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Abstract. Continuous logic extends the multi-valued  Lukasiewicz logic
by adding a halving operator on propositions. This extension is designed
to give a more satisfactory model theory for continuous structures. The
semantics of these logics can be given using specialisations of algebraic
structures known as hoops. As part of an investigation into the metathe-
ory of propositional continuous logic, we were indebted to Prover9 for
finding a proof of an important algebraic law.

1 Introduction

In 1930,  Lukasiewicz and Tarski [1] instigated the study of logics admitting
models in which the truth values are real numbers drawn from some subset T
of the interval [0, 1]. In these models, conjunction is capped addition1: x +̇ y =
inf{x+y, 1}. Boolean logic is the special case when T = {0, 1}. These  Lukasiewicz
logics have been widely studied, e.g., as instances of fuzzy logics [2]. More re-
cently ben Yaacov has used them as a building block in what is called continuous
logic [3]. Continuous logic unifies work of Henson and others [4] that aims to over-
come shortfalls of classical first-order model theory when applied to continuous
structures such as metric spaces and Banach spaces.

A difficulty with both the  Lukasiewicz logics and continuous logic is that the
known axiomatisations of their propositional fragments are quite hard to work
with. Work on algebraic semantics for  Lukasiewicz logic begun by Chang [5,6]
has helped greatly with this. This paper reports on ongoing work to gain a better
understanding of both the proof theory and the semantics of continuous logic
that is benefitting from the use of automated theorem proving technhology to
help find counterexamples and to derive algebraic properties.

Our work began with the observation that ben Yaacov’s continuous logic,
which we call CLc, is an extension of a very simple intuitionistic substructural
logic ALi. In Section 2 of this paper we show how CLc may be built up via a
system of extensions of ALi. We also show how the Brouwer-Heyting intuitionis-
tic propositional logic and Boolean logic fit into this picture. We describe a class
of monoids called pocrims, that have been quite widely studied in connection
with ALi and sketch a proof of a theorem asserting soundness and completeness

1 We here follow the convention of the literature on continuous logic in ordering the
truth values by increasing logical strength so that 0 represents truth and 1 falsehood.
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Fig. 1: Inference Rules

of the eight logics with respect to certain classes of pocrim. The sketch is easy
to complete apart from one rather tricky lemma.

In Section 3, we discuss our use of Bill McCune’s Mace4 and Prover9 to
assist in these investigations, in particular to prove the lemma needed for the
theorem of Section 2. Our application seems to be a “sweet spot” for this kind
of technology: the automatic theorem prover found a proof of a difficult problem
that can readily be translated into a human readable form.

2 The Logics and their Algebraic Semantics

We work in a language L 1
2

whose atomic formulas are the propositional constants
0 (truth) and 1 (falsehood) and propositional variables drawn from the set Var =
{P,Q, . . .}. If A and B are formulas of L 1

2
then so are A ⊗ B (conjunction),

A ( B (implication) and A/2 (halving). We denote by L1 the language without
halving. We write A⊥ as an abbreviation for A ( 1. The logics we consider
have judgments of the form Γ ` A, where A is an L 1

2
-formula and Γ is a

multiset of L 1
2
-formulas. We are interested in logics whose inference rules are the

introduction and elimination rules for the two connnectives2 shown in Figure 1.
The axiom schemata for our logics are selected from those shown in Fig-

ure 2. These are the axiom of assumption [ASM], ex-falso-quodlibet [EFQ], double
negation elimination [DNE], commutative weak conjunction [CWC], commutative
strong disjunction [CSD], the axiom of contraction [CON], and two axioms for
the halving operator: one for a lower-bound [HLB] and one for an upper bound
[HUB].

The definitions of our eight logics are discussed in the next few paragraphs
and are summarised in Table 1. In all but CLi and CLc, halving plays no rôle
and the logical language may be taken to be the sublanguage L1 in which halving
does not feature.

Intuitionistic affine logic, ALi, has for its axiom schemata [ASM] and [EFQ].
All our other logics include ALi. Since the contexts Γ , ∆ are multisets, an
assumption in the rules of Figure 1 can be used at most once. ALi serves as a
prototype for substructural logics with this property. It corresponds under the

2 Omitting disjunction from the logic greatly simplifies the algebraic semantics. While
it may be unsatisfactory from the point of view of intuitionistic philosophy, disjunc-
tion defined using de Morgan’s law is adequate for our purposes.
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[ASM]
Γ, A ` A

[EFQ]
Γ, 1 ` A

[DNE]
Γ, A⊥⊥ ` A

[CWC]
Γ, A⊗ (A ( B) ` B ⊗ (B ( A)

[CSD]
Γ, (A ( B) ( B ` (B ( A) ( A

[CON]
Γ, A ` A⊗A

[HLB]
Γ, A/2⊗A/2 ` A

[HUB]
Γ, A/2 ( A ` A/2

Fig. 2: Axiom Schemata

Curry-Howard correspondence to a λ-calculus with pairing (i.e., λ-abstractions
of the form λ(x, y) • t, λ((x, y), z) • t, λ(x, (y, z)) • t etc.) in which no variable is
used twice.

Classical affine logic, ALc, extends ALi with the axiom schema [DNE]. It
can also be viewed as the extension of the so-called multiplicative fragment of
Girard’s linear logic [7] by allowing weakening and the axiom schema [EFQ].

Intuitonistic  Lukasiewicz logic,  LLi, extends ALi with the axiom schema
[CWC]. In ALi, A⊗ (A ( B) can be viewed as a weak conjunction of A and B.
In  LLi, we have commutativity of this weak conjunction.

Classical  Lukasiewicz logic,  LLc, extends ALi with the axiom schema [CSD].
In ALi, (A ( B) ( B can be viewed as a form of disjunction, stronger than
that defined by (A⊥ ⊗ B⊥)⊥. In ALc we have commutativity of this strong
disjunction. This gives us the widely-studied multi-valued logic of  Lukasiewicz.

Logic Axioms Models

ALi [ASM] + [EFQ] bounded pocrims

ALc as ALi + [DNE] bounded involutive pocrims

 LLi as ALi + [CWC] bounded hoops

 LLc as ALi + [CSD] bounded Wajsberg hoops

IL as ALi + [CON] bounded idempotent pocrims

BL as IL + [CON] bounded involutive idempotent pocrims

CLi as  LLi + [HLB] + [HUB] bounded coops

CLc as  LLc + [HLB] + [HUB] bounded involutive coops

Table 1: Different logics and their models

Intuitionistic propositional logic, IL, extends ALi with the axiom schema
[CON], which is equivalent to a contraction rule allowing Γ,A ` B to be derived
from Γ,A, A ` B. This gives us the conjunction-implication fragment of the
well-known Brouwer-Heyting intuitionistic propositional logic.
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Fig. 3: Relationships between the Logics

Boolean logic, BL, extends IL with the axiom schema [DNE]. This is the
familiar two-valued logic of truth tables.

Intuitionistic Continuous logic, CLi, allows the halving operator and extends
 LLi with the axiom schemas [HLB] and [HUB], which effectively give lower and
upper bounds on the logical strength of A/2. They imply the surprisingly strong
condition that A/2 is equivalent to A/2 ( A. This is an intuitionistic version of
the continuous logic of ben Yaacov [3].

Classical Continuous logic, CLc extends CLi with the axiom schema [DNE].
This gives ben Yaacov’s continuous logic. The motivating example takes truth
values to be real numbers between 0 and 1 with the logical operations defined
to be certain continuous functions.

Our initial goal was to understand the relationships amongst ALi,  LLc and
CLc. The other logics came into focus when we tried to decompose the some-
what intractable axiom [CSD] into a combination of [DNE] and an intuitionistic
component. It can be shown that the eight logics are related as shown in Fig-
ure 3. In the figure, an arrow from T1 to T2 means that T1 extends T2, i.e., the
set of provable sequents of T2 contains that of T1. In each square, the north-east
logic is the least extension of the south-west logic that contains the other two.
For human beings, at least, the proof of this fact is quite tricky for the ALi- LLc
square, see [2, chapters 2 and 3].

The routes in Figure 3 from ALi to IL and BL have been quite extensively
studied [8,9]. We are not aware of any work on CLi, but it is clearly a natural
object of study in connection with ben Yaacov’s continuous logic. It should be
noted that IL and CLi are incompatible: given [CON], A/2 and A/2⊗A/2 are
equivalent, so that from [HLB] and [HUB] one finds that A/2 ( A and A/2 are
both provable; which proves A, for arbitrary formulas A.

We give an algebraic semantics to our logics using pocrims: partially ordered,
commutative, residuated, integral monoids. A pocrim3, is a structure for the
signature (0, +,→;≤) of type (0, 2, 2; 2) satisfying the following laws:

3 Strictly speaking, this is a dual pocrim, since we order it by increasing logical strength
and write it additively, whereas in much of the literature the opposite order and
multiplicative notation is used (so halves would be square roots). We follow the
ordering convention of the continuous logic literature.

4



(x + y) + z = x + (y + z) [m1]
x + y = y + x [m2]
x + 0 = x [m3]
x ≥ x [o1]
if x ≥ y and y ≥ z, then x ≥ z [o2]
if x ≥ y and y ≥ x, then x = y [o3]
if x ≥ y, then x + z ≥ y + z [o4]
x ≥ 0 [b]
x + y ≥ z iff x ≥ y → z [r]

Let M = (M, 0, +,→;≤) be a pocrim. The laws [mi], [oj ] and [b] say that
(M, 0, +;≤) is a partially ordered commutative monoid with the identity 0 as
least element. Axiom [r], the residuation property, says that for any x and z the
set {y | x + y ≥ z} is non-empty and has x → z as least element. M is said to
be bounded if it has a necessarily unique annihilator, i.e., an element 1 such that
for every x we have:

x + 1 = 1 [ann]

Let us assume M is bounded. Then 0 ≤ x ≤ x + 1 = 1 for any x and
(M ;≤) is indeed a bounded ordered set. Let α : Var → M be an interpretation
of logical variables as elements of M and extend α to a function vα : L1 → M
by interpreting 0, 1, ⊗ and ( as 0, 1, + and → respectively. If Γ = C1, . . . , Cn,
we say that α satisfies the sequent Γ ` A, iff vα(C1)+ . . .+vα(Cn) ≥ vα(A). We
say that Γ ` A is valid in M iff it is satisfied by every assignment α : Var → M .
If C is a class of procrims, we say Γ ` A is valid iff it is valid in every M ∈ C.

We will need some special classes of pocrim. Writing ¬x as an abbreviation
for x → 1, we say a bounded pocrim is involutive if it satisfies ¬¬x = x. We say
a pocrim is idempotent if it is idempotent as a monoid, i.e., it satisfies x+x = x.
A hoop is a pocrim that is naturally ordered, i.e., whenever x ≥ y, there is z
such that x = y + z. It is a nice exercise in the use of the residuation property
to show that a pocrim is a hoop iff it satisfies the identity

x + (x → y) = y + (y → x) [cwc]

A Wajsberg hoop is a hoop satisfying the identity

(x → y) → y = (y → x) → x [csd]

See [8] for more information on hoops.
We adopt the term, continuous hoop, or coop for short, for a hoop where,

for every x, there is a unique y, such that y = y → x, in which case we write
y = x/2. If M is a coop, we extend the function vα : L1 → M induced by an
interpration α : Var → M to a function vα : L 1

2
→ M by interpreting A/2 as

vα(A)/2. The notions of validity and satisfaction extend to interpretations of L 1
2

in a coop in the evident way.
We say that a logic L is sound for a class of pocrims C if every sequent that

is provable in L is valid in C. We say that L is complete for C if the converse
holds. We then have:
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Theorem 1 Each of our logics is sound and complete for the class of pocrims
indicated in Table 1.

Proof: Apart from one detail, this is standard. Soundness is a routine exercise.
For the completeness, one defines an equivalence relation ' on formulas such
that A ' B holds iff both A ` B and B ` A are provable in the logic. One
then shows that the set of equivalence classes becomes a pocrim, called the term
model in the indicated class under operators + and → induced on the equivalence
classes by ⊗ and (. As the only sentences valid in the term model are those
provable in the logic, completeness follows. The difficult detail is showing that
the term models for the continuous logics satisfy our definition of a coop: it is
easy to see that for any x = [A], one has that y = [A/2] satisfies y = y → x, but
is this y unique? We shall answer this question in the next section.

3 Automated Proofs and Counterexamples

In our early attempts to understand the relationships represented in Figure 3, we
spent some time attempting to devise finite pocrims with interesting properties.
This can be a surprisingly difficult and error-prone task. Verifying associativity,
in particular, is irksome. Having painstakingly accumulated a small stock of
examples, a conversation with Alison Pease reminded us of the existence of Bill
McCune’s Mace4 tool [10] that automatically searches for finite counter-examples
to conjectures in a finitely axiomatised first-order theory.

It was fascinating to see Mace4 recreate examples similar to those we had al-
ready constructed. The following input asks Mace4 to produce a counterexample
to the conjecture that all bounded pocrims are hoops:

op(500, infix, "==>").
formulas(assumptions).

(x + y) + z = x + (y + z). % monoid law 1
x + y = y + x. % monoid law 2
x + 0 = x. % monoid law 3
x >= x. % ordering law 1
x >= y & y >= z -> x >= z. % ordering law 2
x >= y & y >= x -> x = y. % ordering law 3
x >= y -> x + z >= y + z. % ordering law 4
x >= 0. % boundedness law
x + 1 = 1. % annihilator law
x + y >= z <-> x >= y ==> z. % residuation law

end_of_list.
formulas(goals).

x + (x ==> y) = y + (y ==> x). % can we derive cwc?
end_of_list.

Here we use ‘==>’ and ‘>=’ to represent ‘→’ and ‘≤’ in the pocrim and ‘&’,
‘->’ and ‘<->’ are Mace4 syntax for conjunction, implication and bi-implication.
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Given the above, Mace4 quickly prints out the diagram of a pocrim on the
ordered set 0 < p < q < 1 with x + y = 1 whenever {x, y} ⊆ {p, q, 1}, a counter-
example which we had already come up with over the course of an afternoon.
That led us to test Mace4 on yet other conjectures which we had already refuted
with some small counter-examples. Mace4, again and again, came up with similar
counter-models to the ones we had contrived.

Some weeks later we were faced with the question of whether the two axiom
schemata [HLB] and [HUB] uniquely determine the halving operator over the
logic  LLi. That would give us a very nice intuitionistic counterpart (CLi) to
continuous logic CLc. More precisely, we found ourselves trying to show that
the following rule is derivable in the theory  LLi:

A ( B ` A A,A ` B C, C ` B C ( B ` C

A ` C

Despite several attempts we failed to come up with a proof, and even started
looking at the possibility that this was simply not true. That is when we thought
of using Prover9 to look for a proof. We entered the laws for a hoop, which include
the law [cwc], together with the assumptions a → b = a and c → b = c. Our goal
was to derive a = c.

op(500, infix, "==>").
formulas(assumptions).

(x + y) + z = x + (y + z). % monoid law 1
x + y = y + x. % monoid law 2
x + 0 = x. % monoid law 3
x >= x. % ordering law 1
x >= y & y >= z -> x >= z. % ordering law 2
x >= y & y >= x -> x = y. % ordering law 3
x >= y -> x + z >= y + z. % ordering law 4
x >= 0. % boundedness law
x + y >= z <-> x >= y ==> z. % residuation law
x + (x ==> y) = y + (y ==> x). % commut. of wk. conjunction
a ==> b = a. % assumption 1
c ==> b = c. % assumption 2

end_of_list.
formulas(goals).

a = c.
end_of_list.

To our surprise Prover9 took just a few seconds to answer

<< output proof >>
...
THEOREM PROVED. Exiting with 1 proof.

Interestingly, the Prover9 proof, despite having around seventy (70) steps,
could easily be translated into natural language. After doing such translation,

7



and having understood the main steps in the proof we were quite perplexed to
find the following intricate construction which we reproduce here. The following
lemma singles out the nine main sub-lemmas which require non-trivial proofs,
and which are then used to prove Theorem 3.

Lemma 2 Let M = (M, 0, +,→;≤) be a hoop and let a, b, c, x, y ∈ M . If a →
b = a and c → b = c, then the following hold:

(1) b ≥ a and b ≥ c.

(2) a + a = b.

(3) a → (a → c) = 0.

(4) (x → y) + z ≥ x → (y + (y → x) + z).

(5) c → (a + a + x) ≥ c.

(6) c → a ≥ a → c.

(7) c → a = a → c.

(8) c + (c → a) + ((a → c) → a) = b.

(9) a + c = b.

Proof: (1): we have b ≥ a → b = a and similarly for b ≥ c.
(2): by (1) we have b → a = 0. Therefore

a + a = a + (a → b)
[cwc]
= b + (b → a) = b.

(3): by (1) we have a = a → b ≥ a → c and hence 0 ≥ a → (a → c), which
implies (3).
(4): by [cwc]

x + (x → y) + z = y + (y → x) + z

and hence (4) follows.
(5): since c → (b + x) ≥ c → b = c, this follows from (2).
(6): by (4) we have (c → a) + a ≥ c → (a + a + (a → c)). By (5) we have
(c → a) + a ≥ c and hence (6).
(7): this follows by symmetry from (6).
(8): we have

c + (c → a) + ((a → c) → a)
[cwc]
= a + (a → c) + ((a → c) → a)

[cwc]
= a + a + (a → (a → c))

(2)
= b + (a → (a → c))

(3)
= b.
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(9): we have

b
(8)
= c + (c → a) + ((a → c) → a)
(7)
= c + (a → c) + ((a → c) → a)

[cwc]
= c + a + (a → (a → c))
(3)
= c + a.

This completes the proof of the lemma. It is interesting to note the complexity
of the proof in terms of uses of [cwc] (used 6 times!) and the important sub-lemma
(2) (used twice) as depicted in the following outline proof tree.

(1)

(3)

[cwc]
(4)

(1)
[cwc]

(2)

(5)

(6)

(7)

(1)
[cwc]

(2)

(1)

(3)
2× [cwc]

(8)
[cwc]

(9)

Finally, from (9) of Lemma 2 we have the theorem that, given b, the equation
a → b = a uniquely determines a:

Theorem 3 In any hoop the following holds: if a → b = a and c → b = c then
a = c.

Proof: By symmetry it is enough to show c ≥ a. By Lemma 2 (9) we have
c ≥ a → b and hence c ≥ a.

We already have the part of Theorem 1 that gives soundness and complete-
ness of  LLi for bounded hoops. Theorem 3 now gives us that the continuous
logic axioms [HLB] and [HUB] uniquely determine halving, even over  LLi, and
that is exactly what we need to complete the proof of Theorem 1:

4 Final Remarks

We should note that Prover9 has also found some other intricate (although
already known) proofs in this area. For example, it can prove a lemma on pocrims
implying that the axiom schemata [CWC] + [DNE] is equivalent to [CSD] over
intuitionistic affine logic ALi. This implies the aforementioned result that in the
ALi- LLc square of Figure 3, the north-east logic  LLc is the least extension of
the south-west logic ALi that contains the other two logics ALc and  LLi.

We also stress that Prover9’s proof of Theorem 3 was surprisingly concise iand
easily human-readable. The only effort we put was in separating the more trivial
facts from the ones which required several steps to be derived, and grouping these
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into a proof-like (tree-like) structure. That is what led us to the nine sub-lemmas
of Lemma 2, and the proof structure depicted above.

Our work on the algebraic semantics of continuous logic is in its early days.
It will be interesting to see where a combination of automated proof and more
conventional mathematical methods will eventually lead us.

Clearly our application is one to which technology such as Mace4 and Prover9
is well suited. It is nonetheless a tribute to the memory of the late Bill McCune
that the accessibility and ease of use of these tools have enabled us to get useful
results with very little effort.
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