
Under consideration for publication in Math. Struct. in Comp. Science

A Constructive Interpretation of Ramsey’s
Theorem via the Product of Selection
Functions

Paulo Oliva and Thomas Powell

Queen Mary University of London

School of Electronic Engineering and Computer Science

London E1 4NS

Received June 15, 2012

We use Gödel’s dialectica interpretation to produce a computational version of the well

known proof of Ramsey’s theorem by Erdős and Rado. Our proof makes use of the

product of selection functions, which forms an intuitive alternative to Spector’s bar

recursion when interpreting proofs in analysis. This case study is another instance of the

application of proof theoretic techniques in mathematics.

1. Introduction

In a fundamental paper of the 1950s (Kreisel, 1951; Kreisel, 1952), Kreisel first suggested

utilising proof interpretations to systematically ‘unwind’ non-constructive proofs and

discover their constructive content. Kreisel’s pioneering work forms the foundation of

modern applied proof theory (in the sense of (Kohlenbach, 2008)) which has seen variants

of Gödel’s functional interpretation used to produce improved results in areas such as

numerical analysis and ergodic theory through the extraction of computational content

from classical proofs.

This proof mining program, as it is known today, has generally focused on developing

general metatheorems that guarantee the extractability of effective uniform bounds from

proofs of theorems of a specific logical form - usually relatively simple Π2 theorems for

which direct computational data can be found. In other words, on the whole proof in-

terpretations have been applied to extract purely quantitative information from a fairly

restricted class of theorems. However, the last decade has seen proof interpretations em-

ployed much more widely, with an increasing emphasis on understanding the qualitative

aspects of interpreted proofs.

There are two main reasons for this. The first is a greater appreciation of the mathe-

matical significance of proof interpretations. It was recently observed (e.g. (Kohlenbach,

2008)) that the monotone variant of Gödel’s dialectica interpretation is closely related

to the so-called ‘correspondence principle’ between finite and infinite dynamical systems
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as discussed by T. Tao in (Tao, 2008, Chapter 1.3). This observation lies behind current

applications of the dialectica interpretation in ergodic theory (see e.g. Avigad (Avigad,

2009)), which in particular explore the dialectica interpretation of Cauchy convergence,

known to mathematicians as metastability.

The second reason is an improved understanding of the semantics of proof interpreta-

tions. Formal translations on proofs are highly syntactic and in particular the functional

interpretation of proofs that make use of full arithmetic comprehension traditionally in-

volves Spector’s abstruse bar recursion schema. Consequently, realisers for interpreted

proofs are often stated as almost unreadable higher type terms. This issue is addressed

in recent work by the authors and M. Escardó (Escardó and Oliva, 2010a; Escardó and

Oliva, 2011), who show that the product of selection functions provides us with an intu-

itive alternative to bar recursion that can be understood in terms of the computation of

optimal strategies in a certain class of sequential games. This makes it easier to appreciate

the operational behaviour of realisers of interpreted theorems in analysis.

Therefore the authors believe that it is both practical and meaningful to apply proof

interpretations to classical proofs with the object of producing a mathematical proof of

a new, finitary theorem, as opposed to just extracting a new piece of quantitative infor-

mation. In this article we apply Gödel’s dialectica interpretation to Erdős and Rado’s

proof of Ramsey’s theorem for pairs, similarly to what has been done in (Kohlenbach and

Kreuzer, 2009; Kreuzer, 2009). Our main aim here, however, is to produce an intuitive

combinatorial proof of the finitary form of the Ramsey’s theorem given in Section 1.2.

For that purpose, we endeavour to strip our proof of heavy logical syntax in order to

understand it in mathematical terms. In a broader sense our aim is to portray the dialec-

tica interpretation as an intelligent translation on proofs as opposed to just a syntactic

translation on logical formulas.

The paper is organised as follows. We begin by formulating Ramsey’s theorem and

its proof in the language of formal arithmetic. We then briefly discuss the main building

block of our extracted proof, the product of selection functions, and in Section 4 we prove

our finitary version of the theorem. Finally, we discuss a game theoretic reading of our

proof.

1.1. Preliminaries

In this article we assume that the reader is familiar with Gödel’s dialectica interpretation

of classical proofs (cf. (Avigad and Feferman, 1998; Kohlenbach, 2008) and the origi-

nal paper (Gödel, 1958)), by which we implicitly mean Gödel’s dialectica interpretation

combined as usual with the negative translation†. We do not assume familiarity with

the authors’ recent work on the product of selection functions - although the reader is

encouraged to consult (Escardó and Oliva, 2011) for a more detailed treatment of the

results mentioned in Section 3.

The theory PAω is Peano arithmetic in all finite types, and T is Gödel’s quantifier-free

† As in (Kohlenbach, 2008) we adopt Kuroda’s variant of the negative translation.
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theory of higher-type primitive recursive functionals (see (Avigad and Feferman, 1998)

for full definitions). We make informal use of types like the Booleans B = {0, 1} and

finite sequence types X∗.

Notation. We use the following abbreviations:

s ∗ t is the concatenation of sequences s and t.

ŝ ≡ s ∗ 0X
N

a canonical infinite extension of a finite sequence s.

[αX
N
](n) ≡ 〈α0, . . . , α(n− 1)〉 is the initial segment of α of length n.

Finally, we make use of the following key logical principles. Π0
1 countable choice is given

by the schema

Π0
1-AC0 : ∀n∃xX∀yYAn(x, y)→ ∃αN→X∀n, yAn(αn, y),

where the An are quantifier-free, weak König’s lemma is the statement that any infinite

decidable binary tree T has an infinite branch:

WKL : ∀n∃sB
∗
(|s| ∧ T (s))→ ∃αN→B∀nT ([α](n)),

and the infinite pigeonhole principle states that for any n-colouring c of the natural

numbers, at least one colour x is used infinitely often:

IPHP : ∀cN→[n]∃x, pN→N∀k(pk ≥ k ∧ c(pk) = x).

Note that of these only IPHP is provable in PAω

1.2. Ramsey’s theorem for pairs

In this article we only consider Ramsey’s theorem for pairs and 2-colourings on the basis

that our results can be extended to the more general theorem, although in the course

of our program extraction we hint at how key steps can be generalised for the n-colour

case.

Let [N]2 denote the set of subsets of N of size two, and suppose we are given a colouring

c : [N]2 → B of [N]2 with two colours. Ramsey’s theorem says that for any such colouring

there exists an infinite pairwise monochromatic subset of N i.e. an infinite set S ⊆ N
such that all elements of [S]2 have colour x for some x ∈ B. Formally, we write Ramsey’s

theorem as

RT2
2(c) : ∃xB∃FN→N∀k(Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c({Fi, F j}) = x)).

Here the infinite monochromatic set is encoded by the function F and is given by SF =

{Fk : k ∈ N}. Our main result is a constructive proof of the dialetica interpretation of

RT2
2(c):

Main Theorem 1. Suppose the colouring c is fixed. For any functional η : B×NN → N
there exists a colour x : B and a function F : N→ N satisfying

∀k ≤ ηxF (Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c({Fi, Fj}) = x)). (1)

As with all Σ2 theorems, the functional interpretation of Ramsey’s theorem coincides
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with Kreisel’s no-counterexample interpretation (n.c.i.). The intuition is that the coun-

terexample functions η0 and η1 attempt to show that for any F the set SF cannot be

pairwise monochromatic, and we are challenged to effectively refute any such counterex-

ample functions. Alternatively, we can view η as a function that specifies in advance how

we want to “use” Ramsey’s theorem in a specific computation: while in general there is

no effective way of realising Ramsey’s theorem, given η we can produce an approximation

to a monochromatic set that is sufficient for the computation we have in mind.

1.3. Comparison to existing work

Ramsey’s theorem has been extensively studied in logic, so it is important to outline how

our work contrasts to related papers on the constructive content of the theorem.

In (Bellin, 1990) Bellin uses proof theoretic techniques to produce a proof of a finitary

version of Ramseys’ theorem similar to (1). However, his proof differs from ours in two

important respects. Firstly, his is based on Ramsey’s original proof as opposed to the one

analysed here by Erdős and Rado, and secondly he uses cut-elimination and Herbrand’s

theorem as opposed to the dialectica interpretation.

A formalisation of Erdős and Rado’s proof was recently given by Kreuzer and Kohlen-

bach in (Kohlenbach and Kreuzer, 2009), and a bar-recursive realizer for its functional

interpretation was stated in (Kreuzer, 2009). The main achievement of these works is

to calibrate the proof theoretic strength of RT2
2(c) and establish its contribution to the

complexity of extracted programs in certain cases, whereas our goal is to produce an

intuitive constructive version of the Erdős-Rado proof using the product of selection

functions that can be understood in mathematical terms.

We note that while our formalisation of the Erdős-Rado proof is influenced by theirs in

that we also encode the Erdős-Rado min-monochromatic tree as as a binary Σ0
1 tree, our

treatment differs substantially from (Kohlenbach and Kreuzer, 2009; Kreuzer, 2009). In

particular we encode min-monochromatic branches using a different Σ0
1 tree, and in our

program extraction we use new interpretations of WKL and Π0
1-AC using the product of

selection functions, as opposed to the standard bar-recursive interpretations of Howard

and Spector used in (Kreuzer, 2009).

Veldman and Bezem (Veldman and Bezem, 1993) discovered an interesting construc-

tive variant of Ramsey’s theorem. That formulation and proof have been simplified by

Coquand in (Coquand, 1994b) (see also (Coquand, 1994a)). Coquand’s proof makes use

a recursion on well-founded trees similar to Spector’s bar recursion. The main difference

being that in our algorithm the well-founded tree is not given explicitly as part of the

problem, as it is in Coquand’s formulation of Ramsey’s theorem.

To summarise, then, in comparison to existing work our analysis of Ramsey’s theorem

combines the following key benefits:

1 Our constructive interpretation of the theorem is based on Gödel’s dialectica

interpretation. The advantage of this is that our theorem is more ‘computational’

than e.g. that of Veldman and Bezem (Veldman and Bezem, 1993) in that we explic-

itly prove the existence of arbitrarily large approximations to a monochromatic set.



A Constructive Interpretation of Ramsey’s Theorem via the Product of Selection Functions5

Moreover, as indicated previously, our finitary Ramsey’s theorem can be related to

the finitisations of infinitary theorems in the sense of Tao (Tao, 2008).

2 Our constructive proof of Ramsey’s theorem is based on the product of selection

functions as opposed to Spector’s bar recursion and can be given a clear game theoretic

interpretation (Section 5).

2. A Formal Proof of Ramsey’s Theorem

Notation. For simplicity we encode a colouring c : [N]2 → B as a map c : N2 → B with

the property that c(i, j) = c(j, i) for all i, j.

We now present a formal proof of Ramsey’s theorem based on that of Erdős and Rado

((Erdős et al., 1984), Section 10.2). In doing so we show that RT2
2(c) can be formalised

in PAω + WKL + Π0
1-AC, and therefore its functional interpretation can theoretically be

witnessed using Spector’s bar recursion (Kohlenbach, 2008; Spector, 1962), or alterna-

tively (as we demonstrate in Section 3) the product of selection functions. Of course,

actually constructing this witness is non-trivial – the soundness theorem for the dialec-

tica interpretation gives a syntactic algorithm which would be impractical to carry out

by hand. Therefore, we make use of the soundness theorem as a very rough guide on how

to proceed but use shortcuts whenever possible.

The main idea behind the classical proof is, given a colouring c, to organise the nat-

ural numbers into a tree (described as an ordering ≺ on N) whose branches are min-

monochromatic, in the sense that c(i, j) = c(i, k) for i ≺ j ≺ k, where i ≺ j says that

node i precedes j in the tree. This is the so-called Erdős-Rado (E/R) tree. By König’s

lemma the E/R tree has an infinite min-monochromatic branch a : NN, so by the infi-

nite pigeonhole principle applied to the colouring ca(i) = c(a(i), a(i+ 1)) there exists an

infinite subset of the branch that is pairwise monochromatic.

Our formal proof proceeds, in a similar fashion to (Kohlenbach and Kreuzer, 2009), as

follows. We encode branches of the E/R tree by an infinite Σ0
1 binary tree T (Definition

2.0.2). We then reduce T to an infinite decidable binary tree using Π0
1-AC (Lemma 2.0.4),

which by WKL has an infinite branch. We then show that an infinite branch of T does

indeed encode an infinite branch of the E/R tree (Lemma 2.0.7). Hence, we are finally

able to complete the proof using IPHP (Theorem 2.0.11). Because we are only considering

here the case of two colours, we do not need the full IPHP but only a very simple instance

of it (case n = 2). Nevertheless, we discuss the whole construction in terms of the full

IPHP so that a generalisation to the case of finitely many colours is more straightforward.

We sketch our formal proof in Figure 1. Here E/R(c) abbreviates the statement that the

E/R tree defined by c has an infinite branch.

IPHP

WKL Π0
1-AC

2.0.4-2.0.10
E/R(c)

2.0.11
RT2

2(c)

Figure 1. Formal proof of Ramsey’s theorem.
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It is important to remark why we have chosen this proof over Ramsey’s seemingly sim-

pler proof in (Ramsey, 1930). Ramsey constructs an infinite min-monochromatic branch

directly using dependent choice: First we define a0 = 0, then we use IPHP to pro-

duce an infinite set A1 ⊆ N\0 that is monochromatic under c0(i) = c(0, i) and define

a(1) = minA0. Next use IPHP to produce an infinite set A2 ⊆ A1\a(1) that is monochro-

matic under ca(1)(i) = c(a(1), i) and define a(2) = minA1 and so on. It is easy to see that

the resulting a is min-monochromatic. However, Ramsey’s construction uses dependent

choice of type 1 (Simpson shows in (Simpson, 1999) that it cannot be formalised in the

subsystem ACA0), therefore its computational interpretation would seemingly involve bar

recursion/product of selection functions of level 1. Our interpretation of the Erdős-Rado

proof, on the other hand, makes use of the product of selection functions of lowest type

only, meaning that our construction is computationally simpler.

Definition 2.0.1 (Erdős/Rado tree). Given a colouring c : N2 → B, define a partial

order ≺ on N recursively as follows:

1 0 ≺ 1

2 Given that ≺ is already defined on the initial segment of the natural numbers [j], for

j < i define

j ≺ i iff c(k, i) = c(k, j), for all k ≺ j

It is easy to show that ≺ defines a tree on N, the so-called Erdős/Rado tree, and that

its branches are min-monochromatic i.e. c(k, i) = c(k, j) for k ≺ i ≺ j. Moreover, the

tree is binary branching because i and j are successors of k if and only if c(k, i) 6= c(k, j).

For proofs of these facts see (Kohlenbach and Kreuzer, 2009, Section 4). We consider the

following Σ0
1 tree.

Definition 2.0.2 (Binary Erdős/Rado tree). Define the Σ0
1-predicate T on B∗ by

T (s) := ∃k(∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
T ′(s,k)

).

A 0-1 sequence s belongs to T if it is the characteristic function of a finite branch of the

Erdős/Rado tree. We use a k and a k′ in order to make T (s) a Σ0
1-predicate monotone

on unbounded quantifier k. This will simplify the construction.

Lemma 2.0.3. The following are simple properties of T

(i) T as defined above is an infinite tree.

(ii)The branches of T are characteristic functions of branches of the E/R tree.

(iii)T satisfies the following monotonicity conditions‡:

(M1) T ′(s ∗ t, k)→ T ′(s, k) and (M2) T ′(s, k)→ T ′(s, k + l).

Proof. (i) Clearly T is prefix closed. Moreover, for all n, T (s) has a branch s of length

n given by si = 0 iff i ≺ n, for i < n. (ii) T (s) implies that the set defined by s is

an initial segment of the branch of the predecessors of k′, denoted pd(k′), of the E/R

‡ It will become clear in Section 4 why we require our tree to have these properties.
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tree. Therefore is also a branch of the E/R tree. (iii) (M1) is obvious, and (M2) follows

because we only ask for a bound on k′.

The first step in our proof is to prove the existence of a function β which will allow us

to turn the Σ0
1-tree T (s) into a decidable tree.

Lemma 2.0.4 (Monotone Skolem function). There exists a function β such that

∀n∀s(|s| = n ∧ ∃kT ′(s, k)→ T ′(s, βn)). (2)

Proof. Classically we have that

∀n∀s(|s| = n→ ∃k′(∃kT ′(s, k)→ T ′(s, k′))).

By bounded collection and monotonicity of T ′ we have

∀n∃k′∀s(|s| = n ∧ (∃kT ′(s, k)→ T ′(s, k′))).

Finally, by countable choice for Π0
1-formulas we obtain the function β.

The Skolem function β allows us to turn the Σ0
1-predicate T (s) into a decidable pred-

icate:

Corollary 2.0.5. Given a function β satisfying (2) we have that T (s) is equivalent to

∃k∈ [|s|, β(|s|)]∀i < |s|(si = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ(s)

.

Once we have a decidable infinite finitely branching tree T β(s) we can apply weak

König’s lemma to obtain an infinite path in the tree.

Lemma 2.0.6. There exists an infinite sequence α such that

∀n∃k∈ [n, βn]∀i < n(α(i) = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ([α](n))

. (3)

Proof. By weak König’s lemma.

However, it remains to show that an infinite branch of T encodes an infinite branch of

the Erdős/Rado tree.

Lemma 2.0.7. The sequence α has infinitely many zeros, i.e. it is the characteristic

function of an infinite set. More specifically, we can construct a function a : N→ N that

returns the first k ≥ n with α(k) = 0.

Proof. Define a(n) as

a(n) =

{
0 if n = 0

k for least k ∈ [n, β(βn+ 1)] such that α(k) = 0.

We show that a is well-defined, so that in fact α(a(n)) = 0 for all n. Because the image

of a is unbounded the result follows. We must have that α(0) = 0 by definition of ≺.

Now given n > 0, let i < n be the largest such that α(i) = 0. Consider k ∈ [n, βn] which
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by (3) satisfies ∀i < n(α(i) = 0 ↔ i ≺ k); and hence i ≺ k. Now, let n be βn + 1 in

(3) so that we have a k′ ∈ [βn + 1, β(βn + 1)] satisfying ∀i < n(α(i) = 0 ↔ i ≺ k′);

and hence i ≺ k′ as well. Finally, let n be β(βn + 1) + 1 in (3) so that we have a

k′′ ∈ [β(βn+1)+1, β(β(βn+1)+1)] satisfying ∀i < n(α(i) = 0 ↔ i ≺ k′′); so that also

i ≺ k′′. Since we have i ≺ k and i ≺ k′ and i ≺ k′′, it follows that either k ≺ k′ or k ≺ k′′
or k′ ≺ k′′, since the Erdős/Rado tree is binary branching. Hence, either α(k) = 0 or

α(k′) = 0, and either way there is some l ∈ [n, β(βn+ 1)] with α(l) = 0.

Remark 2.0.8. Note that in verifying that α(a(n)) = 0 we have only used (3) up to the

point max{n, βn + 1, β(βn + 1) + 1}. We use this fact later to show that a sufficiently

large approximation of α is sufficient for an approximation of a.

Remark 2.0.9. For the n colour case the Erdös/Rado tree is still finitely branching but

not binary branching as it is for case of two colours n = 2. This in particular means

that generalising the proof of Lemma 2.0.7 for arbitrarily many colours is non-trivial

(although still routine), and the construction of the function a and the bound in Remark

2.0.8 are more complex (involving further iterations of β). Note, however, that the tree

T (s) would still be binary branching, even in the case of n colours, as T (s) means that

s is the “characteristic function” of a branch in the Erdös/Rado tree. In particular, only

the weak form of König’s lemma is required in the general case as well.

Corollary 2.0.10. There exists an infinite set that is min-monochromatic under the

colouring c : N2 → B.

Proof. Clearly the set {an : n ∈ N} is infinite. Moreover for ak < ai < aj it follows

from (3) for n = aj + 1 that ak ≺ ai ≺ aj, and therefore c(ak, ai) = c(ak, aj).

All that remains is to apply the infinite pigeonhole principle to the min-monochromatic

branch given by a.

Theorem 2.0.11 (Ramsey’s theorem). For every colouring c : N2 → B

∃xB∃FN→N∀k(Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c(Fi, Fj) = x)).

Proof. Let a be as in the previous lemma. Clearly an ≥ n, so the image of a is an

infinite set. Moreover,

c(a(k), a(i)) = c(a(k), a(j)), (4)

whenever a(k) < a(i) and a(k) < a(j), by (3) and definition of a. Finally, define a

couloring c′ : N→ B as c′(n) = c(a(n), a(a(n) + 1)). By the infinite pigeon-hole principle

we have a p and an x such that p(n) ≥ n and

x = c′(pi) = c(a(pi), a(a(pi) + 1))
(4)
= c(a(pi), a(pj)),

for a(pi) < a(pj). Hence, F (i) = a(pi) does the job.
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3. The Product of Selection Functions

It is well known that just as Peano arithmetic has a dialectica interpretation in the

primitive recursive functionals of finite type T, classical analysis (i.e. PAω + AC0) has

a dialectica interpretation in the bar recursive functionals T + BR, where BR is the bar

recursor introduced by Spector in his fundamental paper (Spector, 1962).

Spector’s bar recursion is rather abstruse, and the operational behaviour of programs

that make use of this kind of recursion tends to be quite difficult to understand. This

was not originally an issue, as Spector’s aim was simply to obtain a relative consistency

proof for analysis. However, when using the dialectica interpretation to extract programs

from proofs in analysis, it is sensible to ask whether there is a more intuitive alternative

to bar recursion that facilitates a better understanding of these programs.

In (Escardó and Oliva, 2010a), the first author and Escardó propose the product of

selection functions as a (computationally equivalent) alternative to bar recursion. In

contrast to bar recursion, the product of selection functions is a versatile construction

that seems to appear naturally in a variety of different contexts in mathematics and

computer science, such as fixed point theory, algorithms and game theory. As such,

extracted programs that make use of the product tend to be more illuminating.

In this section we briefly outline the main results that will be used in Section 4, and

provide some motivation as to why we prefer the product over bar recursion. The reader

is encouraged to consult the survey paper (Escardó and Oliva, 2011) and a recent paper

on the extraction of programs from proofs using selection functions (Oliva and Powell,

2012) for further details and discussion.

We call selection function any element of type JRX := (X → R) → X. Given a

selection function ε : (X → R) → X we denote by ε : (X → R) → R the functional

ε(p)
R
= p(εp).

Definition 3.0.12 (Binary product of selection functions (Escardó and Oliva,

2010b)). Given a selection function ε : JRX and family of selection functions δx : JRY

and a predicate q : X × Y → R, let

B[xX ]
Y
:= δ(x, λy.q(x, y))

a
X
:= ε(λx.q(x,B[x])).

The binary product ε⊗ δ of the selection functions ε and δ is another selection function,

of type JR(X × Y ), defined by

(ε⊗ δ)(q) X×Y:= 〈a,B[a]〉.

As described in (Escardó and Oliva, 2010b), we can iterate the binary product of

selection functions an unbounded number of times, where the length of the iteration is

dependent on the output of the product in the following sense.

Definition 3.0.13 (Iterated product of selection functions (Escardó and Oliva,

2010b)). Suppose we are given a family of selection functions (εs : JRX), where s : X∗.

The explicitly controlled unbounded product of the selection functions εs is defined by the
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recursion schema

EPSωs (ε)(q)
XN

=

{
0 if ω(ŝ) < |s|

(εs ⊗ λx.EPSωs∗x(ε))(q) otherwise
(5)

where s : X∗, q : XN → R and ω : XN → N.

When ω is a constant function, say ωα = n, this corresponds to a finite iteration of

the binary product. The functional ω acts as a control, terminating the recursion once it

has produced a sequence s satisfying ω(ŝ) < |s|. By simply unwinding the definition of

the binary product in (5) we obtain an equivalent equation

EPSωs (ε)(q)
XN

=

{
0 if ω(ŝ) < |s|

as ∗ EPSωs∗as(ε)(qas) otherwise
(6)

where as = εs(λx.EPS
ω
s∗x(ε)(qx)), with qx(α) = q(x ∗ α) and δ(p)

R
= p(δp).

For fixed ω, ε and q we should think of EPSωs (ε)(q) as computing an infinite extension

to any given finite sequence s. Hence, we are interested in the sequence s ∗ EPSωs (ε)(q).

The fundamental property of EPS is that the infinite extension of an initial segment

[α](n) of a previous infinite extension α is identical to the original infinite extension.

Formally:

Lemma 3.0.14 (Main lemma on EPS). If α = EPSωs (ε)(q) then, for all n,

α = [α](n) ∗ EPSωs∗[α](n)(ε)(q[α](n)). (7)

Proof. Induction on n. See (Escardó and Oliva, 2011) for details.

This lemma is the main building block behind the proof of the following fundamental

theorem about EPS.

Theorem 3.0.15 (Main theorem on EPS). Let q : XN → R and ω : XN → N and

εs : JRX be given. Define

α
XN

= EPSω〈 〉(ε)(q)

ps(x)
R
= EPSωs∗x(ε)(qs∗x).

For n ≤ ω(α) we have

α(n)
X
= ε[α](n)(p[α](n))

qα
R
= ε[α](n)(p[α](n)).

Proof. Assume n ≤ ω(α). We argue that (∗) n ≤ ω([α](n) ∗ 0). Otherwise, assuming

n > ω([α](n) ∗ 0) we would have, by Lemma 3.0.14, that α = [α](n) ∗ 0. And hence,

n > ω([α](n) ∗ 0) = ω(α) ≥ n, which is a contradiction. Hence, we have that

α(n)
L3.0.14

= EPSω[α](n)(ε)(q[α](n))(0)

(∗)
= ε[α](n)(λx.EPS

ω
[α](n)∗x(ε)(q[α](n)∗x))

= ε[α](n)(p[α](n)).
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For the second identity, we have

qα
L3.0.14

= q[α](n+1)(EPS
ω
[α〈 〉](n+1)(ε)(q[α](n+1)))

= p[α](n)(α(n))

= ε[α](n)(p[α](n)),

where the last equality uses that α(n) = ε[α](n)(p[α](n)) is already shown.

The significance of Theorem 3.0.15 is that it shows how the product of selection func-

tions computes a sequence α that represents, in some sense, a sequential equilibrium

between the selection functions up to the point ωα. This kind of equilibrium appears in

a variety of different contexts, most notably the following.

3.1. Optimal strategies in sequential games

As discussed in (Escardó and Oliva, 2011), the parameters ε, q and ω of EPS naturally

define a sequential game

GX,R = (ε, q, ω)

of type (X,R). We imagine X as a set of possible moves at each round, and R as a set of

possible outcomes. A finite sequence s : X∗ can be thought of as a position in the game

determined by the first |s| moves, while an infinite sequence α : XN can be thought of as

a play of the game. We then make the following associations:

— εs : JRX determines an optimal move at position s given that the outcome of each

possible move X → R is known.
— q : XN → R determines the outcome of each play α.
— ω : XN → N determines the relevant part of a play. A position s is relevant if ωŝ ≥ |s|.

We refer to q and ω as the outcome function and control function, respectively. In

general these games can be thought of as unbounded games in which we only care about

a finite initial segment of any play, as determined by ω. In the context of game theory

Theorem 3.0.15 can be rephrased as the following.

Theorem 3.1.1. The sequence α = EPSω〈〉(ε)(q) is an optimal play in the game GX,R =

(ε, q, ω).

We do not go into details on exactly what constitutes an optimal play, or how Theorem

3.1.1 is proved (for this see (Escardó and Oliva, 2010a)) but the main idea is not difficult

to see. We imagine the function ps defined in Theorem 3.0.15 as giving outcome of playing

x at position s, under the assumption that all subsequent moves are played optimally,

and thus εs(ps) is the best move at position s.

The product of selection functions carries out a backtracking algorithm and eventually

computes a sequence α such that α(n) = ε[α](n)(p[α](n)) for all n ≤ ωα. In other words

α(0) is the best move at position 〈〉, α(1) the best move at position 〈α(0)〉 and more

generally α(n) the best move at position [α](n) for as long as [α](n) is relevant. In this

sense α forms an optimal play of G. We remark that the strategy profile arising from

this notion of optimal play coincides with the Nash equilibrium of a sequential game (see

(Escardó and Oliva, 2012)).
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3.2. The dialectica interpretation of the axiom of choice

Sequential games provide us with perhaps the most illuminating instance of the equilib-

rium computed by the product of selection functions. Remarkably, another instance is

the dialectica interpretation of the axiom of choice.

The functional interpretation of Π0
1-AC is equivalent to

∀ε, q, ω(∀n, pAn(εnp, p(εnp))→ ∃α∀n ≤ ωαAn(αn, qα)).

It challenges us, given a collection of ‘pointwise’ strategies εn that witness the no-

counterexample interpretation of the An, to combine them into a global strategy α that

witnesses the n.c.i. of ∀nAn. It is clear by Theorem 3.0.15 that the product of selection

functions does the job.

Theorem 3.2.1. The functional λε, q, ω.EPSω〈〉(ε)(q) realises the dialectica interpretation

of Π0
1-AC.

Again, we do not go into detail, this time we refer the reader to (Escardó and Oliva,

2010a; Oliva and Powell, 2012). It can be shown more generally that EPS directly wit-

nesses the dialectica interpretation of dependent choice for arbitrary formulas, and that a

finite form of EPS with ω constant directly interprets finite choice or bounded collection.

Moreover, EPS is primitive recursively equivalent to Spector’s bar recursion (Escardó and

Oliva, 2010b), and its finite form is equivalent to primitive recursion over a weak base

theory (Escardó et al., 2011).

The key point we emphasise is that, as a computational analogue of choice, the product

of selection functions is an extremely useful recursion schema to have at our disposal

when it comes to extracting programs from proofs in both arithmetic and analysis. The

fact that it also computes optimal strategies in sequential games means that extracted

programs can be given an intuitive game-theoretic semantics, in the sense that we can

often informally identify the “classical” dialectica interpretation AND of a theorem A

with a partially defined sequential game:

AND ∼ GA,

where a realizer for AND can given in terms of optimal strategies in GA. This gives the

product of selection functions a clear advantage over bar recursion when interpreting

theorems in analysis.

We now extract a program from the formal proof of Ramsey’s theorem described in

Section 2 using the product of selection functions EPS. We apply the product directly,

appealing only to the main Theorem 3.0.15. The other results in this section were men-

tioned simply to provide some motivation as to why the product appears naturally in

proof theory and why it is preferred to the more traditional modes of recursion.

4. A Constructive Proof of Ramsey’s Theorem

Before launching into the full interpretation of the classical proof, it is instructive to look

at the overall structure of our extracted program. Let us first look at the computational
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interpretation of the final part of the classical proof – Theorem 2.0.11. Here we show

that RT2
2(c) follows directly from IPHP given that we have already constructed a min-

monochromatic set. Suppose we have interpreted the lemma IPHP, in other words: for

any ε : B× NN → N and c we can construct x and p satisfying

∀n ≤ εxp(pn ≥ n ∧ c(pn) = x). (8)

Assuming that we have already (ineffectively) produced the min-monochromatic set given

by a, if ca is defined as in Theorem 2.0.11 and we set εaxp = ηx(a ◦ p) (where we recall

that η is a counterexample function for the finitary Ramsey’s theorem as in (1)), then

by (8) there exist xa and pa satisfying

∀n ≤ ηxa(a ◦ pa)(pan ≥ n ∧ ca(pan) = xa).

It is easy to see that our main theorem follows since setting F = a ◦ pa, for k ≤ ηxF we

have

Fk = a(pak) ≥ pak ≥ k
and, given Fi < Fj

c(Fi, F j) = c(a(pai), a(paj)) = ca(pai) = xa.

So what about a? The key observation is that we do not really need to have constructed

the whole of a for the above argument to work, only a finite approximation of a is

necessary. By inspection, provided that a is min-monochromatic up to

ϕa = maxi≤ηxa (a◦pa) p
a(i)

the claim above still holds. Therefore, if in addition we have interpreted the lemma

E/R(c), running it on the counterexample function ϕ gives us a sufficiently large ap-

proximation of the min-monochromatic branch needed for an approximation of Ram-

sey’s theorem on η. Denoting the quantifier-free matrix of the dialectica interpretation

of A ≡ ∃x∀yAD(x; y) as |A|xy , we illustrate this construction, very informally, with the

inference

λa . |IPHP[a]|p
a,xa

εa |E/R(c)|aϕ
|RT2

2(c)|a◦pa,xaη

making clear that the realiser for IPHP is computed relative to the parameter a. In

practise this means that we run our program for E/R(c) once, calling on the interpretation

of IPHP[a] each time we wish to check that a candidate a is suitable.

An entirely analogous procedure is involved, in turn, for interpreting E/R(c) itself.

E/R(c) follows from WKL assuming the existence of a monotone Skolem function β mak-

ing the tree T decidable. Therefore we need to calibrate exactly how much of β is required

in order to successfully run the computational interpretation of WKL. As we will see, this

part is rather more involved. A rough map of our whole construction is given in Figure

2.

By comparison with our proof tree in Section 2 it is clear – as expected – that the

structure of the interpreted proof reflects that of the classical proof.

As mentioned in Remark 2.0.9, generalising our construction to the n-colour case
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L. 4.3.1

λa . |IPHP[a]|p
a,xa

εa

Th. 4.1.4

λβ . |WKL[β]|αβωβ

L. 4.2.2

|Π0
1-AC|βq̃,ω̃

Th. 4.2.3, L. 4.2.4
|E/R(c)|aα,βϕ

Th. 4.3.2
|RT2

2(c)|a◦p
a,xa

η

Figure 2. Interpreted proof of Ramsey’s theorem

becomes non-trivial in the construction of the min-monochromatic branch, as the E/R

tree is no longer binary branching for n > 2 and therefore calibrating how much of β

we require is a little more intricate. Also, in the n-colour case full use of IPHP would be

made. That is explained in Lemma 4.3.1 below.

We now proceed with our formal program extraction. We interpret each of the main

ineffective lemmas IPHP, WKL and Π0
1-AC in turn using the product of selection functions,

and combine these realisers as described above in order to produce an approximation of

Ramsey’s theorem. In Section 5 we discuss the aforementioned link with sequential games,

and give our program a game-theoretic reading.

4.1. Interpreting WKL

The first ineffective step in the proof we examine is the use of weak König’s lemma to

produce the infinite sequence α given a Skolem function β, as in Lemma 2.0.6. We will

show how to witness the no-counterexample interpretation of this lemma. As before, let

T be the Σ0
1-predicate on B∗ defined as

T (s) := ∃k(∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
T ′(s,k)

).

Let us assume we have an ideal Skolem function β satisfying

∀n, k∀s(|s| = n ∧ T ′(s, k)→ T ′(s, βn)). (9)

Because the existence of β is ineffective, we will keep track of exactly when we call on β

by highlighting it with a box . This means that we know how much of β is needed to

construct an approximation of α, so that later we can in turn produce an approximation

to β sufficient for the construction of α.

Recall that we use the abbreviation T β(s) = T ′(s, β(|s|)). The n.c.i. of Lemma 2.0.6 is

as follows

∀ωBN→N∃αT β([α](ωα)). (10)

Therefore, let us show how to witness α as a function of β and ω.

Lemma 4.1.1. Let β be a function satisfying (9). The tree T β has branches of arbitrary

length, i.e. for all n there exists s such that |s| = n and

∃k′∈ [n, βn]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
Tβ(s)

,

Proof. Given n define s as the sequence of length n such that, for i < n, si = 0 if and

only if i ≺ n. We then have T ′(s, n). By (9) with k = n , we can conclude T ′(s, βn).
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Lemma 4.1.2. Let Depthn(T ) ≡ ∃s(|s| = n ∧ T (s)). Let also β be a function satisfying

(9), and ε : JBB be defined as

εsp
B
=

{
0 if Depthp(0)+1(T βs )→ Depthp(0)(T

β
s∗0)

1 otherwise.

Then

∀s, p(Depthp(εsp)+1(T βs )︸ ︷︷ ︸
(i)

→ Depthp(εsp)(T
β
s∗εsp)). (11)

Proof. Fix s and p and assume (i). If

Depthp(0)+1(T βs )→ Depthp(0)(T
β
s∗0)

holds, then εsp = 0 and we are done. If, on the other hand,

Depthp(0)+1(T βs )︸ ︷︷ ︸
(ii)

∧¬Depthp(0)(T
β
s∗0)︸ ︷︷ ︸

(iii)

holds, then εsp = 1. Hence, the assumption (i) implies (iv) Depthp(1)+1(T βs ). Now we

consider two cases:

Case 1: p(0) ≥ p(1). By (ii) and (iii) we have Depthp(0)(T
β
s∗1). Therefore by (M1) we have

∃tBp(1)T ′(s∗1∗t, β(|s|+p(0)+1)), and, with n = |s|+ p(1) + 1 and k = β(|s|+ p(0) + 1) ,

applying (9) we obtain

∃tB
p(1)

T ′(s ∗ 1 ∗ t, β(|s|+ p(1) + 1)) ≡ Depthp(1)(T
β
s∗1).

Case 2: p(0) < p(1). Applying (9) on n = |s|+ p(0) + 1 and k = β(|s|+ p(1) + 1) and

(iii) we obtain

∀tB
p(0)

¬T ′(s ∗ 0 ∗ t, β(|s|+ p(1) + 1)).

By (M1) we have

∀rB
p(1)

¬T ′(s ∗ 0 ∗ r, β(|s|+ p(1) + 1)) ≡ ¬Depthp(1)(T
β
s∗0).

But then by (iv) we obtain Depthp(1)(T
β
s∗1) and we are done.

Remark 4.1.3. By inspecting the above proof we see that to verify that the selection

functions ε satisfy (11) for given s, p it is sufficient that the Skolem function β satisfies

(9) only up to

n = |s|+ max{p(0), p(1)}+ 1 and k = maxi≤nβ(i).

In order to construct a witness for (10) we shall first build a sequence α satisfying

∀k < ωα(Depthωα−k(T β[α](k))→ Depthωα−k−1(T β[α](k+1))). (12)

We will then obtain (10) by a simple induction on k.

Theorem 4.1.4. Let β be a function satisfying (9), and ω : BN → N be given. Define

qωα as ωα−k−1 where k < ωα is the least refuting (12), and 0 if no such k exists. Also,

let ε be as defined in Lemma 4.1.2. The sequence
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α = EPSω〈 〉(ε)(q
ω)

satisfies T β([α](ωα)).

Proof. By Lemma 4.1.2 we have

∀s, p(Depthp(εsp)+1(T βs )→ Depthp(εsp)(T
β
s∗εsp)). (13)

By Theorem 3.0.15 we have that α (as above) and p[α](n) (as defined in Theorem 3.0.15)

are such that, for n ≤ ωα,

αn = ε[α](n)p[α](n)

qωα = p[α](n)(ε[α](n)p[α](n)).

Hence, taking s = [α](ωα− qωα− 1) and p = ps in (13), we obtain

Depthqωα+1(T β[α](ωα−qωα−1))→ Depthqωα(T β[α](ωα−qωα)). (14)

Therefore, by the definition of qω we must have that (12) holds. If not, then there is some

least k < ωα refuting (12), but then (14) is equivalent to

Depthωα−k(T β[α](k))→ Depthωα−k−1(T β[α](k+1)).

Now, by Lemma 4.1.1 we have Depthωα(T β) (i.e. by taking n = ωα and k = ωα in (13).

Hence, by induction on k, from k = 0 to k = ωα − 1, we obtain Depth0(T β[α](ωα)), i.e.

T β([α](ωα)).

Theorem 4.1.4 defines a construction β, ω 7→ αβ,ω that takes a Skolem function β

satisfying (9) and a counterexample function ω and produces an “approximately infinite”

branch α of T β . But the proof above only requires the selection functions ε to satisfy

(13) for the specific s, p outlined, which in turn (Remark 4.1.3) only require β to satisfy

(9) for a finite number of inputs. Thus we obtain:

Corollary 4.1.5. Given β and ω, let α and ps be constructed as in Theorem 4.1.4 and

define

Nβ,ω = max{ωα, |ωα− qωα− 1|+ max{ps(0), ps(1)}+ 1}

Kβ,ω = max{ωα,maxi≤Nβ,ωβ(i)}.

If β is an approximate Skolem function up to n = Nβ,ω and k = Kβ,ω then α (from

Theorem 4.1.4) satisfies T β([α](ωα)).

4.2. Interpreting Π0
1-countable choice

We have described a construction β 7→ α which for each oracle for the Skolem function β

computes an approximation to the infinite binary branch α. In Corollary 4.1.5 we argued

that one only needs an approximation to β in order for our construction to work. We

now show how to compute such an approximation. We first need the following lemma:

Lemma 4.2.1. Let δn : JNN be defined as

δnp = pi(0) (15)



A Constructive Interpretation of Ramsey’s Theorem via the Product of Selection Functions17

where i is the least ≤ 2n such that, for all sB
n

, T ′(s, pi+1(0))→ T ′(s, pi(0)). We have

∀sB
n

(T ′(s, p(δnp))→ T ′(s, δnp)) (16)

for arbitrary n, p.

Proof. Note that (16) holds by definition once we show that such i ≤ 2n must exist.

Assume, for the sake of a contradiction, that

(I) for all i ≤ 2n there exists an sB
n

such that T ′(s, pi+1(0)) and ¬T ′(s, pi(0)).

By monotonicity of T ′ on the second argument, (I) clearly implies that

(II)pi(0) < p(pi(0)), for all 0 ≤ i ≤ 2n.

Since, in (I), we have 2n + 1 possible values for i but only 2n possible values for s,

there must be an s and distinct i and j, say i < i + 1 ≤ j, such that T ′(s, pi+1(0)) and

¬T ′(s, pj(0)). By (II), however, that is a contradiction.

We now show how to construct an arbitrary approximation to the Skolem function β.

The next result can be viewed as the computational analogue of Lemma 2.0.4.

Lemma 4.2.2. Given arbitrary counterexample functionals ω̃, q̃ : NN → N, define

β = EPSω̃〈〉(δ)(q̃)

where δ is defined as in Lemma 4.2.1. Then β satisfies

∀n ≤ ω̃β ∀sB
n

(∃k ≤ q̃β T ′(s, k)→ T ′(s, βn)). (17)

Proof. By the main theorem on EPS and (16) we obtain

∀n ≤ ω̃β ∀sB
n

(T ′(s, q̃β)→ T ′(s, βn)).

By (M2) we have ∀k ≤ q̃β(T ′(s, k)→ T ′(s, q̃β)), therefore (17) follows.

Now that we can construct approximations to β we are able to construct an approxi-

mation to an infinite branch of the Σ0
1 tree T .

Theorem 4.2.3. For all ω : BN × NN → N there exists α and β such that

∀n≤ωαβ ∃k∈ [n, βn]∀i < n(α(i) = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ([α](n))

. (18)

Proof. Let β, ω 7→ αβ,ω denote the construction defined in Theorem 4.1.4. Define

ω̃β = Nβ,ω and q̃β = Kβ,ω

where Nβ,ω and Kβ,ω are defined as in Corollary 4.1.5. Define β = EPSω̃〈〉(δ)(q̃) and

α = αβ,ωβ . We claim that these satisfy (18). By (17) and Corollary 4.1.5 we have

T β([α](ωαβ)). Now suppose that n ≤ ωαβ. Then by (17)

T ′([α](n), β(ωαβ))→ T ′([α](n), βn) ≡ T β([α](n)),

and since by (M1) T β([α](ωαβ))→ T ′([α](n), β(ωαβ)) we are done.
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We are now in a position where we can construct an arbitrarily long min-monochromatic

sequence a, even if the length of the sequence is determined only after we have built a,

as given by ψa, as long as we are allowed to use ψ in the construction of a.

Lemma 4.2.4. For any ψ there exists a function a : N→ N such that for all n ≤ ψa

(n ≤ an) ∧ ∀i, j, k<n(ak < ai ∧ ak < aj → c(ak, ai) = c(ak, aj)). (19)

Proof. First, define a parametrised aα,β as in Lemma 2.0.7:

aα,β0 := 0

aα,β(n+ 1) := µk ∈ [n, β(βn+ 1)] (αk = 0) .
(20)

Then, take (cf. Remark 2.0.8)

ωαβ = maxi≤ψ(aα,β)(max{i, βi+ 1, β(βi+ 1) + 1})
and let α and β be as the Theorem 4.2.3. It is easy, following the same proof as in Lemma

2.0.7, to check that a = aα,β satisfies (19).

Remark 4.2.5. For the n-colour case, the construction of a is more complicated (cf.

Remark 2.0.9) and ω will need to demand a larger approximation to β.

4.3. Final arguments and IPHP

Finally, the last non-constructive step in the proof is the use of the infinite pigeon-hole

principle. Note that we in fact only make use of a particular instance of IPHP, namely

n = 2. Nevertheless, we refer to the general IPHP so it is easier to see how our construction

can be generalised for arbitrarily many colours.

Lemma 4.3.1. We have

∀εB×N
N→N∃xB, pN

N
∀i ≤ εxp(pi ≥ i ∧ c(pi) = x).

Proof. Given εx define

ε̃xp = µi ≤ εxp¬(pi ≥ i ∧ c(pi) = x).

Then let (a0, a1) = (ε̃0 ⊗ ε̃1)(max) and N = max{a0, a1}. By the main theorem on the

product of selection functions we have p0 and p1 such that

a0 = ε̃0p0 a1 = ε̃1p1 N = p0(a0) = p1(a1).

Let x = c(N) and p = px. Clearly, p(ε̃xpx) = pax = pxax = N ≥ ax. Moreover,

c(p(ε̃xpx)) = c(pax) = c(N) = x. Hence, by the definition of ε̃x we must have

∀i ≤ εxp(pi ≥ i ∧ c(pi) = x).

Note that essentially the same proof works for the n-colour case, where we have n selection

functions ε̃0, . . . , ε̃n−1 accounting for each colour, and we take the finite product (ε̃0 ⊗
. . .⊗ ε̃n−1)(max).

The theorem then follows by combining the construction of the min-monochromatic

sequence with an application of IPHP.
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Theorem 4.3.2. Let a colouring c : N2 → B be fixed. For any pair of selection functions

ηx : JNN there exists F : N→ N and x : B (explicitly given in Section 4.4) such that

∀k ≤ ηxF (k ≤ Fk ∧ ∀i, j ≤ k(Fi < Fj → c(Fi, Fj) = x)).

Proof. Assume c : [N]2 → B and η0 : JNN and η1 : JNN are given. For any function a let

ca(i) = c(a(i), a(i+ 1)). Let εaxp = ηx(a ◦ p), with a : N→ N as a parameter. By Lemma

4.3.1 we have that there exists pa and xa such that

∀i<ηxa(a ◦ pa)(pa(i) ≥ i ∧ ca(pa(i)) = xa). (21)

Let ψa = maxi≤pa(ηxa (a◦pa)) p
a(i). By Lemma 4.2.4 there exists an a : N → N such that

for all n ≤ pa(ηxa(a ◦ pa)) we have an ≥ n and

∀i, j, k<n(ak < ai ∧ ak < aj → c(ak, ai) = c(ak, aj)). (22)

Take F = a ◦ pa and x = xa. Therefore, for k ≤ ηxF = ηx(a ◦ pa) we have

— pak ≥ k by (21) which, by the above implies that

Fk = a(pak) ≥ pak ≥ k.

— and, for i, j ≤ k, given that Fi < Fj, we have

x
(21)
= ca(pa(i)) = c(a(pa(i)), a(pa(i+ 1))).

Hence

c(a(pai)︸ ︷︷ ︸
Fi

, a(paj)︸ ︷︷ ︸
Fj

)
(22)
= c(a(pai), a(pa(i) + 1))

(21)
= x.

4.4. Summarising the construction of x and F

From the proof of Theorem 4.3.2 we can read off the construction of F and x which we

summarise here. Recall that the input to our problem is a colouring c : N2 → B and a

pair of selection functions ηx : JNN. Also, recall the abbreviations

T ′(s, k) ≡ ∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′))

T β(s) ≡ T ′(s, β(|s|))

Depthn(T βs ) ≡ ∃t(|t| = n ∧ T β(s ∗ t)).
(A) Construction of x and F given a : NN. First, assume a function a : NN given and

let ca(i) = c(a(i), a(i+ 1)) and εaxp = ηx(a ◦ p). Define

ε̃xp = µi ≤ εaxp¬(pi ≥ i ∧ ca(pi) = x).

Take (k0, k1) = (ε̃0 ⊗ ε̃1)(max) and xa = c(max{k0, k1}) and

pa(k) =

{
ε̃1(λk′.max{k, k′}) if xa = 0

max{k0, k} if xa = 1.

and F a = a ◦ pa.
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(B) Construction of α given β : NN and ω : BN × NN → N. Then, we construct a

sequence αβ,ω : BN parametrised by β : NN and ω : BN × NN → N as follows. Let

qβ,ωα = ωαβ − k − 1,

where k < ωαβ is the least refuting

∀k < ωαβ(Depthωαβ−k(T β[α](k))→ Depthωαβ−k−1(T β[α](k+1))),

and

εβs p
B
=

{
0 if Depthp(0)+1(T βs )→ Depthp(0)(T

β
s∗0)

1 otherwise.

Define

αβ,ω = EPSλα.ωαβ〈 〉 (εβ)(qβ,ω).

(C) Construction of β given ω : BN ×NN → N using (B). Using αβ,ω we construct a

sequence βω : NN parametrised by ω : BN × NN → N only. Let δn : JNN be

δnp = pi(0)

where i is the least ≤ 2n such that, for all sB
n

, T ′(s, pi+1(0))→ T ′(s, pi(0)), and

ω̃β = max{ωαβ,ωβ, |ωαβ,ωβ − qβ,ωαβ,ω − 1|+ max{p(0), p(1)}+ 1}

q̃β = max{ωαβ,ωβ,maxi≤ω̃ββ(i)},
where

p(x) = EPSλα.ωαβs∗x (εβ)(qβ,ωs∗x)

s = [αβ,ω](ωαβ,ωβ − qβ,ωαβ,ω − 1).

Define

βω = EPSω̃〈〉(δ)(q̃).

(D) Construction of ω using (A). We now construct the missing ω as

ωαβ = maxi≤ψ(aα,β)(max{i, βi+ 1, β(βi+ 1) + 1})
where ψa = maxi≤pa(ηxa (a◦pa)) p

a(i), with pa and xa as defined in (A), and

aα,βn =

{
0 if n = 0

µk ∈ [n− 1, β(β(n− 1) + 1)] (αk = 0) if n > 0.

(E) Construction of x and F using (A) – (D). Finally, take β = βω and α = αβ,ω

and a = aα,β , so that x and F are defined as x = xa and F = a ◦ pa.

5. A Game-Theoretic Reading of the Proof

Following the discussion in Section 3, we know that each instance of EPS used in our

finitisation of Ramsey’s theorem corresponds to the computation of an optimal strategy

in a partially defined§ game. We now discuss the specific games corresponding to the

main instances of EPS used in our extracted program, and show how our constructive

proof Ramsey’s theorem can be understood in game-theoretic terms.

§ We call a game G partially defined when not all three parameters ε, q and ω are given, and write the
open parameters in square brackets e.g. G[ε].
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Π0
1 countable choice: GN,N

Π0
1-AC[q̃, ω̃] = (δ, q̃, ω̃) The game central to our interpretation is

that corresponding to our use of countable choice. The selection functions δn defined in

Lemma 4.2.1 implement a ‘no new branches’ strategy, picking a number i = δnp satisfying

∀sB
n

(T ′(s, p(i))→ T ′(s, i))

i.e. there are no branches s of T which have a witness bounded by the outcome p(i) which

is not already bounded by the move i.

For any outcome function q̃ and control function ω̃, an optimal strategy in this case is

a sequence β satisfying, for all n ≤ ω̃β,

∀sB
n

(T ′(s, q̃β)→ T ′(s, βn)).

This means that every move βn in the play β (for n ≤ ω̃β) already bounds a witness

for any branch s of length n which has a witness bounded by the final outcome q̃β.

This optimal strategy is precisely the approximation to a monotone Skolem function we

require.

Weak König’s lemma: GB,NWKL[ω] = (ε, qω, ω) The interpretation of WKL applied to the

decidable tree T β is interpreted by a binary game (where the set of possible moves at

each round is B). The strategy εs at position s defined by the selection functions given

in Lemma 4.1.2 is to pick a boolean b such that if s extends to a branch in T of length

|s|+ p(b) + 1 then s ∗ b also extends to a branch of length |s|+ p(b) + 1.

Given ω, by choosing qω suitably as in Theorem 4.1.4, the optimal strategy of GWKL

determined by these selection functions is a sequence α such that for all k ≤ ωα, whenever

[α](k) extends to a branch of length ωα, so does [α](k+1). If T β is infinite then 〈〉 extends

to a branch of length ωα. Hence, by induction the relevant part [α](ωα) of this optimal

play must be in T β , and is therefore an approximation to an infinite branch.

The infinite pigeonhole principle: GN,NIPHP[ε] = (ε̃,max, 2) The game corresponding to IPHP

is a finite game with two rounds (or n rounds for the n-colour Ramsey’s theorem). The

strategy ε̃ at each round x = 0, 1 is to play the least move i ≤ εxp the outcome p(i) of

which satisfies

p(i) < i ∨ c(p(i)) 6= x.

We compute the optimal play 〈a0, a1〉, and its outcome is the maximumN = max{a0, a1}.
But then, at round x = c(N) we have

px(ax) ≥ ax ∧ c(px(ax)) = x

since px(ax) = N , which implies that the selection function ε̃x must fail to find a suitable

candidate. But since we know that an optimal strategy must exist, the only explanation

is that such a candidate does not exist, or in other words, x, px form an approximation

to the infinite pigeonhole principle.

Following the discussion at the beginning of the section, it is not too hard to visualise

how these games combine to witness the functional interpretation of Ramsey’s theorem.
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We compute an optimal strategy β in the game

GΠ0
1-AC[λβ.Kβ,ω, λβ.Nβ,ω]

where the outcome and control functions involve computing an optimal strategy αβ in

the auxiliary game

GWKL[ωβ ]

on T β . As a result we obtain two optimal strategies β, αβ that combine to form an

approximation aα,β to a min-monochromatic branch.

In addition, the control function ωβ is defined in terms of ϕaα,β , which in turn involves

computing an optimal strategy in a further auxiliary game

GIPHP[λx, p.ηx(aα,β ◦ p)]

where η is our counterexample function for RT2
2(c), in order to produce xa, pa required

to compute ϕa.

Therefore our program can be viewed in terms of the computational of optimal strate-

gies in three symbiotic games: one central game corresponding to Π0
1-AC and two nested

auxiliary games that are run each time we call on the relevant counterexample functions.

The computation as a whole returns an optimal strategy β of GΠ0
1-AC and an opti-

mal strategy αβ of GWKL that combine to form a sequence aα,β , along with pa, xa arising

from optimal strategy in GIPHP. Our realiser for the functional interpretation of Ramsey’s

theorem F = aα,β ◦ paα,β and x = xa
α,β

can therefore be written in terms of optimal

strategies in these three games.
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Escardó, M. H. and Oliva, P. (2010b). Selection functions, bar recursion, and backward induc-

tion. Mathematical Structures in Computer Science, 20(2):127–168.
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