translation for  LLi.
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Proof: Similar to the proof of Theorem 5.2.1, by induction on the structure of A we
can show that AK ' A⊥⊥, i.e. AK ' AGli.

Theorem 5.2.4 The Glivenko translation is not a double negation translation for ALi.

Proof: Let P be an atomic formula. Note that the Glivenko translation of P⊥⊥ ( P
(an instance of [DNE]) is (P⊥⊥ ( P )⊥⊥, which, as shown in [1], is not provable in ALi.
Hence (DNS2) fails for the Glivenko translation for ALi.

Theorem 5.2.5 There are extensions A1 and A2 of ALi such that

• (·)Gli is a double negation translation for A1 but (·)Gen is not.

• (·)Gen is a double negation translation for A2 but (·)Gli is not.

Proof: In [1] we construct two finite models whose theories have the property above.

6 Concluding Remarks

We have presented  Lukasiewicz logic as an extension of minimal affine logic, and studied
two important fragments: minimal  Lukasiewcz logic and intuitionistic  Lukasiewcz logic.
We have shown that, quite surprisingly, several theorems of full intuitionistic (respec-
tively, minimal) logic already hold in intuitionistic (respectively, minimal)  Lukasiewcz
logic, where only a limited form of contraction [CWC] is available. Crucial tools in the
study of these system have been the four derived connectives: weak conjunction (A∧B),
strong disjunction (A∨B), strong implication (A⇒ B), and weak NOR (A ↓ B). Several
properties of the derived connectives have been established, including homomorphism
properties for double negation, and De Morgan dualities.

We believe that much stronger properties about the derived connectives hold in  LLm
and  LLi, and that avoiding the use of [EFQ] (and hence staying in the minimal setting)
one might be able to generalise several of the results proven here. For instance, we have
been able to show model-theoretically (cf. our companion paper [1]) that Theorems
4.1.2 and 4.7.1 hold in greatter generality. For Theorem 4.1.2 one can show that the
full (un)currying between the strong implication ⇒ and the weak conjunction ∧ hold in
minimal  Lukasiewcz logic, i.e.

(A ∧B)⇒ C ' A⇒ (B ⇒ C)

Theorem 4.1.2 is the case when C = 1. But we have no proof-theoretic proof of this as yet.
Similarly, a more general version of Theorem 4.7.1, that a k-contradiction implies double
negation elimination, can be shown to hold (model-theorectically) in  LLm, namely,

(An ( B)⊗ (B ∨A) ` (A ∨B)

for all n ≥ 1. Theorem 4.7.1 is also the special case when B = 1, and [EFQ] is used to
simplify A ∨ 1 ' A. But again, we have at present no proof-theoretic derivation of this
result.
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Let us conclude by noting that the consequence relation in the logic of commutative
GBL-algebras has been recently shown to be PSPACE-complete [5]. Given that hoops are
sub-reducts of such algebras5, it follows by a result of Blok-Ferreirim that the complexity
of deciding the consequence relation in the logic of (bounded) hoops (i.e.  LLm and
 LLi) is also in PSPACE. Nevertheless, we have found that the heuristics employed by
Prover9 and Mace4, and by our algebraic methods (cf. [1]), has worked surprisingly
well in deciding validity of reasonably complex formulas. For instance, though with no
a-priori bound on the search time, it turned that all proofs we found using Prover9 were
discovered within 120 minutes of starting the program, while Mace4 explores all hoops
of size 30 within a few minutes.
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