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Abstract

Bounded functional interpretations are variants of functional interpretations where bounds (rather
than precise witnesses) are extracted from proofs. These have been particularly useful in com-
putationally interpreting non-computational principles such as weak König’s lemma. This paper
presents a family of bounded functional interpretations – in the form of a parametrised interpre-
tation – of both intuitionistic logic and (a fragment of) intuitionistic linear logic. We show how
three different instantiations of the parameters give rise to three recently developed bounded in-
terpretations: the bounded functional interpretation, bounded modified realizability and confined
modified realizability.
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1. Introduction

Functional interpretations are proof interpretations where formulas A are viewed as sets S A of
functionals of finite type

A 7→ S A :≡ { f : f ∈ S A}

with provable formulas being interpreted as non-empty sets. They are called “proof interpreta-
tions” because any given proof of A can be effectively turned into a witness to the fact that S A is
not empty. The sets S A are normally described by specifying the input-output behavior of f , i.e.

A 7→ { f : ∀x TA(x; f x)}.

As such, we can think of functional interpretations as mapping formulas A to finite type specifica-
tions TA(x; y). A proof in this case gives a concrete “implementation” of a functional satisfying
this specification. For instance, the statement that a given set P is infinite A ≡ ∀n∃m ≥ nP(m) is
interpreted as the specification

TA(n; m) :≡ (m ≥ n) ∧ P(m)
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so that any proof of A gives rise to a program computing arbitrarily large numbers in the set P.
The most well-known functional interpretations are Gödel’s Dialectica interpretation [8], Kreisel’s
modified realizability [10] and the Diller-Nahm interpretation [2].

Bounded functional interpretations, on the other hand, can be thought of as modifications of
the usual functional interpretations where bounds (rather than precise witnesses) are extracted
from proofs. For instance, in the example given above, rather than specifying a function that
produces arbitrarily large elements in the set P, a bounded functional interpretation of A specifies
a function that, for any given n, computes a bound on the value of an element m ∈ P greater than
n.

Bounded interpretations have been particularly useful for the computational interpretation of
non-computational principles such as weak König’s lemma. Intuitively, non-computable func-
tions might still have computable bounds (cf. [5]). The main challenge in producing a bounded
interpretation is to show how one can work with bounds in a modular way, producing bounds
for conclusions given bounds for the premises. Moreover, one needs a notion of “bound” which
behaves well in all finite types. This is normally taken to be Howard/Bezem’s notion of strong
majorizability [1, 9], which says that a functional f majorizes g (written g ≤∗ f ) if

∀y∀x ≤∗ y(gx ≤∗ f y ∧ f x ≤∗ f y).

Once such notion is in place, we can say that a “bounding witness” to an existential statement
∃xA(x) is a functional b such that ∃x ≤∗ b A(x). Although this is less information than a precise
witness, it might come to our benefit since we then only require bounding witnesses from our
axioms.

In this paper we shall present a family of bounded functional interpretations (in the form of
a parametrised interpretation) of both intuitionistic logic and intuitionistic linear logic. In the
context of intuitionistic logic we show how the bounded functional interpretation [5], bounded
modified realizability [3], and confined modified realizability [7] all arise as particular instances
of our bounded interpretation. The purpose of the bounded interpretation of intuitionistic linear
logic is twofold. First, the finer setting of linear logic allows us to better understand the role of
each of the parameters introduced in the intuitionistic context. But also, we carry out the proof of
soundness for the linear logic interpretation, since in there logical contractions happen in a very
controlled and localised manner. We then show how the soundness for intuitionistic logic can be
obtained via the standard embedding of IL into ILL.

It should be noted that a similar approach has been taken in previous papers of the authors
(cf. [6, 12, 13], in particular [11]) for the standard functional interpretations such as Dialectica
and modified realizability. The challenge in here is to provide an analogous unification in the
realm of bounded variants. The subtlety of these bounded interpretation will be evident in the few
restrictions we must impose to the linear logic setting, hinting that the bounded interpretations are
almost intrinsically a feature of intuitionistic logic.

The paper is structured as follows. In the following section we describe the formal systems
used in the paper. Then, in Section 3 the parametrised bounded interpretation of intuitionistic logic
is presented. In Section 4 we give three instances of the parametrised interpretation and show they
correspond to the bounded functional interpretation, bounded modified realizability and the con-
fined modified realizability. Finally, in Section 5 we analyse the parametrised interpretation via
intuitionistic linear logic, showing that most of the required properties must deal with contrac-
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(id)
A ` A Γ, 0 ` A

Γ ` A
(per)

π{Γ} ` A

Γ ` A ∆, A ` B
(cut)

Γ,∆ ` B

Γ, A, B ` C
(⊗L)

Γ, A ⊗ B ` C

Γ ` A ∆ ` B
(⊗R)

Γ,∆ ` A ⊗ B
Γ ` A ∆, B ` C

(( L)
Γ,∆, A( B ` C

Γ, A ` B
(( R)

Γ ` A( B

Γ, A ` B
(&L)

Γ, A & C ` B

Γ, B ` C
(&L)

Γ, A & B ` C

Γ ` A Γ ` B
(&R)

Γ ` A & B
Γ, A ` C Γ, B ` C

(⊕L)
Γ, A ⊕ B ` C

Γ ` A
(⊕R)

Γ ` A ⊕ B

Γ ` B
(⊕R)

Γ ` A ⊕ B

Table 1: Intuitionistic Linear Logic (connectives)

tion and weakening. Also, the soundness of the parametrised interpretation for intuitionistic logic
ILω is proved via the soundness of the parametrised interpretation for intuitionistic linear logic in
Section 5.3.

2. Preliminaries

In the following we will work with two formal systems ILω and ILLωr . By ILω we denote
intuitionistic logic in all finite types, where the types are inductively define in the usual way: there
is a base type and if ρ and σ are finite types then ρ → σ is a finite type. By ILLωr we refer to
the subsystem of ILLω (intuitionistic linear logic in all finite types, whose formulation is shown in
Tables 1 and 2) with the following restrictions: the &R-rule and the ⊕L-rule are permitted only
when the context Γ is of the form !∆ and all the implications occurring in the consequent formula
C of the rule ⊕L are of the form !A ( B. If ∆ is a sequence of formulas A1, . . . , An then by !∆
we denote the sequence !A1, . . . , !An. The necessity of some technical restrictions is discussed in
Remark 5.6. In particular, as observed by an anonymous referee, the restrictions above determine
the failure of basic properties such as !(A � B) ` C(A) � C(B). Note, however, that ILLωr is
strong enough to capture intuitionistic logic ILω into the linear context, as precised in the following
proposition.

Proposition 2.1. Consider Girard’s translation of ILω into ILLω defined inductively as follows:
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Γ, A[t/x] ` B
(∀L)

Γ,∀xA ` B

Γ ` A
(∀R)

Γ ` ∀xA
Γ, A ` B

(∃L)
Γ,∃xA ` B

Γ ` A[t/x]
(∃R)

Γ ` ∃xA

Γ, !A, !A ` B
(con)

Γ, !A ` B

Γ ` B
(wkn)

Γ, !A ` B

Γ, A ` B
(!L)

Γ, !A ` B

!Γ ` A
(!R)

!Γ `!A

Table 2: Intuitionistic Linear Logic (quantifiers and modality)

P∗ :≡ P, if P atomic, P . ⊥

⊥∗ :≡ 0 (A→ B)∗ :≡ !A∗ ( B∗

(A ∧ B)∗ :≡ A∗& B∗ (∀xA)∗ :≡ ∀xA∗

(A ∨ B)∗ :≡ !A∗ ⊕ !B∗ (∃xA)∗ :≡ ∃x!A∗

The translation is such that, Γ ` A is derivable in ILω if and only if !Γ∗ ` A∗ is derivable in ILLωr .

Proof. It is already known that Γ `ILω A if and only if !Γ∗ `ILLω A∗. The direct implication with
ILLω replaced by ILLωr just requires our attention in the rules &R and ⊕L. We can easily check
that these rules are only applied with contexts of the form !Γ and since the consequents of ⊕L are
of the form C∗, by induction on the complexity of C, it is immediate to check that all implications
there are of the form !C1 ( C2. The inverse implication with ILLω replaced by ILLωr is a particular
case of the original result. �

We will also consider a translation that undoes the previous one:

Definition 2.2. Let A be a linear logic formula in the image of the translation (·)∗. The intuition-
istic translation of A, denoted by Ai, is defined inductively by:

Pi :≡ P, if P atomic, P . 0 (!A)i :≡ Ai

0i :≡ ⊥ (A( B)i :≡ Ai → Bi

(A & B)i :≡ Ai ∧ Bi (∀xA)i :≡ ∀xAi

(A ⊕ B)i :≡ Ai ∨ Bi (∃xA)i :≡ ∃xAi.

The forgetful translation (·)i reverses the translation (·)∗ in the following sense:

Proposition 2.3. A ≡ (A∗)i, where ≡ denotes syntactic equality.

Proof. The proof follows immediately by induction on the complexity of the formula A. �
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3. Parametrised Bounded Interpretation of Intuitionistic Logic

In this section we present a parametrised functional interpretation of ILω that intends to capture
and generalise the constructions behind the known bounded interpretations. The parameters of the
interpretation will be assumed to satisfy certain conditions in order to ensure the soundness of the
interpretation. In Section 4 we show how some instantiations of those parameters gives rise to
three different bounded functional interpretations.

3.1. Parametrised verifying system ILω∈
While in the system under interpretation ILω we just consider one single type structure Xω, in

the verifying system (denoted by ILω∈ ) we assume two finite type structuresXω and Sω. Intuitively,
objects in Sω can be thought as subsets of (or bounds on) objects in Xω. As such, the term
language of ILω∈ has two sets of variables of type ρ, one ranging over Xρ and the other ranging
over Sρ. When we write xρ, yρ, zρ, . . . it will be clear from the context if the variables take values
inXρ or Sρ. Similarly by tρ, qρ, . . .we denote terms inXρ or Sρ. When not clear from the context,
we specify if the constants, the variables and more generally the terms of type ρ are intended to
be interpreted in one structure or another by shortly saying that they are in Xρ or Sρ (or with the
same meaning, that they are of type ρ in Xω or Sω). The first letters of the alphabet a, b, c, . . . are
usually reserved for (variables or terms in) the latter structure.

We assume that ILω∈ has a constant in X0, has functionals mρ→ρ→ρ, nρ→ρ, uρ→ρ→ρ, v(τ→ρ)→τ→ρ

(for each types ρ and τ) in Sω and relations neρ, ∈ρ and ⊆ρ being the first a unary relation in
Sρ and the second and the third binary relations infixing between a term of Xρ and a term of Sρ

and between two terms of Sρ respectively. For the sake of intuition, it will be useful to have the
following reading of these functionals and relations

Functionals Intuition Relations Intuition

nρ→ρ(a) superset of a neρ(a) set a is non-empty
mρ→ρ→ρ pointwise maximum x ∈ρ a x belongs to a

uρ→ρ→ρ union of two sets a ⊆ρ b a is a subset of b

v(τ→ρ)→τ→ρ flattening of a set of sets

although the axioms we shall add on the constants and relations will not enforce this intuitive
meaning.

The terms of ILω∈ consist of two families of terms TXω and TSω . The terms in TXω are: the
constants (including the typed combinators Πσ→τ→σ and Σ(ρ→σ→τ)→(ρ→σ)→ρ→τ), the infinitely
many variables of each type in Xω and if tσ→τ and sσ are terms then the application of t to s, t(s),
is a term of type τ. Sometimes we omit the brackets writing just ts. We assume that A[Πxy/w]↔
A[x/w] and A[Σxyz/w] ↔ A[xz(yz)/w]. By combinatorial completeness, we know that we can
associate to each term tσ and variable xτ a term λx.t of type τ → σ that satisfy A[(λx.t)(s)/w] ↔
A[t[s/x]/w]. So, alternatively (when useful) we can use the usual λ-term notation. The terms in
the structure Sω, whose set we denote by TSω , are defined precisely in the same way starting with
constants (including the typed combinators Π and Σ) and variables in Sω. The formulas of ILω∈ are
the atomic formulas P(t1, . . . , tn) with ti a term of TXω

⋃
TSω (⊥ is an atomic formula) and if A

and B are formulas then A ∧ B, A ∨ B, A → B, ∀xA and ∃xA are also formulas. The rules of ILω∈
are the usual intuitionistic logic rules. In ILω∈ we will use the following abbreviations
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∃z ∈ aA(z) ≡ ∃z(z ∈ a ∧ A(z)) ∀z ∈ aA(z) ≡ ∀z(z ∈ a→ A(z))

∃y ⊆ aA(y) ≡ ∃y(y ⊆ a ∧ A(y)) ∀y ⊆ aA(y) ≡ ∀y(y ⊆ a→ A(y))

∃̃yA(y) ≡ ∃y(ne(y) ∧ A(y)) ∀̃yA(y) ≡ ∀y(ne(y)→ A(y)).

The abbreviations concerning tuples of variables are also the usual ones, e.g. for y ≡ y0, . . . , yn

and a ≡ a0, . . . , an, ∀y ⊆ aA(y) denotes ∀y0 ⊆ a0 . . .∀yn ⊆ anA(y0, . . . , yn). Instead of writing
ne(a), sometimes we say, with the same meaning, that the element a in Sω is non-empty.

We will assume that ILω∈ has the following properties, which allows for a sound interpretation
of ILω into ILω∈ . The first group of properties concerns the interpretation of the quantifiers, and the
modularity of the interpretation, meaning that bounds should be composable:

Properties of x ∈ a and ne(a)

(A1) For every closed term t in Xρ there is a closed term t̃ in Sρ such that t ∈ t̃

(A2) f ∈ g ∧ x ∈ y→ f x ∈ gy

(A3) x ∈ a→ ne(a)

(A4) ne(Π) ∧ ne(Σ)

(A5) ne( f ) ∧ ne(x)→ ne( f x).

The second block of properties stipulates that the functional m(a, b) is a kind of pointwise maxi-
mum between two bounds (sets). This operation must preserve both the membership relation and
the subset relation. As we will see the functional m( f , g) is only required for the interpretation of
disjunction, in order to deal with the implicit contraction that occurs in the rule ⊕L.

Properties of m(a, b)

(B1) A[m( f , g)(x)/w]↔ A[m( f x, gx)/w]

(B2) ne(g) ∧ y ⊆ f → y ⊆ m( f , g) ∧ y ⊆ m(g, f )

(B3) ne(g) ∧ x ∈ f → x ∈ m( f , g) ∧ x ∈ m(g, f )

(B4) ne(m).

Finally, the third block of properties deals with the non-linear part of the logic, namely, the rules
for !A (see proof of Theorem 5.5). Although in the soundness in intuitionistic logic these prop-
erties would be used in verifying several rules, in linear logic each constant deals precisely with
a particular rule: (C) deals with the contraction rule, (D) is necessary for the !R-rule (promotion)
and (E) is used in the !L-rule (dereliction). The weakening rule is dealt by the assumption that
each type is inhabited.

Properties of a ⊆ b, u, v and n

(C) ne(y) ∧ z ⊆ x→ z ⊆ u(x, y) ∧ z ⊆ u(y, x)

(D) ne( f ) ∧ x ⊆ y ∧ z ⊆ f (x)→ z ⊆ v( f , y)
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(E) ne(x)→ x ⊆ n(x)

(F) ne(n) ∧ ne(u) ∧ ne(v).

Remark 3.1. Note that when unifying the more traditional interpretations, the ones that provide
precise witnesses instead of bounds [6, 11], the terms u, n and v may depend on the formula A,
considering that they are bounds for ∀y ⊆ (·)A(y). Since we are going to deal with interpretations
that disregard precise witnesses just caring for bounds we no longer need that dependency on A,
being enough the properties over the relation ⊆ presented above.

3.2. Parametrised bounded functional interpretation

In the next definition, for every formula A of ILω we introduce its parametrised interpretation
|A|xy . The interpretation is presented in a kind of (two-player one-move) sequential game notation,
where the variables x are the witnessing variables and y the challenge variables. First Eloise
makes a move x, then Abelard plays y. If |A|xy is true Eloise wins the game, whereas if it is false
Abelard is the winner.

Definition 3.2 (Parametrised bounded interpretation of ILω). The interpretation of atomic for-
mulas are the atomic formulas themselves. We extend the interpretation to all formulas of ILω as
follows. Assuming we have already defined |A|xy and |B|vw, we define

|A ∧ B|x,vy,w :≡ |A|xy ∧ |B|
v
w

|A ∨ B|x,vy,w :≡ ∀̃y′ ⊆ y|A|xy′ ∨ ∀̃w′ ⊆ w|B|vw′

|A→ B| f ,gx,w :≡ ∀̃y ⊆ f xw|A|xy → |B|
gx
w

|∀zA(z)| fy,a :≡ ∀z∈a |A(z)| fa
y

|∃zA(z)|x,ab :≡ ∃z∈a ∀̃y ⊆ b|A(z)|xy .

As noticed by an anonymous referee, this parametrised bounded interpretation is a kind of
“least common multiple” of the bounded modified realizability, bounded functional interpretation
and confined modified realizability (see Section 4), having all the features that characterise these
interpretations. This explains why in Section 4 we are able to unify these bounded interpretations
via the paramerised interpretation above.

In that section, we consider some instantiations where the subset relation x ⊆ y is independent
of y. In such cases we assume that we systematically omit the variable y from the interpretation.
The same could apply to the relation z∈a.

Let us briefly comment on the game theoretic intuition behind the interpretation above. The
game A ∧ B simply consists of playing both games A and B simultaneously, where Eloise first
makes a move in both games (x in game A and v in game B), followed by Abelard’s move in both
games (y in game A and w in game B). Eloise wins the combined game if she wins both individual
games. In the case of the game A∨B, again Eloise makes a move in both games, but now Abelard
has the advantage of choosing a set of moves y for the game A, and a set of moves w for the games
B. Abelard wins A ∨ B if he has a wining move for A and a winning move for B in the two sets
he has chosen. Note that out of the sets Abelard chooses, only the “good” moves are considered,
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i.e. moves a which satisfy ne(a). Intuitively, this is required because Eloise’s move might be a
functional, which makes use of Abelard’s move. With this restriction, Eloise can be sure that only
good moves are played, and she can make use of this. The game A→ B is a bit more subtle, as this
consists of playing game B relative to (the oracle) game A. The game essentially consists of four
moves, which can be reduced to two by Skolemisation. More precisely, Abelard starts by playing
x in game A. This is followed by Eloise’s move gx in game B, the index showing the dependency
of Eloise’s move on Abelard’s first move. On the third round, Abelard play w in game B. Finally,
Eloise plays a sets of moves f x,w in the “oracle” game A. Eloise’s goal is either to win game B,
or come up with a set of moves f x,w containing a move that beats Abelard’s move x in A. The
quantifier games ∃zA(z) and ∀zA(z) are generalisations of the connective games A ∨ B and A ∧ B.
The main difference is that in ∃zA(z) Eloise chooses a particular subsets a of the possible games,
and she must win one of the games she chose. Dually, in the game ∀zA(z) Abelard first chooses a
set of games a he wants to play, then Eloise makes her uniform move f a, followed by Abelard’s
move y. Again, by Skolemisation this can be reduced to two rounds. The interpretation above is
sound, in the sense that if A is provable in intuitionistic logic then Eloise has a winning move in
the game A, as the following theorem states:

Theorem 3.3 (Soundness). Let A0, . . . , An, B be formulas of ILω, with z as the only free-variables.
If

A0(z), . . . , An(z) ` B(z)

is provable in ILω then there are non-empty closed terms a0, . . . , an, b in Sω such that

∆, ∀̃y0 ⊆ a0x0 . . . xnwa|A0(z)|x0
y0
, . . . , ∀̃yn ⊆ anx0 . . . xnwa|An(z)|xn

yn
` |B(z)|bx0...xn a

w

with ∆ :≡ ne(x0), . . . , ne(xn), ne(w), z ∈ a

is provable in ILω∈ .

Proof. We postpone the proof of this theorem to Section 5 where a more general proof in the
context of intuitionistic linear logic is presented. �

4. Instantiations

In this section we show how the three bounded interpretations of ILω (bounded functional
interpretation [4, 5], bounded modified realizability [3], and confined modified realizability [7])
can be obtained by instantiating the parametrised bounded interpretation in a suitable way.

4.1. Bounded modified realizability

Consider the general framework of [3] where the bounded modified realizability was intro-
duced. More precisely, Tω is an extension of ILω∈ with two binary relation symbols =0 and ≤0
(infixing between terms of type 0) and two constants, one of type 0 and another, denoted by m, of
type 0→ 0→ 0. Tω has the usual axioms for equality on type 0, the usual axioms for the combi-
nators and the four axioms below asserting the reflexivity and transitivity of ≤0 and its interaction
with m:
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(P1) x ≤0 x

(P2) x ≤0 y ∧ y ≤0 z→ x ≤0 z

(P3) x ≤0 m(x, y) ∧ y ≤0 m(x, y)

(P4) x ≤0 x′ ∧ y ≤0 y′ → m(x, y) ≤0 m(x′, y′).

Following [3], define Bezem’s majorizability relation ≤∗ρ inductively as:

x ≤∗0 y :≡ x ≤0 y

x ≤∗ρ→σ y :≡ ∀uρ, vρ(u ≤∗ρ v→ xu ≤∗σ yv ∧ yu ≤∗σ yv)

and the functionals mρ of type ρ→ ρ→ ρ as:

m0(n,m) :≡ m(n,m)

mρ→σ(x, y) :≡ λuρ.mσ(xu, yu).

Lemma 4.1. ≤∗ρ and mρ satisfy:

• x ≤∗ y→ y ≤∗ y

• x ≤∗ y ∧ y ≤∗ z→ x ≤∗ z

• x ≤∗ x ∧ y ≤∗ y→ x ≤∗ m(x, y) ∧ y ≤∗ m(x, y)

• mρ ≤
∗ mρ, Π ≤∗ Π and Σ ≤∗ Σ.

We also assume that Tω is such that for every closed term tρ there is another closed term qρ

such that Tω ` t ≤∗ q. We instantiate the framework of the parametrised interpretation in the
following way:

m(a, b) :≡ m(a, b)

ne(a) :≡ a ≤∗ a

x ∈ a :≡ x ≤∗ a

a ⊆ b :≡ true

and u, n, v as non-empty arbitrary functionals. As a ⊆ b is independent of b we assume the
variable b will be systematically omitted. We are considering that the two structures in all finite
types in ILω∈ are in fact the same. From the above, very easily we can check that all the properties
of ILω∈ are satisfied. So this first instantiation is an example of a sound interpretation of ILω into
ILω∈ .

In the next result we prove that this first instantiation corresponds to bounded modified re-
alizability. Remember that bounded modified realizability, introduced in [3], associates to each
formula A of ILω a formula Abr(a) in the following way:

Pbr() :≡ P (for P atomic).
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If we have already interpretations for A and B given by Abr(a) and Bbr(b) respectively then, we
define:

(A ∧ B)br(a, b) :≡ Abr(a) ∧ Bbr(b)

(A ∨ B)br(a, b) :≡ Abr(a) ∨ Bbr(b)

(A→ B)br( f ) :≡ ∀̃a(Abr(a)→ Bbr( f a))

((∀zA(z))br( f ) :≡ ∀̃a∀z ≤∗ a(A(z))br( fa)

(∃zA(z))br(a, b) :≡ ∃z ≤∗ b(A(z))br(a).

where ∀̃aA(a) abbreviates ∀a(a ≤∗ a → A(a)) and ∀z ≤∗ aA(z) and ∃z ≤∗ aA(z) are equivalent to
∀z(z ≤∗ a→ A(z)) and ∃z(z ≤∗ a ∧ A(z)) respectively.

Proposition 4.2. `Tω Abr(a)↔ ∀̃b|A|ab.

Proof. The proof is done by induction on the complexity of the formula A. When dealing with
quantifications of the form ∀̃ (for instance in ∀̃x(A∧ B)→ ∀̃xA∧ B, with x not free in B) we may
use the fact that every type in Sω is inhabited at least by a non-empty element. For A an atomic
formula the result is trivial. The composite cases are treated below:
Conjunction.

(A ∧ B)br(a, b) ≡ Abr(a) ∧ Bbr(b)
I.H.
↔ ∀̃u|A|au ∧ ∀̃v|B|bv
↔ ∀̃u∀̃v(|A|au ∧ |B|

b
v ) ≡ ∀̃u∀̃v|A ∧ B|a,bu,v .

Disjunction.

(A ∨ B)br(a, b) ≡ Abr(a) ∨ Bbr(b)
I.H.
↔ ∀̃u|A|au ∨ ∀̃v|B|bv ↔ |A ∨ B|a,b.

Implication.

(A→ B)br( f ) ≡ ∀̃a(Abr(a)→ Bbr( f a))
I.H.
↔ ∀̃a(∀̃u|A|au → ∀̃v|B| f a

v )

↔ ∀̃a∀̃v(∀̃u|A|au → |B|
f a
v ) ↔ ∀̃a∀̃v|A→ B| fa,v.

Universal quantification.

(∀zA(z))br( f ) ≡ ∀̃a∀z ≤∗ a(A(z))br( fa)
I.H.
↔ ∀̃a∀z ≤∗ a∀̃u|A(z)| fa

u

↔ ∀̃u∀̃a∀z ≤∗ a|A(z)| fa
u ↔ ∀̃u∀̃a|∀zA(z)| fu,a.

Existential quantification.
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(∃zA(z))br(a, b) ≡ ∃z ≤∗ b(A(z))br(a)
I.H.
↔ ∃z ≤∗ b∀̃u|A(z)|au ↔ |∃zA(z)|a,b.

That concludes the proof. �

The notation ≤0 and m is inspired by the “less than or equal to” relation and the “maximum
of two numbers” when we consider N as the base type. Note however that the previous way of
obtaining a sound interpretation of ILω into ILω∈ is quite general. Any pair of a binary relation
r⊆ 0×0 on type 0 and a functional of type f : 0→ 0→ 0 satisfying the four axioms (P1), . . . , (P4)
in the beginning of the section and extended to all finite types in the same inductive way:

x r0 y :≡ x r y

x rρ→σ y :≡ ∀uρ, vρ(u rρ v→ xu rσ yv ∧ yu rσ yv)

and

f0(n,m) :≡ f(n,m)

fρ→σ(x, y) :≡ λuρ.fσ(xu, yu)

gives rise, in a similar manner, to a sound interpretation. Moreover, the assumption that for every
closed term t there exists a closed term q such that Tω ` t r q is just needed if the theory has
constants other than the one of type 0, Π, Σ and f. The result for c0 follows immediately by
the reflexivity on the base type and we also have Π r Π, Σ r Σ and f r f for free by the defining
axiomatization of these constants.

The concrete example presented next, in the framework of Heyting arithmetic in all finite
types, illustrates precisely a situation in which the relation and the constant used in the instanti-
ation of the parametrised interpretation are not “less than or equal to” nor the “maximum of two
numbers”.

4.1.1. Bounding witnesses as multiples
In the framework of the natural numbers, where we take the basic type 0 to be N, we define

the binary relation “n divides m” by:

n |m :≡ ∃z(m = n · z)

where the symbol · (usually omitted) stands for multiplication of natural numbers in infixed nota-
tion and can be seen in all finite types as a constant of type N→ N→ N.

The following properties, that correspond to the previous (P1), (P2), (P3) and (P4) when
considering the relation “divides” and the constant “multiplication”, can trivially be checked:

x | x

x | y ∧ y | z→ x | z

x | xy ∧ y | xy

x | x′ ∧ y | y′ → xy | x′y′.
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So, from what we pointed before, extending the relation x | y and the function n · m to all finite
types in the standard hereditary way 1:

x |0 y :≡ x | y

x |ρ→σ y :≡ ∀uρ, vρ(u |ρ v→ xu |σ yv ∧ yu |σ yv)

and

n·0m :≡ nm

x ·ρ→σ y :≡ λuρ.(xu ·σ yu),

and proving that the constants successor S and recursor R verify S | t and R | q for certain closed
terms t and q, automatically we get a sound interpretation via the instantiation:

m(x, y) :≡ x · y

ne(a) :≡ a | a

x ∈ a :≡ x | a

a ⊆ b :≡ true

u, n, v :≡ arbitrary non-empty functionals.

Note that instead of upper bounds for the precise witnesses, in this interpretation the “bound-
ing witnesses” are multiples of the precise witnesses. It just remains to prove that successor and
recursor can be “bounded” under the relation x | y. Although 0, with 0N :≡ 0 and 0ρ→σ :≡ λuρ.0σ,
is always a bound, the existence of non-trivial multiples for successor and recursor can be ob-
tained adapting Bezem’s argument in [1] when dealing with strong majorizability, to the case of
divisibility in all finite types. First we establish some notation and auxiliary results. Given α a
functional of type N→ σ, we denote by α∗ the functional of the same type defined by:

α∗(n) :≡

 0σ if n = 0
α(n)α(n − 1) · · ·α(0) if n , 0,

where α(n)α(n − 1) · · ·α(0) is an abbreviation for several applications of multiplication.

Lemma 4.3. Being α and β functionals of type N→ σ, we have the following:

(a) ∀n(α(n) | β(n))⇒ α | β∗

(b) ∀n(α(n) | β(n))⇒ α∗ | β∗.

Proof. (a) Without loss of generality assume that σ is the type σ1 → · · · → σk → N. Take n | n′,
h1 | h′1, . . ., hk | h′k. We want to prove that

αnh1 . . . hk | β
∗n′h′1 . . . h

′
k and β∗nh1 . . . hk | β

∗n′h′1 . . . h
′
k.

1This was first suggested by Ulrich Kohlenbach (personal communication).
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Note that we are using the following fact: t |ρ q↔ ∀u∀v(u | v→ tu |0 qv∧ qu |0 qv), easily derived
by unfolding the recursive definition of |ρ .

If n′ = 0, both assertions are trivial because, by the definition of β∗, we have β∗n′h′1 . . . h
′
k =

0N. If n′ , 0, and since n | n′, we know that n ≤ n′ and n , 0. By hypothesis αn | βn and since
hi | h′i , we have αnh1 . . . hk | βnh′1 . . . h

′
k. Applying (P2) and (P3) several times, we can deduce that

βnh′1 . . . h
′
k | (βn′h′1 . . . h

′
k) · · · (βnh′1 . . . h

′
k) · · · (β0h′1 . . . h

′
k).

Therefore, by transitivity we get

αnh1 . . . hk | (βn′h′1 . . . h
′
k) · · · (βnh′1 . . . h

′
k) · · · (β0h′1 . . . h

′
k).

Since, by definition, β∗n′h′1 . . . h
′
k = (βn′h′1 . . . h

′
k) · · · (βnh′1 . . . h

′
k) · · · (β0h′1 . . . h

′
k), we proved the

first assertion. The second assertion follows in a similar way from the observation that, by defini-
tion, β∗nh′1 . . . h

′
k = (βnh′1 . . . h

′
k) · · · (β0h′1 . . . h

′
k).

(b) Following the proof of (a) we just have to replace the assertion αnh1 . . . hk | β
∗n′h′1 . . . h

′
k by a

proof of α∗nh1 . . . hk | β
∗n′h′1 . . . h

′
k. The case n′ = 0, as we saw before, is trivial. For n′ , 0, again

using the fact that n ≤ n′ and n , 0, we have

α∗nh1 . . . hk = (αnh1 . . . hk) · · · (α0h1 . . . hk) and

β∗n′h′1 . . . h
′
k = (βn′h′1 . . . h

′
k) · · · (βnh′1 . . . h

′
k) · · · (β0h′1 . . . h

′
k).

From our hypothesis, we know that for all 0 ≤ i ≤ n, αih1 . . . hk | βih′1 . . . h
′
k. Therefore, applying

(P4) several times we get

(αnh1 . . . hk) · · · (α0h1 . . . hk) | (βnh′1 . . . h
′
k) · · · (β0h′1 . . . h

′
k).

Finally, by (P2) and (P3), we conclude that α∗nh1 . . . hk | β
∗n′h′1 . . . h

′
k. �

We are now able to present non-trivial “bounds” for the constants successor and recursor.

Proposition 4.4. Following the notation above, we have:

(a) S | S ∗

(b) R | λ f , g.(R f g)∗.

Proof. (a) By reflexivity of the relation n |m on the base type, we know that for every integer n,
S n | S n. Thus, by Lemma 4.3 (a), we conclude that S | S ∗.

(b) First we prove, by induction on n, that

(+) ∀n, f , g( f | f ′ ∧ g | g′ → R f gn | R f ′g′n).

The case n = 0 follows immediately from g | g′. For the induction step, assuming the result valid
for n, we have to prove that

∀ f , g( f | f ′ ∧ g | g′ → R f g(n + 1) | R f ′g′(n + 1)),
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which, by the way the recursor is defined, has conclusion f n(R f gn) | f ′n(R f ′g′n). This conclusion
can be obtained by applying the induction hypothesis and the fact that f | f ′ and n | n. From the
assertion (+), we deduce, using Lemma 4.3 that

∀ f , g( f | f ′ ∧ g | g′ → R f g | (R f ′g′)∗ ∧ (R f g)∗ | (R f ′g′)∗).

Therefore, R | λ f , g.(R f g)∗. �

Instead of considering the integers as our base type, we can also work with a general commu-
tative monoid (A, ·). In this context, the binary relation defined by:

x | y :≡ ∃z∈A (y = x · z)

still satisfies the four properties (P1), . . . , (P4). Therefore, extending x | y and x ·y to all finite types
in the usual hereditary way, we get a sound interpretation via the instantiation already presented.
This allow us to work with, for instance, the framework of the m × n matrices in N with the sum
operation, or bounded semilattices. In such cases, one would have to verify whether the usual
operators in each particular framework could be majorized in the general setting.

4.2. Bounded functional interpretation

Consider now the framework of [4], which we also denote by Tω, that is pretty similar to the
previous one except for the use of the intensional relation Eρ, for each type ρ. The relation Eρ is
defined inductively by two axioms and a rule:

M1: x E0 y↔ x ≤0 y

M2: x Eρ→σ y→ ∀u Eρ v(xu Eσ yv ∧ yu Eσ yv)

Ab ∧ u E v→ su E tv ∧ tu E tv

Ab → s E t

where ∀u E vA and ∃u E vA are equivalent to ∀u(u E v → A) and ∃u(u E v ∧ A) respectively
and are called bounded quantifiers, Ab is a bounded formula (i.e. all quantifiers are bounded) and
u and v are variables that do not occur free in the conclusion of the rule. We also assume that Tω

is such that for every closed term tρ there is another closed term qρ such that Tω ` t E q.

Lemma 4.5. From [4], we already know that:

• x E y→ y E y

• x E y ∧ y E z→ x E z

• x E x ∧ y E y→ x E m(x, y) ∧ y E m(x, y)

• mρ E mρ, Π E Π and Σ E Σ.

Our second instantiation of the parametrised functional interpretation is the following one:
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ne(a) :≡ a E a u :≡ m :≡ m

x ∈ a :≡ x E a n :≡ λx.x

a ⊆ b :≡ a E b v :≡ λx, y.xy.

We are again considering that the two structures in all finite types in ILω∈ are the same. From the
above properties proved in [4], we can see very easily that all the conditions imposed over the
parameters of our bounded functional interpretation are verified, thus we obtain our second sound
interpretation of ILω into ILω∈ .

In order to prove that this interpretation corresponds exactly to the well-known bounded func-
tional interpretation (cf. [4]) we start by remembering its assignment of formulas. The bounded
functional interpretation associates to each formula A of ILω a formula Ab(a; b) in the following
way:

Pb(;) :≡ P (for P atomic).

If we have already interpretations for A and B given by Ab(b; c) and Bb(d; e) respectively then,
we define:

(A ∧ B)b(b, d; c, e) :≡ Ab(b; c) ∧ Bb(d; e)

(A ∨ B)b(b, d; c, e) :≡ ∀̃c′ E cAb(b; c′) ∨ ∀̃e′ E eBb(d; e′)

(A→ B)b( f , g; b, e) :≡ ∀̃c E f beAb(b; c)→ Bb(gb; e)

(∀zA)b( f ; c, a) :≡ ∀z E aAb( fa; c)

(∃zA)b(b, a; c) :≡ ∃z E a∀̃c′ E cAb(b; c′).

where ∀̃aA abbreviates ∀a(a E a→ A).

Proposition 4.6. `Tω Ab(a; b)↔ |A|ab.

Proof. The proof is done by induction on the logic structure of A, being all the cases completely
straightforward. �

A remark similar to the one concerning the generality of the instantiation presented in the
previous section, can also be made concerning this second instantiation. Starting with a binary
relation of type 0 and a constant of type 0 → 0 → 0 that satisfy the axioms (P1), . . . , (P4)
and defining their extensions to all finite types in the same hereditary way, the corresponding
instantiation gives rise to a sound interpretation.

As noticed by an anonymous referee, the result still holds when, instead of the axiom and the
rule in M2, we have the axiom with → replaced by ↔. In this case, instead of the intensional
Eρ we would produce Bezem’s majorizability relation ≤∗ρ already described. The reason why in
the bounded functional interpretation one works with the rule instead of the corresponding axiom
is because the majorizability relation occurs in the interpreted system and the axiom can not be
interpreted. In our case we are free to choose the rule or the axiom because the majorizability
relation only occurs in the verifying system.
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4.3. Confined modified realizability

To present our third instantiation, consider a theory that incorporates the framework where
confined modified realizability was introduced (cf. [7]). In particular, we have a constant c0 of
base type, relation symbols =0, ≤0 defined as in the first example and functionals mi and ma of
type 0→ (0→ 0) satisfying:

x ≤0 ma(x, y) ∧ y ≤0 ma(x, y)

x ≤0 x′ ∧ y ≤0 y′ → ma(x, y) ≤0 ma(x′, y′)

mi(x, y) ≤0 x ∧mi(x, y) ≤0 y

x ≤0 x′ ∧ y ≤0 y′ → mi(x, y) ≤0 mi(x′, y′).

In this environment we can define, by induction on the types, the functionals miρ and maρ of type
ρ→ (ρ→ ρ) as follows:

mi0(n,m) :≡ mi(n,m) ma0(n,m) :≡ ma(n,m)

miρ→σ(x, y) :≡ λuρ.miσ(xu, yu) maρ→σ(x, y) :≡ λuρ.maσ(xu, yu).

Consider now a theory Tω
∈∗

with a richer language (intended to extend ILω∈ ). In addition to the
language in all finite types already described, it has for each type ρ a second type, we also call ρ,
of functionals [·; ·]ρ of elements of the first type ρ. We define the terms in the second structure by:

Π ≡ [Π; Π]

Σ ≡ [Σ; Σ]

[s; t]ρ→σ[x; y]ρ ≡ [sx; ty]σ.

From the above we can derive λ[x; y]ρ.[t; q]σ ≡ [λx.t; λy.q]ρ→σ.
The quantifications over the second structure have the form ∀[x; y] and ∃[x; y] and we can

define, by induction on the types, the relation ∈∗ρ between a term of type ρ of the first structure and
a term of type ρ of the second by:

x ∈∗0 [a; b] :≡ a ≤0 x ∧ x ≤0 b

x ∈∗ρ→σ [a; b] :≡ ∀[c; d]ρ∀yρ(y ∈∗ρ [c; d]→ xy ∈∗σ [ac; bd] ∧ ay ∈∗σ [ac; bd] ∧ by ∈∗σ [ac; bd]).

Consider that Tω
∈∗

is a confined theory, i.e. for every constant cρ of the first structure there is a
closed term [t; q]ρ of the second such that Tω

∈∗
` c ∈∗ [t; q]. Tω

∈∗
can be seen as ILω∈ when we define

ne, ∈, ⊆ and m as

ne([x; y]) :≡ x ∈∗ [x; y] ∧ y ∈∗ [x; y]

z ∈ [x; y] :≡ z ∈∗ [x; y]

[x; y] ⊆ [w; v] :≡ true

m :≡ [mi; ma]

and u, n, v as non-empty arbitrary functionals.
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Lemma 4.7. The following is provable in Tω
∈∗

• x ∈∗ [a; b]→ (a ∈∗ [a; b] ∧ b ∈∗ [a; b])

• Π ∈∗ [Π; Π] ∧ Σ ∈∗ [Σ; Σ]

• x ∈∗ [a; b] ∧ a ∈∗ [c; d] ∧ b ∈∗ [c; d]→ x ∈∗ [c; d]

• a, b ∈∗ [a; b] ∧ c, d ∈∗ [c; d]→ a, b, c, d ∈∗ [mi(a, c); ma(b, d)]

• mi ∈∗ [mi; ma] ∧ma ∈∗ [mi; ma].

Moreover, for every closed term tρ of the first structure there is a closed term [q; r]ρ of the second
such that Tω

∈∗
` t ∈∗ [q; r].

Proof. All assertions follow immediately from the work done in [7]. The ones not explicitly
there can immediately be derived from the corresponding properties concerning ⊆ and using the
fact (also proved in [7]) that [x; y] ⊆ [a; b]↔ x ∈∗ [a; b] ∧ y ∈∗ [a; b]. By ⊆ in this proof we refer
to the relation introduced in [7] and not to the parametrised relation with the same symbol used
throughout this paper. �

Thus, it can easily be checked that all the properties of ILω∈ are satisfied and we have a third
example of a bounded functional interpretation of ILω into ILω∈ . Next we will see that this instan-
tiation corresponds to confined modified realizability. The confined modified realizability assigns
to each formula A of ILω a formula Acr[a; b] according to the following clauses:

Pcr[; ] :≡ P (for P atomic).

If we have already interpretations for A and B given by Acr[a; b] and Bcr[c; d] respectively then,
we define:

(A ∧ B)cr[a, c; b, d] :≡ Acr[a; b] ∧ Bcr[c; d]

(A ∨ B)cr[a, c; b, d] :≡ Acr[a; b] ∨ Bcr[c; d]

(A→ B)cr[ f ; g] :≡ ∀̃[a; b](Acr[a; b]→ Bcr[ f a; gb])

(∀zA)cr[ f ; g] :≡ ∀̃[a; b]∀z∈∗ [a; b]Acr[ fa; gb]

(∃zA)cr[a, c; b, d] :≡ ∃z∈∗ [c; d]Acr[a; b]

where ∀̃[a; b]A abbreviates ∀[a; b](a ∈∗ [a; b] ∧ b ∈∗ [a; b] → A) and ∀z ∈∗ [a; b]A and ∃z ∈∗

[a; b]A are equivalent to ∀z(z ∈∗ [a; b]→ A) and ∃z(z ∈∗ [a; b]∧A) respectively. The tuples [a; b]
should be seen as [a1; b1], . . . , [an; bn].

Proposition 4.8. `Tω
∈∗

Acr[a; b]↔ ∀̃[u; v]|A|[a;b]
[u;v] .

Proof. By induction on the complexity of the formula A. Since the result is immediate for atomic
formulas we study below some of the other cases, assuming the result valid for A and B:
Implication.
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(A→ B)cr[ f ; g] ≡ ∀̃[a; b](Acr[a; b]→ Bcr[ f a; gb])
I.H.
↔ ∀̃[a; b](∀̃[u; v]|A|[a;b]

[u;v] → ∀̃[r; s]|B|[ f a;gb]
[r;s] )

↔ ∀̃[a; b]∀̃[r; s](∀̃[u; v]|A|[a;b]
[u;v] → |B|

[ f a;gb]
[r;s] )

↔ ∀̃[a; b]∀̃[r; s]|A→ B|[ f ;g]
[a;b],[r;s].

Existential quantification.

(∃zA(z))cr[a, c; b, d] ≡ ∃z ∈∗ [c; d](A(z))cr[a; b]
I.H.
↔ ∃z ∈∗ [c; d]∀̃[u; v]|A(z)|[a;b]

[u;v] ↔ |∃zA(z)|[a;b],[c;d].

The other cases are treated similarly. �

The instantiation presented in this section also works with relations and constants hereditarily
derived (in the same way) from any binary relation of type 0 and any two constants of type
0→ 0→ 0 verifying the initial conditions.

5. Parametrised Bounded Interpretation of Linear Logic

In the previous section we presented an unified view of the bounded interpretations through
a parametrised interpretation of ILω. All the study was carried on in intuitionistic logic. In this
section we try to capture the notion of bounded interpretation in the linear logic context. Our goal
is to show how the finer setting of linear logic clarifies the role played by each of the parameters
introduced. The move to a more refined calculus is by no means a novel approach. In [6] and [14]
the same strategy was used to get a better understanding of the differences and similarities of intu-
itionistic interpretations such as Gödel’s Dialectica interpretation, Kreisel’s modified realizability
and the Diller-Nahm interpretation.

5.1. Parametrised verifying system ILLω∈
Since our goal is to obtain a parametrised bounded functional interpretation of ILLωr we are

going to use a structure similar to the one previously presented, but this time in linear logic: in
the system under interpretation ILLωr we assume a single structure Xω in all finite types, whereas
in the verifying system (denoted by ILLω∈ ) we have two structures Xω and Sω as described in the
beginning of Section 3.

Once more, we assume that ILLω∈ has a constant in X0, functionals mρ→ρ→ρ, nρ→ρ, uρ→ρ→ρ,
v(τ→ρ)→τ→ρ (for each types ρ and τ) in Sω and relations neρ, ∈ρ and ⊆ρ with the arity and inter-
action on the structures already described. The terms in each structure Xω and Sω obey the usual
construction we previously mentioned. Remember that the rules in ILLωr have some restrictions
but ILLω∈ has the usual intuitionistic linear logic rules. Also, in ILLω∈ we will use the following
abbreviations

∃z ∈ aA(z) ≡ ∃z(!(z ∈ a) ⊗ A(z)) ∀z ∈ aA(z) ≡ ∀z(!(z ∈ a)( A(z))

∃y ⊆ aA(y) ≡ ∃y(!(y ⊆ a) ⊗ A(y)) ∀y ⊆ aA(y) ≡ ∀y(!(y ⊆ a)( A(y))

∀̃yA(y) ≡ ∀y(!ne(y)( A(y)) ∃̃yA(y) ≡ ∃y(!ne(y) ⊗ A(y)).
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Instead of writing !ne(a), sometimes we say, with the same meaning, that the element a in Sω is
non-empty. Having in view the construction of a sound interpretation, we assume that ILLω∈ has a
linear logic version of the properties described in Section 3.1, namely:

Properties of x ∈ a and ne(a)

(A1) For every closed term t in Xρ there is a closed term t̃ in Sρ such that !(t ∈ t̃)

(A2) !( f ∈ g)⊗ !(x ∈ y) ( !( f x ∈ gy)

(A3) !(x ∈ a) ( !(ne(a))

(A4) !ne(Π)⊗ !ne(Σ)

(A5) !ne( f )⊗ !ne(x) ( !ne( f x)

Properties of m(a, b)

(B1) !A[m( f , g)x/w] � !A[m( f x, gx)/w]

(B2) !ne(g)⊗ !(y ⊆ f ) ( !(y ⊆ m( f , g))⊗ !(y ⊆ m(g, f ))

(B3) !ne(g)⊗ !(x ∈ f ) ( !(x ∈ m( f , g))⊗ !(x ∈ m(g, f ))

(B4) ne(m).

Properties of a ⊆ b, u, v and n

(C) !ne(y)⊗ !(z ⊆ x) ( !(z ⊆ u(x, y))⊗ !(z ⊆ u(y, x))

(D) !ne( f )⊗ !(x ⊆ y)⊗ !(z ⊆ f (x)) ( !(z ⊆ v( f , y))

(E) !ne(x) ( !(x ⊆ n(x))

(F) !ne(n)⊗ !ne(u)⊗ !ne(v).

Note that (A1) together with the fact that there is a constant of type 0 in Xω ensure that any type
in Xω and Sω is inhabited at least by a closed term. Moreover, by (A3), we know that any type in
Sω has a non-empty closed term.

Instead of considering u, v and n as functionals in our theory, we could have adopted a more
general approach. The interpretation would still be sound if we had simply required that for given
terms t, q and s in Sω, there were terms u(t, q), n(t) and v(s, q) in Sω satisfying the universal
closure of conditions (C), (D), (E) and (F). Note that in this way the construction of the new
terms does not need to be uniform in t, q and s. Identical observation can be done concerning
the properties in the intuitionistic setting presented before. We opted in both cases to present a
simpler (not so general) approach since all our three examples fit in this simpler version.

Lemma 5.1. We have the following results:

(a) !ne(λx.x)
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(b) !ne(t) ⊗ !ne(s)( !ne(E[t, s]), where E is a term constructed from t, s and the combinators
Π and Σ via application.

(c) !ne(λy.t[y])( !ne(λx, y.t[y]).

Proof. (a) Since λx.x ≡ ΣΠΠ, by Properties (A4) and (A5) we know that λx.x is non-empty. Let
us prove (b) by induction on the complexity of the term E. If E is the term t or s, it is non-empty by
hypothesis. If E is the term Π or Σ, applying Property (A4) we also know it is non-empty. Suppose
now that E[t, s] is of the form E′[t, s](E′′[t, s]). Immediately by induction hypothesis and Prop-
erty (A5) we have that E is non-empty. (c) follows from (b) noticing that λx, y.t[y] ≡ Π(λy.t[y]). �

Note that in assertion (b) we can have an arbitrary number of non-empty terms in the premise
and assertion (c) is still valid if instead of single variables we allow tuples of variables. We
illustrate the latter with a tuple of two variables.

λx1, x2, y.t[y] ≡ λx1.(Π(λy.t[y]))

≡ Σ(λx1.Π)(λx1.(λy.t[y]))

≡ Σ(ΠΠ)(Π(λy.t[y])).

Lemma 5.2. If t[x] is a term in Xω then there is a closed term t̃ in Sω such that !(λx.t[x] ∈ t̃).
Moreover, if !(x ∈ a) then !(t[x] ∈ t̃(a)).

Proof. From t[x] a term in Xω, we can construct the closed term λx.t[x]. By (A1), there exists a
closed term t̃ such that !(λx.t[x] ∈ t̃). Assuming !(x ∈ a) it follows by (A2) that !(t[x] ∈ t̃(a)). �

5.2. Parametrised bounded functional interpretation

In order to distinguish from the parametrised bounded interpretation in ILω, in the next defi-
nition we use [A]x

y instead of |A|xy to denote the interpretation of the intuitionistic linear formula
A.

Definition 5.3 (Parametrised Bounded Functional Interpretation of ILLωr ). The interpretation
of atomic formulas are the atomic formulas themselves. We extend the interpretation to all formu-
las of ILLωr as follows. Assuming we have already defined [A]x

y and [B]v
w, we define

[A( B] f ,g
x,w :≡ [A]x

f xw ( [B]gx
w

[A ⊗ B]x,v
y,w :≡ [A]x

y ⊗ [B]v
w

[A & B]x,v
y,w :≡ [A]x

y & [B]v
w

[A ⊕ B]x,v
y,w :≡ [A]x

y ⊕ [B]v
w

[∃zA(z)]x,a
y :≡ ∃z∈a [A(z)]x

y

[∀zA(z)] f
y,a :≡ ∀z∈a [A(z)] fa

y

[!A]x
a :≡ !∀̃y ⊆ a[A]x

y .
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Note how the parameter y ⊆ a is only used for the interpretation of !A, and, as such, it captures
precisely the interpretation of contraction and weakening. In particular, for the bounded functional
interpretation of pure multiplicative linear logic (with quantifiers) this parameter is not necessary.

Lemma 5.4 (Monotonicity). Assume that all the implications in A are of the form !B ( C. Let
a, b and y be non-empty. ILLω∈ proves both [A]a

y ( [A]m(a,b)
y and [A]b

y ( [A]m(a,b)
y .

Proof. We present a proof of the first assertion. The second is entirely similar. The proof is done
by induction on the complexity of the formula A. When A is of the form B ⊗C, B & C and B ⊕C
the result follows trivially from the induction hypothesis and the inference rules of ILLω∈ .

A ≡ ∃zB(z). We want to prove that [∃zB(z)]x,a
y ( [∃zB(z)]m(x,x′),m(a,a′)

y , knowing that x, a, x′, a′
and y are non-empty. But

[∃zB(z)]x,a
y :≡ ∃z ∈ a[B(z)]x

y
I.H.
( ∃z ∈ a[B(z)]m(x,x′)

y

≡ ∃z(!(z ∈ a) ⊗ [B(z)]m(x,x′)
y )

(B3)
( ∃z(!(z ∈ m(a, a′)) ⊗ [B(z)]m(x,x′)

y )

≡ ∃z ∈ m(a, a′)[B(z)]m(x,x′)
y ≡ [∃zB(z)]m(x,x′),m(a,a′)

y .

A ≡ ∀zB(z). We want to prove that [∀zB(z)] f
y,a ( [∀zB(z)]m( f , f ′)

y,a , knowing that f , f ′, y and a are
non-empty.

[∀zB(z)] f
y,a :≡ ∀z ∈ a[B(z)] fa

y
(A5)/I.H.
( ∀z ∈ a[B(z)]m( fa, f ′a)

y

(B1)
≡ ∀z ∈ a[B(z)]m( f , f ′)a

y :≡ [∀zB(z)]m( f , f ′)
y,a .

A ≡ !B. Let us prove that [!B]x
a ( [!B]m(x,x′)

a , when x, x′ and a are non-empty.

[!B]x
a :≡ !∀̃y ⊆ a[B]x

y
I.H.
( !∀̃y ⊆ a[B]m(x,x′)

y :≡ [!B]m(x,x′)
a .

A ≡ !B ( C. In this case note that we are imposing a restriction that all implications in A are
of the form !D ( E. So, we need to prove that [!B ( C] f ,g

x,w ( [!B ( C]m( f , f ′),m(g,g′)
x,w , when

f , g, x,w, f ′ and g′ are non-empty. By the way we interpret linear implication, we have to prove
that

`ILLω∈ ([!B]x
f xw ( [C]gx

w )( ([!B]x
m( f , f ′)xw ( [C]m(g,g′)x

w ).

Applying the interpretation of bang and (B1), it is the same as proving that

`ILLω∈ (!∀̃y ⊆ f xw[B]x
y ( [C]gx

w )( (!∀̃y ⊆ m( f xw, f ′xw)[B]x
y ( [C]m(gx,g′x)

w ).

Starting with (B2), and since f ′xw is non-empty, we know that

(?) !(y ⊆ f xw) ` !(y ⊆ m( f xw, f ′xw)).

Using the straightforward facts that from A `ILLω∈ B we can deduce B( C `ILLω∈ A( C and from
A `ILLω∈ B we can derive !∀̃yA `ILLω∈ !∀̃yB, from (?) we obtain
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!∀̃y ⊆ m( f xw, f ′xw)[B]x
y `ILLω∈ !∀̃y ⊆ f xw[B]x

y .

Applying once more one of the previous facts, we have

!∀̃y ⊆ f xw[B]x
y ( [C]gx

w `ILLω∈ !∀̃y ⊆ m( f xw, f ′xw)[B]x
y ( [C]gx

w .

By induction hypothesis we also have [C]gx
w `ILLω∈ [C]m(gx,g′x)

w . �

We are now able to prove the following soundness result:

Theorem 5.5 (Soundness). Let A0, . . . , An, B be formulas of ILLωr , with z as the only free-variables.
If

A0(z), . . . , An(z) ` B(z)

is provable in ILLωr then there are non-empty closed terms a0, . . . , an, b in Sω such that

!ne(x0), . . . , !ne(xn), !ne(w), !(z ∈ a), [A0(z)]x0
a0 x0...xnwa, . . . , [An(z)]xn

an x0...xnwa ` [B(z)]bx0...xn a
w

is provable in ILLω∈ .

Proof. The proof is done by induction on the derivation of A0(z), . . . , An(z) ` B(z). To simplify
notation, when not essential, we omit the formulas !ne(·) from the sequent, we consider the con-
texts of the rules with just one formula or no formulas at all, and when not relevant the variables
z will usually be omitted. The axioms are easily checked. Note that for A(z) ` A(z) the terms
a0 :≡ λx0,w, a.w and b :≡ λx0, a.x0 are closed and non-empty (see Lemma 5.1) and we have
!ne(x0), !ne(w), !(z ∈ a), [A(z)]x0

a0 x0wa `ILLω∈ [A(z)]bx0 a
w . The axioms for Σ and Π can be studied in

a similar way. For Γ, 0 ` A note that the interpretation of atomic formulas are the atomic formulas
themselves and every type is inhabited by a non-empty closed term. Let us consider some of the
non-trivial rules:

Cut. By induction hypothesis there are non-empty closed terms a0, b such that for all non-empty
x0,w we have [A]x0

a0 x0w ` [B]bx0
w and there are non-empty closed terms a1, a2, c such that for all

non-empty x1, x2, v we have

[C]x1
a1 x1 x2v, [B]x2

a2 x1 x2v ` [D]cx1 x2
v .

But then,

[A]x0
a0 x0w ` [B]bx0

w
[α2 x0 x1v

w ]
[A]x0
α0 x0 x1v ` [B]bx0

α2 x0 x1v

[C]x1
a1 x1 x2v, [B]x2

a2 x1 x2v ` [D]cx1 x2
v

[ bx0
x2

]
[C]x1
α1 x0 x1v, [B]bx0

α2 x0 x1v ` [D]βx0 x1
v

(cut)
[A]x0
α0 x0 x1v, [C]x1

α1 x0 x1v ` [D]βx0 x1
v

with

α0 :≡ λx0, x1, v.a0x0(a2x1(bx0)v)

α1 :≡ λx0, x1, v.a1x1(bx0)v

α2 :≡ λx0, x1, v.a2x1(bx0)v

β :≡ λx0, x1.cx1(bx0).
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To see that the terms above are non-empty apply Lemma 5.1. Thus we proved that there are
non-empty closed terms α0, α1 and β such that for all non-empty x0, x1 and v we have

[A]x0
α0 x0 x1v, [C]x1

α1 x0 x1v ` [D]βx0 x1
v .

Note that the precise formulation of the proof with !ne(·) inside the sequents brings no prob-
lem, since in the antecedent of the conclusion we get !ne(x0), !ne(x1) and !ne(v) and the others
can be removed by cut. E.g. !ne(bx0) can be cut with !ne(x0) ` !ne(bx0). We are using Property
(A5). Note also that during the derivation we have to get ride of the conditions !(z ∈ a) for vari-
ables z free in B but not in A, C and D. That can be done with a convenient substitution followed
by cut since in each type we have closed terms s and t such that !(s ∈ t).

Linear implication - right introduction

[A]x0
a0 x0 x1w, [B]x1

a1 x0 x1w ` [C]bx0 x1
w

((R)
[A]x0

a0 x0 x1w ` [B]x1
a1 x0 x1w ( [C]bx0 x1

w
(D. 5.3)

[A]x0
a0 x0 x1w ` [B( C]a1 x0,bx0

x1,w

Linear implication - left introduction

[A]x0
a0 x0w ` [B]bx0

w
[ f ba2

w ]
[A]x0

a0 x0( f ba2) ` [B]bx0
f ba2

[C]x1
a1 x1 x2v, [D]x2

a2 x1 x2v ` [E]cx1 x2
v

[ g(bx0)
x2

]
[C]x1

a1 x1(g(bx0))v, [D]g(bx0)
a2 x1(g(bx0))v ` [E]cx1(g(bx0))

v
((L)

[A]x0
a0 x0( f ba2), [C]x1

a1 x1(g(bx0))v, [B]bx0
f ba2
( [D]g(bx0)

a2 x1(g(bx0))v ` [E]cx1(g(bx0))
v

[A]x0
α0 x0 x1 f gv, [C]x1

α1 x0 x1 f gv, [B( D] f ,g
α2 x0 x1 f gv,α3 x0 x1 f gv ` [E]βx0 x1, f g

v

where f ba2 stands for f (bx0)(a2x1(g(bx0))v) and

α0 :≡ λx0, x1, f , g, v.a0x0( f ba2)

α1 :≡ λx0, x1, f , g, v.a1x1(g(bx0))v

α2 :≡ λx0, x1, f , g, v.bx0

α3 :≡ λx0, x1, f , g, v.a2x1(g(bx0))v

β :≡ λx0, x1, f , g.cx1(g(bx0)).

Note that the !ne( f ba2) we omitted in antecedent of the conclusion can be replaced by
!ne( f ) since we know that !ne( f ) ` !ne( f ba2). A similar observation can be done concern-
ing !ne(g(bx0)). The closed terms α0, α1, α2, α3 and β being non-empty follows from Lemma
5.1.

With - left introduction

[A]x0
a0 x0w ` [B]bx0

w
(&L)

[A]x0
a0 x0w & [C]x1

a1 x0 x1w ` [B]bx0
w

(D. 5.3)
[A & C]x0,x1

(λx0,x1,w.a0 x0w)x0 x1w,a1 x0 x1w ` [B](λx0,x1.bx0)x0 x1
w
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Note that the existence of a1 is guaranteed since each type has a non-empty closed term. The
second rule of & L introduction is entirely similar.

With - right introduction

[!A]x0
a0 x0w ` [B]bx0

w

!∀̃y ⊆ a0x0w[A]x0
y ` [B]bx0

w
(C)

!∀̃y ⊆ u(a0x0w, a1x0v)[A]x0
y ` [B]bx0

w

[!A]x1
a1 x1v ` [C]cx1

v

!∀̃y ⊆ a1x1v[A]x1
y ` [C]cx1

v
[ x0

x1
]

!∀̃y ⊆ a1x0v[A]x0
y ` [C]cx0

v
(C)

!∀̃y ⊆ u(a0x0w, a1x0v)[A]x0
y ` [C]cx0

v
(&R)

!∀̃y ⊆ u(a0x0w, a1x0v)[A]x0
y ` [B]bx0

w & [C]cx0
v

[!A]x0
u(a0 x0w,a1 x0v) ` [B & C]bx0,cx0

w,v

Note that by weakening we can write !ne(x0), !ne(w), !ne(v) in both branches of the proof. In
step (C), we must first show that a0x0w and a1x0v are non-empty, but this follows since a0 and
a1 are non-empty and their arguments are also assumed to be non-empty.

Plus - left introduction

[A]x0
a0 x0w ` [C]bx0

w
(L.5.4)

[A]x0
a0 x0w ` [C]m(bx0,cx1)

w

[B]x1
a1 x1v ` [C]cx1

v
[ w

v ]
[B]x1

a1 x1w ` [C]cx1
w

(L.5.4)
[B]x1

a1 x1w ` [C]m(bx0,cx1)
w

(⊕L)
[A]x0

a0 x0w ⊕ [B]x1
a1 x1w ` [C]m(bx0,cx1)

w

[A ⊕ B]x0,x1
a0 x0w,a1 x1w ` [C]m(bx0,cx1)

w

Again we use weakening to deal with the non-empty elements. Because of the restriction on the
rule (⊕L), all implications on C are of the form !D( E and hence we can apply Lemma 5.4.

Existential quantifier - right introduction

!(z ∈ a), [A(z)]x0
a0 x0wa ` [B(t[z])]bx0 a

w !(z ∈ a)
L. 5.2
` !(t[z] ∈ t̃(a))

!(z ∈ a), [A(z)]x0
a0 x0wa `!(t[z] ∈ t̃(a)) ⊗ [B(t[z])]bx0 a

w
(∃R)

!(z ∈ a), [A(z)]x0
a0 x0wa ` ∃x ∈ t̃(a)[B(x)]bx0 a

w

!(z ∈ a), [A(z)]x0
a0 x0wa ` [∃xB(x)]bx0 a,t̃(a)

w

Note that the existence of a closed term t̃ such that !λz.t[z] ∈ t̃ is ensured by Lemma 5.2. Imme-
diately by Property (A3) the term t̃ is non-empty and so also λx0, a.t̃(a) is closed and non-empty
(see Lemma 5.1). If the variables z do not occur free in A or ∃xB(x), we can remove !(z ∈ a) from
the conclusion, instantiating these variables in a way that ` !(z ∈ a) and applying the cut rule.
Note that appropriate instantiations verifying the assertion above are always possible.
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Existential quantifier - left introduction

!(z ∈ a), [A(z)]x0
a0 x0wa ` [B]bx0a

w

!(z ∈ a) ⊗ [A(z)]x0
a0 x0wa ` [B]bx0a

w
(∃L)

∃z ∈ a[A(z)]x0
a0 x0wa ` [B]bx0a

w

[∃zA(z)]x0,a
(λx0,a,w.a0 x0wa)x0aw ` [B]bx0a

w

Universal quantifier - right introduction

!(z ∈ a), [A]x0
a0 x0wa ` [B(z)]bx0a

w

[A]x0
a0 x0wa ` !(z ∈ a)( [B(z)]bx0a

w
(∀R)

[A]x0
a0 x0wa ` ∀z ∈ a[B(z)]bx0a

w

[A]x0
a0 x0wa ` [∀zB(z)]bx0

w,a

Universal quantifier - left introduction

!(z ∈ a)
L. 5.2
` !(t[z] ∈ t̃(a)) !(z ∈ a), [A(t[z])]x0

a0 x0wa ` [B(z)]bx0 a
w

!(z ∈ a), !(t[z] ∈ t̃(a))( [A(t[z])]x0
a0 x0wa ` [B(z)]bx0 a

w
(∀L)

!(z ∈ a),∀x ∈ t̃(a)[A(x)]x0
a0 x0wa ` [B(z)]bx0 a

w
[ f (t̃a)

x0
]

!(z ∈ a),∀x ∈ t̃(a)[A(x)] f (t̃a)
a0( f (t̃a))wa ` [B(z)]b( f (t̃a))a

w

!(z ∈ a), [∀xA(x)] f
a0( f (t̃a))wa,t̃a ` [B(z)]b( f (t̃a))a

w

Contraction

[!A]x0
a0 x0 x1w, [!A]x1

a1 x0 x1w ` [B]bx0 x1
w

[ x0
x1

]
[!A]x0

a0 x0 x0w, [!A]x0
a1 x0 x0w ` [B]bx0 x0

w

!∀̃y ⊆ a0x0x0w[A]x0
y , !∀̃z ⊆ a1x0x0w[A]x0

z ` [B]bx0 x0
w

(C)
!∀̃y ⊆ u(a0x0x0w, a1x0x0w)[A]x0

y , !∀̃y ⊆ u(a0x0x0w, a1x0x0w)[A]x0
y ` [B]bx0 x0

w
(con)

!∀̃y ⊆ u(a0x0x0w, a1x0x0w)[A]x0
y ` [B]bx0 x0

w

[!A]x0
u(a0 x0 x0w,a1 x0 x0w) ` [B]bx0 x0

w

Weakening
[A]x0

a0 x0w ` [C]bx0
w

(wkn)
[A]x0

a0 x0w, !∀̃y ⊆ c1[B]x1
y ` [C]bx0

w

[A]x0
a0 x0w, [!B]x1

c1 ` [C]bx0
w

Again we are using the fact that any type is inhabited by a non-empty closed term.
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Bang - right introduction

[!A]x0
a0 x0w ` [B]bx0

w

!∀̃y ⊆ a0x0w[A]x0
y ` [B]bx0

w
(!R)

!∀̃w ⊆ v!∀̃y ⊆ a0x0w[A]x0
y ` !∀̃w ⊆ v[B]bx0

w
(D)

!∀̃y ⊆ v(a0x0, v)[A]x0
y ` !∀̃w ⊆ v[B]bx0

w

[!A]x0
v(a0 x0,v) ` [!B]bx0

v

!ne(v), [!A]x0
v(a0 x0,v) ` [!B]bx0

v

Bang - left introduction
[A]x0

a0 x0w ` [B]bx0
w

(E)
!∀̃y ⊆ n(a0x0w)[A]x0

y ` [B]bx0
w

[!A]x0
n(a0 x0w) ` [B]bx0

w

That concludes the proof. �

Remark 5.6 (Necessity of restrictions). In order to see why we imposed restrictions on the rules
&R and ⊕L, consider an instance of &R where [∆]x

y is not monotone on y, i.e. [∆]x
u(a,b) does not

necessarily imply [∆]x
a. For instance, take ∆ ≡ ∀x∃yP(x, y) with P(x, y) an atomic formula, so

that

[∆] f
a ≡ ∀x∈a∃y∈ f a P(x, y).

In such cases, given two witnesses a and b such that

[∆]x
axy ` [A]y and [∆]x

bxw ` [B]w

we must produce a single witness c satisfying [∆]x
cxyw ` [A]y & [B]w. This would be possible if we

could find a c such that both [∆]x
cxyw ( [∆]x

axy and [∆]x
cxyw ( [∆]x

bxw. Such c always exists given
the restrictions we added in the rule &R. The restriction in ⊕L can be argued in a similar way, in
this case by constructing a C which does not have the necessary monotonicity property derived in
Lemma 5.4.

5.3. Proof of Theorem 3.3
As pointed before, the proof of the soundness theorem for the parametrised bounded inter-

pretation of ILω follows from the soundness of the parametrised interpretation of ILLωr . Next we
present some results that help us establishing the above relation.

Denote by Pi the properties listed in Section 3.1 (for ILω∈ ). Let us associate each of the relations
and functionals ne, ∈, ⊆, m, n, u and v of ILω∈ with their linear logic counterparts ne∗, ∈∗, ⊆∗, m, n,
u and v. Let ILLω∈∗ be the system whose axioms for the definition of m (respectively n, u and v) are
the Girard’s (·)∗ translations of the axioms in ILω∈ to define m (respectively n, u and v). The same
happens with the axioms involved in ne, ∈, ⊆ and we just opted to distinguish the corresponding
relations in linear logic by ne∗, ∈∗, ⊆∗ since, if the formers are not primitive symbols in the
language the translations via (·)∗ of their definitions are the definitions of the relations in linear
logic, e.g. (x ∈ a)∗ ≡ x ∈∗ a. By Girard’s (·)∗ translation we have
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if ILω∈ satisfies the properties Pi then ILLω∈∗ satisfies the properties (Pi)∗.

Denote by Pl the properties initially imposed over the linear setting (cf. Section 5.1). The two
sets of conditions can be related through the following result:

Proposition 5.7. If ILLω∈∗ satisfies the properties (Pi)∗ then ILLω∈∗ satisfies the properties Pl.

Proof. All the properties are easily checked since we have the following:

If `ILLω
∈∗

A then `ILLω
∈∗

!A

If `ILLω
∈∗

!A( C then `ILLω
∈∗

!A( !C

and !(A & B) � !A ⊗ !B. �

Lemma 5.8. From the above we can easily check the following correspondences concerning the
translations of the bounded quantifications:

(a) (∀̃y ⊆ aA)∗ ≡ ∀̃y ⊆∗ a A∗

(b) (∀z∈a A)∗ ≡ ∀z∈∗ a A∗

(c) (∃z∈a A)∗ ≡ ∃z∈∗ a !A∗.

Proof. We illustrate the idea with the proof of the first assertion:

(∀̃y ⊆ aA)∗ ≡ (∀y(ne(y)→ (y ⊆ a→ A)))∗

≡ ∀y(!(ne∗(y))( (!(y ⊆∗ a)( A∗))

≡ ∀̃y(!(y ⊆∗ a)( A∗) ≡ ∀̃y ⊆∗ a A∗.

The other cases are treated similarly. �

So, the interpretations | · |xy and [·]x
y from ILω to ILω∈ and ILLωr to ILLω∈∗ respectively, are related

in the following way.

Proposition 5.9. [A∗]x
y ≡ (|A|xy)∗.

Proof. The proof is done by induction on the complexity of the formula A. For A atomic the result
is immediately. The other cases are studied below.
Conjunction.

[(A ∧ B)∗]x,v
y,w ≡ [A∗& B∗]x,v

y,w ≡ [A∗]x
y & [B∗]v

w
I.H.
≡ (|A|xy)∗& (|B|vw)∗

≡ (|A|xy ∧ |B|
v
w)∗ ≡ (|A ∧ B|x,vy,w)∗.

Disjunction.
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[(A ∨ B)∗]x,v
a,b ≡ [!A∗ ⊕ !B∗]x,v

a,b ≡ [!A∗]x
a ⊕ [!B∗]v

b

≡ !∀̃y ⊆∗ a[A∗]x
y ⊕ !∀̃w ⊆∗ b[B∗]v

w

I.H.
≡ !∀̃y ⊆∗ a(|A|xy)∗ ⊕ !∀̃w ⊆∗ b(|B|vw)∗

L.5.8
≡ !(∀̃y ⊆ a|A|xy)∗ ⊕ !(∀̃w ⊆ b|B|vw)∗

≡ (∀̃y ⊆ a|A|xy ∨ ∀̃w ⊆ b|B|vw)∗ ≡ (|A ∨ B|x,va,b)∗.

Implication.

[(A→ B)∗] f ,g
x,w ≡ [!A∗ ( B∗] f ,g

x,w ≡ [!A∗]x
f xw ( [B∗]gx

w

≡ !∀̃y ⊆∗ f xw[A∗]x
y ( [B∗]gx

w

I.H.
≡ !∀̃y ⊆∗ f xw(|A|xy)∗ ( (|B|gx

w )∗

L.5.8
≡ !(∀̃y ⊆ f xw|A|xy)∗ ( (|B|gx

w )∗

≡ (∀̃y ⊆ f xw|A|xy → |B|
gx
w )∗ ≡ (|A→ B| f ,gx,w)∗.

Universal quantification.

[(∀zA(z))∗] f
y,a ≡ [∀z(A(z))∗] f

y,a ≡ ∀z ∈∗ a[(A(z))∗] fa
y

I.H.
≡ ∀z ∈∗ a(|A(z)| fa

y )∗

L.5.8
≡ (∀z ∈ a|A(z)| fa

y )∗ ≡ (|∀zA(z)| fy,a)∗.

Existential quantification.

[(∃zA(z))∗]x,a
b ≡ [∃z!(A(z))∗]x,a

b ≡ ∃z ∈∗ a[!(A(z))∗]x
b

≡ ∃z ∈∗ a!∀̃y ⊆∗ b[(A(z))∗]x
y

I.H.
≡ ∃z ∈∗ a!∀̃y ⊆∗ b(|A(z)|xy)∗

L.5.8
≡ (∃z ∈ a∀̃y ⊆ b|A(z)|xy)∗ ≡ (|∃zA(z)|x,ab )∗.

That concludes the proof. �

From the above, we immediately derive the following result:

Lemma 5.10. ([A∗]x
y)i ≡ |A|xy .

The soundness in ILω can now be deduced as follows: If

A0(z), . . . , An(z) `ILω B(z) and ILω∈ satisfies the properties Pi

then through the translation (·)∗ we know that

!(A0(z))∗, . . . , !(An(z))∗ `ILLωr (B(z))∗ and ILLω∈∗ satisfies the properties (Pi)∗.
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Applying Proposition 5.7, we know that the properties Pl are valid for ne∗, ∈∗, ⊆∗, m, n, u and
v, so we can apply the soundness theorem in ILLωr and deduce that there exist non-empty closed
terms a0, . . ., an, b such that

!ne∗(x0), . . . , !ne∗(xn), !ne∗(w), !(z ∈∗ a), [!(A0(z))∗]x0
a0 x0...xnwa, . . . , [!(An(z))∗]xn

an x0...xnwa `

[(B(z))∗]bx0...xn a
w .

I.e., assuming !ne∗(x0), . . . , !ne∗(xn), !ne∗(w), !(z ∈∗ a) we have

!∀̃y0 ⊆
∗ a0x0 . . . xnwa[(A0(z))∗]x0

y0
, . . . , !∀̃yn ⊆

∗ anx0 . . . xnwa[(An(z))∗]xn
yn
` [(B(z))∗]bx0...xn a

w .

Applying Lemma 5.8 and Proposition 5.9 we can easily see that the assertion above is of the form
!Γ∗ ` C∗. Since from Propositions 2.1 and 2.3 we know that !Γ∗ `ILLω

∈∗
C∗ iff (Γ∗)i `ILω∈ (C∗)i, we

conclude that there exist non-empty closed terms a0, . . ., an, b such that

∆, ∀̃y0 ⊆ a0x0 . . . xnwa|A0(z)|x0
y0
, . . . , ∀̃yn ⊆ anx0 . . . xnwa|An(z)|xn

yn
` |B(z)|bx0...xn a

w

with ∆ :≡ ne(x0), . . . , ne(xn), ne(w), z ∈ a,

which is precisely the conclusion of the Soundness Theorem 3.3.

6. Final Remarks

It should be observed that usually bounded interpretations of ILω (e.g. the bounded modified
realizability) have primitive bounded quantifiers in the interpreted system. The interpretations
are then designed so that these quantifiers are considered as empty of computational information.
In our abstract setting, however, we do not consider that possibility since the bounded quantifier
depends on the relation x ∈ a which is a parameter for our general interpretation. In order to
show that the bounded quantifier could be interpreted we would need to have an exact definition
for the relation ∈, or at least we would have to assume that it behaved well with respect to the
interpretation that we were trying to define. Note, however, that in each of the three instances
considered one can check that the bounded quantifiers are indeed interpretable. We refrained
from stating general properties guaranteeing when this is the case.

Moreover, another implication of working in a parametrised setting is that we cannot precisely
state the characterisation principles of the interpretation as such principles would have to be stated
in a parametrised form. But, since we have not defined the interpretation of formulas containing
parameters, it would be impossible to show that the principles were interpretable.
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