
System T and the Product of Selection Functions�

Martín Escardó1, Paulo Oliva2, and Thomas Powell2

1 University of Birmingham
Department of Computer Science
m.escardo@cs.bham.ac.uk

2 Queen Mary University of London
School of Electronic Engineering and Computer Science
{paulo.oliva, tpowell}@eecs.qmul.ac.uk

Abstract
We show that the finite product of selection functions (for all finite types) is primitive recursively
equivalent to Gödel’s higher-type recursor (for all finite types). The correspondence is shown to
hold for similar restricted fragments of both systems: The recursor for type level n�1 is primitive
recursively equivalent to the finite product of selection functions of type level n. Whereas the
recursor directly interprets induction, we show that other classical arithmetical principles such as
bounded collection and finite choice are more naturally interpreted via the product of selection
functions.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Primitive recursion, product of selection functions, finite choice, dialect-
ica interpretation

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In his 1958 paper published in the journal dialectica [7] Gödel introduced a novel interpretation
of intuitionistic arithmetic into a quantifier-free calculus of functionals, the so-called system
T. System T is essentially primitive recursive arithmetic PRA with the schema of recursion
extended to all finite types tN,N Ñ N, pN Ñ Nq Ñ N, . . .u. Gödel’s aim was to show that
quantifier dependencies in arithmetic could be captured by this class of primitive recursive
functionals, and therefore that the consistency of arithmetic could be reduced to that of
system T.

In Gödel’s dialectica interpretation, the recursors play a fundamental role in the inter-
pretation of the induction axioms. Parsons [15] studied the precise relationship between the
complexity of the type of the recursor and the logical complexity of the induction formula,
establishing a correspondence between the well-known fragments of arithmetic based on
restricted induction and fragments of system T based on restricted recursion.

The dialectica interpretation of arithmetic was quickly extended to classical analysis
by Spector [17], via a new form of recursion on well-founded trees known as bar recursion.
Spector’s dialectica interpretation of arithmetical comprehension goes via the classical axiom
of countable choice, which in turn is reduced to the double negation shift (see [17] for details)

@i Apiq Ñ @iApiq.

� This work was partially supported by Royal Society (2nd author) grant 516002.K501/RH/kk, and an
EPSRC Doctoral Training Account (3rd author).

© M. Escardó, P. Oliva and T. Powell;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 System T and the Product of Selection Functions

Hence, the computational interpretation of full classical analysis was reduced to the inter-
pretation of this seemingly harmless (obviously true) principle.

The first two authors have recently shown [3, 2, 5] that Spector’s bar recursion is primitive
recursively equivalent to an unbounded iteration of the product of selection functions, a
highly intuitive construction that has appeared over and over again in various guises in game
theory, fixed point theory, algorithms, and proof theory. For further details see Section 3,
their original paper [3] or a recent survey [6].

In [3] it is observed that just as an unbounded iteration of the product of selection
functions provides an intuitive interpretation of the double negation shift, a finite iteration
of the product directly interprets the finite double negation shift

@mp@i¤m Apiq Ñ @i¤mApiqq,

which in turn is closely related to a number of well-known ‘set theoretic’ principles such as
finite choice and bounded collection. In Section 4 we show that just as the computational
analogue of induction is Gödel’s primitive recursion on all finite type, a natural computational
analogue of finite choice is given by the product of selection functions. Furthermore, analogous
to Parsons result for induction we establish a correspondence between the logical complexity
of the choice formula and the complexity of the product.

It is well-known, however, that both bounded collection and finite choice are equivalent
to number induction. More specifically, Parsons proved that the hierarchy of bounded
collection axioms is strictly interleaving on the hierarchy of induction axioms [14]. Therefore
it is natural to ask precisely how the product of selection functions is related to primitive
recursion. Our main result (Section 5) is that Gödel’s primitive recursor of type level n� 1
is equivalent, over a weak base theory, to the finite product of selection functions of type
level n. In particular, the finite product of selection functions of lowest types already defines
the Ackermann function.

There are several advantages of considering this equivalent form of the Gödel primitive
recursor R
1. Given the equivalence of the unbounded product of selection functions with Spector’s

bar recursion [3], the equivalence of the finite product with the recursor R provides for a
smooth passage from the functional interpretation of arithmetic (finite fixed number of
iterations) to that of analysis (finite but unbounded number of iterations). Therefore, we
obtain the correspondence

Finite product of selection functions
Arithmetic �

Unbounded product of selection functions
Analysis

In this sense, the product of selection functions allows for a uniform transition from
arithmetic to analysis. This is discussed further in Section 6.

2. The product of selection functions has a natural reading in terms of calculations of
optimal strategies in sequential games. Hence, witnessing terms involving the product of
selection functions (rather than R or Spector’s bar recursion) can normally be given a
clear intuitive meaning. The connection between games and the product is explained in
Section 3.

3. Whereas the recursor directly interprets induction, we show that when interpreting other
classical arithmetical principles closely related to bounded collection and finite choice
it is the finite product of selection functions which allows for a direct, and hence more
illuminating, interpretation. See Section 4 for details.

M. Escardó, P. Oliva and T. Powell 3

2 Fragments of Arithmetic

We take as a base theory the standard induction-free fragment of arithmetic Q (cf. [1]),
which contains axioms for the non-logical symbols 0, S, �, � and ¤. It is well known that we
can construct a hierarchy of strong fragments of arithmetic by adding induction axioms, or
alternatively choice or collection axioms, to our base theory. The axiom scheme of induction
is specified as

IND : A0 ^ @i m pAi Ñ Ai�1q Ñ Am.

The scheme of finite choice is specified as

FAC : @i¤m DxAipxq Ñ Ds@i¤mAipsiq.

The scheme of bounded collection is specified as

BC : @i¤m DxAipxq Ñ Dk@i¤m Dx¤k Aipxq

As usual, if S is one of our schemata, Σn-S (Πn-S) denotes S restricted to Σn (Πn) formulas.

� Definition 1 (Fragments of arithmetic). In this paper we will consider the following fragments
of classical arithmetic.
1. The weak theory PA0 consists of the base theory Q plus induction restricted to quantifier-

free formulas.
2. The theories IΣn, FΣn, BΣn consist of PA0 plus the Σn-IND, Σn-FAC, Σn-BC schema

respectively. The theories IΠn, FΠn and BΠn are defined similarly.
3. Full Peano arithmetic PA consists of PA0 plus induction for all formulas (or, equivalently

as we will discuss, finite choice or bounded collection for all formulas).

It is easy to show (cf. [13, 14]) that PA0 proves the equivalences

Σn-IND Ø Πn-IND,

Σn�1-FAC Ø Πn-FAC, and

Σn�1-BC Ø Πn-BC

for all n. Hence, the fragments IΣn and IΠn are equivalent, similarly FΣn�1 � FΠn and
BΣn�1 � BΠn.

It has also been shown by Sieg [16] that FΠn and BΠn are equivalent. Although the
fragment based on bounded collection BΠn is more widely used, we will see that the
dialectica interpretation of finite choice is slightly more natural and direct than that of
bounded collection.

The precise relationship between the fragments of arithmetic based on induction and
those based on choice and collection principles was established by Parsons [14] and Paris
and Kirby [13].

� Theorem 2 ([13, 14]). Let T � S mean that every theorem of T is a theorem of S. Then
1. BΠn � IΣn�1 but IΣn�1 � BΠn

2. IΣn � BΠn but BΠn � IΣn.

Proof. These results are collected together in [13]. We remark that IΣn�1 � BΠn was
discovered independently by Lessan [12]. �

4 System T and the Product of Selection Functions

2.1 Fragments of Gödel’s system T

In this section we recall some basic facts about Gödel’s dialectica interpretation. As we
mentioned in the introduction, Gödel showed that intuitionistic arithmetic can be interpreted
in the quantifier-free system T. Combining the dialectica interpretation with the usual
negative translation allows us to reduce full classical arithmetic to T. For that we shall
normally take Kuroda’s negative translation A ÞÑ AN � A�, which places double
negations after universal quantifiers and in front of the whole formula [11].

We are interested in fragments of system T that correspond, under the dialectica inter-
pretation, to the fragments of arithmetic discussed above. We take as a base theory the
fragment T0 in which recursion is restricted to type 0.

� Definition 3 (Fragment T0). We work in a many-sorted language in which the set of types
is defined inductively, containing the type N of natural numbers, function types X Ñ Y

(also written as Y X), product types X � Y and types X� representing finite sequences of
elements of type X. As usual, the degree of each type is defined inductively as

degpNq :� 0

degpX Ñ Y q :� maxtdegpXq � 1, degpY qu

degpX � Y q :� maxtdegpXq, degpY qu

degpX�q :� degpXq.

The set of terms of T0 are those of the simply typed λ-calculus with finite products and
function types, plus constants for all functions definable using primitive recursion of type 0.
The axioms of T0 consist of:

1. standard axioms of classical propositional logic, axioms for (fully extensional) equality,
substitution and induction,

2. defining axioms for each constant symbol.

Notation. We will denote the operation of concatenating a finite sequence s : X� with an
infinite sequence α : XN as s�α : XN. We will use the same notation also when concatenating
two finite sequences, or appending an element to a sequence. For q : XN Ñ R and s : X� we
write qs : XN Ñ R for the function qspαq � qps � αq.

We obtain extensions of T0 by adding constant symbols for higher type recursion together with
their defining axioms. For any typeX the recursor RX of typeX Ñ pNÑ X Ñ Xq Ñ NÑ X

has defining axioms:

RX0 py, zq
X
� y

RXn�1py, zq
X
� zpn,RXn py, zqq

where y : X and z : NÑ X Ñ X.

� Definition 4 (Fragments of system T). We consider the following well-known extensions of
T0.
1. The theory Tn consists of T0 plus recursors RX and their defining axioms for all types

X with degpXq ¤ n.
2. System T consists of T0 plus recursors of all finite types.

M. Escardó, P. Oliva and T. Powell 5

Gödel’s dialectica interpretation interprets each formula A of Heyting arithmetic as a
formula AD of the form Dx@yADpx, yq, where AD is a quantifier-free formula in the language
of T and x, y are tuples of potentially higher type. For details of the translation, the reader
is referred to r1s.

� Theorem 5 ([7]). Gödel’s key results are the following:
1. If Heyting arithmetic proves the formula A, then there is a sequence of terms t in system

T such that T proves ADpt, yq.
2. If Peano arithmetic proves the formula A, then there is a sequence of terms t such that

T proves pAN qDpt, yq, where AN denotes the negative translation of A.

The recursors in T are essentially only required to interpret the non-logical axioms of
arithmetic, and form a natural functional analogue of induction. There is in fact a precise
correspondence under the dialectica interpretation between the arithmetic hierarchy IΣn and
the functional hierarchy Tn, which is a consequence of the following lemma.

� Lemma 6. Given an arbitrary formula A, suppose that pAN qD � Dx@ypAN qDpx, yq. Then
for n ¡ 1:
1. if A is a Π0

n formula then the tuple x contains variables of degree at most n� 1 and the
tuple y contains variables of degree at most n� 2;

2. if A is a Σ0
n formula then the tuple x contains variables of degree at most n and the tuple

y contains variables of degree at most n� 1.

Proof. Simple induction on n. �

� Theorem 7 ([15]). The functional interpretation of Πn-IND only requires primitive recursion
of level n� 1. Therefore the fragment of arithmetic IΠn (or equivalently IΣn) is interpreted
in Tn�1, in the sense that if IΠn proves A then there is a sequence of terms t in Tn�1 such
that Tn�1 proves pAN qDpt, yq.

Proof. Follows from Lemma 6. See [15] for details. �

3 The Product of Selection Functions

In [5], a selection function is defined to be any function of type pX Ñ Rq Ñ X. The intuition
behind the name is that we view functions X Ñ R as predicates over the type X (where R
is interpreted as a set of truth values), and the selection function as a choice procedure that
for each predicate selects some element of X. Selection functions are closely related to the
notion of generalised quantifiers, functionals of type pX Ñ Rq Ñ R, in the sense that every
selection function ε is associated with a quantifier ε̄p :� ppεpq.

Notation. We abbreviate the types pX Ñ Rq Ñ X by JRX, and the types pX Ñ Rq Ñ R

by KRX.

� Example 8. 1. By the law of excluded middle, for any non-empty type X we have
@pDyXpDxXppxq ñ ppyqq. Hence, by the axiom of choice there exists a selection function
ε : JBX that satisfies Dx ppxq ô ppεpq for any logical predicate p : X Ñ B (this is similar
to Hilbert’s ε operator of the ε-calculus). Similarly, there is also a selection function δ
such that @x ppxq ô ppδpq for all p. These selection functions are associated, respectively,
with the usual logical quantifiers D,@ : KBX.

6 System T and the Product of Selection Functions

2. By the extreme value theorem there exists a selection function argsup: JRr0, 1s that for
any continuous function f : r0, 1s Ñ R returns a point at which f attains it supremum i.e.
suppfq � fpargsupfq. The selection function arginf : JRr0, 1s is defined similarly. These
selection functions are associated with the quantifiers sup, inf : KRr0, 1s.

The theory of generalised quantifiers and selection functions is explored in detail in
[3, 5, 6], where in particular, a product operation on selection functions is defined. The main
achievement of these papers has been to demonstrate that this product of selection functions
is an extremely versatile construction that appears naturally in several different areas of
mathematics and computer science, such as fixed point theory (Bekič’s lemma), game theory
(backward induction), algorithms (backtracking), and proof theory (bar recursion).

For the rest of this section we shall define this product of selection functions, and explain
how it has an intuitive meaning in terms of optimal plays in sequential games. In Section
4 we then show how the number theoretic principle of finite choice is naturally (dialectica)
interpreted by this product.

� Definition 9 (Binary product of selection functions, [5]). Given selection functions δ : JRX
and ∆: JRXN and a functional q : XN Ñ R, let

ApxXq
XN

:� ∆pλα.qxpαqq,

a
X:� δpλx.qxpApxqqq,

where qxpαq abbreviates qpx�αq. Then we define the binary product of the selection functions
δ and ∆, denoted δ b∆: JRXN, by

pδ b∆qpqq :� a �Apaq.

As described in [5], one can iterate the binary product above on a given sequence of
selection functions. In this paper we will only consider the finite iteration of the binary
product.

� Definition 10 (Finite product of selection functions). We define the finite product of selection
functions for types pX,Rq, denoted PX,Ri , by the recursion schema

PX,Ri pεqpmq
JRX

N

�

#
0JRX

N if i ¡ m

εi b PX,Ri�1 pεqpmq if i ¤ m

where m P N, 0 is the constant 0 functional of appropriate type, and εi are selection functions
of type JRX. Expanding the definition of the binary product (Definition 9) this is equivalent
to the schema

PX,Ri pεqpmqpqq
XN
�

#
0XN if i ¡ m

a � PX,Ri�1 pεqpmqpqaq if i ¤ m

where a :� εipλx.qxpPX,Ri�1 pεqpmqpqxqqq.

As opposed to in [5] here the finite product is taken over an infinite stream of selection
functions. In what follows, where only ε0, . . . , εm are specified it is implicit that the finite
product PX,Ri pεqpmq is taken over a canonical extension of this finite sequence.

As an alternative to adding the recursors R to T0, as in Definition 4, we shall also consider
extending T0 with the finite product operator P instead.

M. Escardó, P. Oliva and T. Powell 7

� Definition 11. 1. The theory Pn consists of T0 plus a symbol for the finite product of
selection functions PX,R and its defining axiom for all types X with degpXq ¤ n.

2. T0 � P consists of T0 plus the finite product PX,R for all finite types.

� Remark. The complexity of the type R has no effect on the recursive strength of PX,R, as
one can show that PX,R, for arbitrary type R, is definable over T0 from PX,XN . Formally,
given εi : JRX and q : XN Ñ R define a new selection function εq : JXNX as

εqi pP
XÑXN

q
X
� εpλxX .qpP pxqqq.

We have that Ppεqpmqpqq � Ppεqqpmqpidq, where id : XN Ñ XN is the identity functional.

The main result of this article is that T0 � P is equivalent to T0 � R (and hence to
Gödel’s system T), and that more specifically there is a direct correspondence between the
restricted fragments of both systems. But first we explain how selection functions and their
finite product are fundamental in the study of sequential games.

3.1 Finite sequential games
One of the most interesting aspects of the product of selection functions is that it computes
optimal strategies for a general class of sequential games. This concrete setting offers the
most insight into how the product works, so we explain it briefly here.

� Definition 12 (Finite sequential games). An m-round sequential game is defined by a tuple
pR,X, ε, qq where R and X are arbitrary types.

X is the set of possible moves for any round. A play is a sequence α : Xm.
R is the set of possible outcomes.
q : Xm Ñ R is the outcome function that maps a play to its outcome.
εi : JRX is the selection function for round i ¤ m.

These kind of games have been defined in full generality in [3, 6], where in particular
the set of moves may vary from one round to the other. Moreover, the games defined there
allows for arbitrary quantifiers to describe the goal of each round. When these quantifiers
have associated selection functions an optimal strategy for the game can be computed. Here,
for simplicity, we will assume the selection functions are explicitly given in the definition of
the game.

Also in [3, 6], the notions of optimal strategy and optimal play are defined. The intuition
is as follows. We think of the selection functions εi as specifying at round i what the optimal
move at that round would be if we knew the final outcome corresponding to each of the
candidate moves, i.e. p : X Ñ R. The selection function takes this mapping of moves to
outcomes and tells us what the “best” move would be in that particular case εippq : X. Now,
a play is considered optimal if at all rounds the best move has indeed been played. That
is to say that, there are functions pi which compute the real outcome from the move being
played, i.e. pipαpiqq � qα, and that αpiq is exactly what the selection function at round i
would choose, i.e. αpiq � εippiq.

The main theorem of [6] is that the product of the given selection functions for each
round, when applied to the outcome function, computes an optimal play α in the game.

� Theorem 13 ([6]). Given a sequential game as above, let

α :� P0pεqpmqpqq.

8 System T and the Product of Selection Functions

Then, α is an optimal play in the sense that setting

pi :� λx.qrαspiq�x
�
Pi�1pεqpmqpqrαspiq�xq

�
,

where rαspiq is the finite initial segment of α of length i, we have

αpiq
X
� εippiq (1)

pipαpiqq
R
� qα

for all i ¤ m.

In more general terms, the equations (1) characterise the product as an operation that
generates a state of equilibrium from a finite sequence of selection functions. An optimal
strategy is one instance of such an equilibrium. The significance of the product of selection
functions lies in the fact that these governing equations appear repeatedly in a variety of
different contexts.

4 Interpreting the Principle of Finite Choice

In this section we show how the finite product of selection functions allows for a more direct
interpretation of (the classical) finite choice and bounded collection principles. As observed by
Spector [17], the interpretation of the negative translation of choice follows intuitionistically
from choice itself given the double negation shift

@i Apiq Ñ @iApiq.

The same applies to finite choice, where the negative translation of finite choice follows from
finite choice plus the finite double negation shift

@mp@i¤m Apiq Ñ @i¤mApiqq.

Contrary to the double negation shift, the finite double negation shift is provable in Heyting
arithmetic, by induction on m. The proof, however, is rather intricate, and when interpreted
(via the dialectica) leads to witnesses based on the recursor R which are difficult to grasp
computationally. This is in stark contrast with the proof of the following theorem:

� Theorem 14. The finite product of selection functions interprets (via the dialectica inter-
pretation) the finite double negation shift.

Proof. Assume Apiq has dialectica interpretation Dx@yAipx, yq. The (partial) dialectica
interpretation of the finite double negation shift is equivalent to

@mpDε@p@i¤mAipεip, ppεipqq Ñ @qDα@i¤mAipαpiq, qαqq.

Given m, ε and q then taking α, pi as in Theorem 13 we clearly have

Aipεipi, pipεipiqq Ñ Aipαpiq, qαq

for all i ¤ m, so the α, pi computed directly via the product of selection function witness
the interpretation of the double negation shift. �

M. Escardó, P. Oliva and T. Powell 9

It should be observed that when using modified realizability (instead of the dialectica
interpretation) it is the so-called J-shift which is directly interpreted by the product of selec-
tion functions (cf. [4]). It is, therefore, rather interesting that when applying the dialectica
interpretation the same product of selection functions allows for a direct interpretation of
the double negation shift instead.

A closer look at the dialectica interpretation of the double negation shift sheds some light
on why an operation that computes optimal plays in sequential games crops up in proof
theory in this manner. The selection functions εi above act as realisers for the premise of
the double negation shift, and as such can be seen as a collection of strategies pεiqi m that
for each i refute any counterexample functions p (in the sense of Kreisel [9, 10]) attempting
to disprove the predicate Ai.

The functional interpretation of the double negation shift calls for a procedure that takes
this collection of ‘point-wise’ strategies and produces a co-operative strategy in which the
εi work together to refute a global counterexample function q attempting to disprove the
predicate @i mAi. Such a procedure is provided naturally by the product of selection
functions.

� Corollary 15. The finite product of selection functions interprets the principle of finite
choice.

Proof. The negative translation of finite choice, assuming that Ai is Π0
n, is equivalent to

@i ¤ m DxA�
i pxq Ñ Dα@i ¤ mA�

i pαiq,

where A� is obtained by placing double negations after each universal quantifier in A. This
follows directly from the double negation shift applied to the formula DxA�

i pxq, and its
dialectica interpretation is precisely that of this double negation shift. Hence, the product of
selection functions realises the dialectica interpretation of (the negative translation of) finite
choice. �

Analogous to Theorem 7, we can extend Corollary 15 to fragments of arithmetic based
on choice.

� Theorem 16. The fragment of arithmetic FΠn is interpreted in Pn�1.

Proof. This is clear for n � 1. For n ¡ 1 by Lemma 6 if Ai is a Π0
n formula the functional

interpretation of DxA�
i pxq is of the form Dx, x̃@ypA�

i qDpx, x̃, yq where the variables of the
tuple xx0, x̃y have degree at most n� 1 (note that AD Ø A� for Π0

n formulas). Hence, by
inspecting the proof of Theorem 14 we see that an instance of Πn-FAC is interpreted in
Pn�1. �

Finally we remark that bounded collection and its consequences, such as the infinite
pigeonhole principle (cf. [8], p. 173), are naturally interpreted by the product of selection
functions in a similar manner, given that finite choice straightforwardly implies bounded
collection. The realiser for the negative translation of bounded collection, namely

@i ¤ m DxA�
i pxq Ñ Dk@i ¤ m Dx ¤ k A�

i pxq

based on the product of selection functions is obtained from that for finite choice by essentially
applying the maximum operator to the first m elements of the sequence α (see [6] for more
details).

10 System T and the Product of Selection Functions

5 The Recursor and the Product of Selection Functions

Although the recursor R directly interprets the induction schema, we have seen in Section 4
that it is the finite product of selection functions which directly interprets finite choice and
bounded collection. As discussed in Section 2, Parson showed that the hierarchy of bounded
collection axioms is strictly interleaving on the hierarchy of induction axioms. Therefore, one
might conjecture that the hierarchy of finite products of selection functions would be also
strictly interleaved in the hierarchy of Gödel’s primitive recursors. In this section we show
that this is not the case, and in fact the recursor of type level n� 1 is primitive recursively
equivalent to the finite product of selection functions of type level n.

� Definition 17. It will be convenient to make use of the functional Bpεqpmqpqq : X� Ñ XN

defined as

Bpεqpmqpqqpsq :� P|s|pεqpmqpqsq.

By using the expanded definition of P (cf. Definition 10), it is easy to see that B, for fixed
ε,m and q, satisfies the recursion schema

Bpsq :�
#
λn.0X if |s| ¡ m

as � Bps � asq if |s| ¤ m

where as � ε|s|pλx.qps � x � Bps � xqqq. The intuitive reading of B is an operation that takes
a partial play s and returns s � α where α is a continuation of s that is optimal up to round
m. In particular, an easy induction argument proves that for all i ¤ m

P0pεqpmqpqqi � Bpx yqi � Bpx0, . . . , xi�1q0 (2)

where xj :� P0pεqpmqpqqj for j i. In what follows the parameters of B will always be clear
from the context, so we will omit them for simplicity.

Notation. Given two fragments of T, say T1 and T2, we write T1 ñ T2 if all functionals
definable in T2 can be already defined in T1.

� Theorem 18. PX,R is definable in T0 � RX�ÑXN , so in particular Tn�1 ñ Pn.

Proof. Looking at the definition of the finite product, namely

PX,Ri pεqpmqpqq
XN
�

#
λn.0X if i ¡ m

a � PX,Ri�1 pεqpmqpqaq if i ¤ m

where a :� εipλx.qxpPX,Ri�1 pεqpmqpqxqqq, it is clear that the schema is just a standard recursion
of type X� Ñ XN in which the quantity m � 1 � i decreases along the recursion until it
reaches 0. Formally, define the functionals yε,q,m : X� Ñ XN and zε,q,m : N�pX� Ñ XNq Ñ

pX� Ñ XNq parametrised by ε, q and m as

yε,q,mpsq :� λn.0X

zε,q,mpi, FX
�ÑXN

qpsq :� as � F ps � asq

where as :� εm�ipλx.qs�xpF ps � xqqq and m � i denotes truncated subtraction. We claim
that for all s

Bpsq � RX
�ÑXN

m�1�|s|py
ε,q,m, zε,q,mqpsq,

M. Escardó, P. Oliva and T. Powell 11

where B is as in Definition 17. In particular, it would follow that

PX,R0 pεqpmqpqq � Bpx yq � RX
�ÑXN

m pyε,q,m, zε,q,mqpx yq.

The claim is proved by induction on m� 1 � |s|. For |s| ¥ m� 1 we have

Rm�1�|s|psq � R0psq � yε,q,mpsq � λn.0X � Bpsq.

Now for |s| � i m� 1 we have

Rm�1�|s|psq � Rpm�iq�1psq � zε,q,mpm� i,Rm�iqpsq � as � Rm�ips � asq

where as :� εipλx.qs�xpRm�ips � xqqq. But by induction hypothesis we have that

Rm�ips � xq � Bps � xq

for all |s| � i. Therefore Rm�1�ipsq � Bpsq. This completes the induction. �

We will show that the the types above are optimal, in the sense that we also have
the converse Pn ñ Tn�1. But before showing that, lets us first show how one easily has
Pn ñ Tn. The stronger result will require a more involved argument.

� Theorem 19. RX is definable in T0 � PX,XN , so in particular Pn ñ Tn.

Proof. Given arbitrary functionals y : X and z : NÑ pX Ñ Xq, define selection functions
εy,z : NÑ JXNX parametrised by y and z as

εy,zi ppXÑXN
q
X:�
#
y if i � 0

zpi� 1, pp0Xqi�1q if i ¡ 0.

Clearly λy, z.εy,z can be constructed in T0. We prove by induction on m that

Rmpy, zq � pBpεy,zqpmqpidqpx yqqm,

where id : XN Ñ XN is the identity λ-term. We shall actually think of m as fixed and show

Ripy, zq � pBpεy,zqpmqpidqpx yqqi,

for i ¤ m, by induction on i. When i � 0 we have (abbreviating Bpsq � Bpεy,zqpmqpidqpsq)

Bpx yq0 � εy,z0 pλx . . .q � y � R0py, zq.

Assuming that xj � Rjpy, zq � Bpx yqj , for j i. We have

Bpx yqi
p2q
� Bpx0, . . . , xi�1q0

� εipλx.xx0, . . . , xi�1, xy � Bpx0 . . . , xi�1, xqq � zpi� 1, xi�1q � Ripy, zq.

�

Already, we obtain the following key result.

� Corollary 20. Gödel’s system T, i.e. T0 � R, can be equivalently defined as T0 � P.

12 System T and the Product of Selection Functions

The intuition behind the proof of Theorem 19 is that the type R � XN represents a
register of elements of type X on which we perform a computation. The selection function εi
sets the entry xi at position i on the register to be zpi� 1, xi�1q, where xi�1 is the entry at
position i� 1. The product P0pmqpεiqpidq carries out the first m steps of this computation,
returning Rmpy, zq at position m.

Of course the finite product of selection functions is able to perform a variety of com-
putations on a register XN in this manner - in which the εi determine the entry in the ith
position of the register. However, in general the selection functions are capable of making
this decision based not only on the previous entries but depending on the effect that potential
choices have on subsequent entries. This suggests that the finite product of type X is a more
powerful construction than the recursor of type X.

� Theorem 21. RXÑX is definable in T0 � PX,XN .

Proof. Given arbitrary functionals y : XX and z : N Ñ pXX Ñ XXq, define selection
functions εy,z,n,ai : JXNX parametrised by y : XX and z : N Ñ pXX Ñ XXq and n : N and
a : X as

εy,z,n,ai ppXÑXN
q
X:�

$'''''&
'''''%

zpn� 1, λx.ppxq1qpaq if i � 0

zpn� i� 1, λx.ppxqi�1qppp0Xqi�1q if 0 i n

yppp0Xqi�1q if i � n

0X otherwise

for n ¡ 0, and

εy,z,0,ai ppXÑXN
q
X:�
#
ypppaq0q if i � 0

0X otherwise.

The functional λy, z, n, a.εy,z,n,a can be constructed in T0 since we only make use of com-
binatory completeness and definition by cases (which is primitive recursive of level 0 and
allowed in T0). We prove that R can be defined as

Rnpy, zq � λa.pP0pε
y,z,n,aqpnqpidqq0.

This is trivial for n � 0, so in the following we assume that n ¡ 0. Once again, for convenience
we set Bpsq :� P|s|pε

y,z,n,aqpnqpidsq. First, we claim that

pBpx0, . . . , xi�1qq0 � Rn�ipy, zqpxi�1q

for all 0 i ¤ n. We proceed by induction on n� i. For i � n we have

pBpx0, . . . , xn�1qq0 � εnpλx.xx0, . . . , xn�1, xy � λn.0Xq � ypxn�1q � R0py, zqpxn�1q.

For 0 i n,

pBpx0, . . . , xi�1qq0 � εipλx.xx0, . . . , xi�1, xy � Bpx0, . . . , xi�1, xqq

� zpn� i� 1, λx.Bpx0, . . . , xi�1, xq0qpxi�1q

� zpn� i� 1, λx.Rn�i�1py, zqpxqqpxi�1q

� Rn�ipy, zqpxi�1q,

M. Escardó, P. Oliva and T. Powell 13

assuming, by hypothesis, that Bpx0, . . . , xi�1, xq � Rn�pi�1qpy, zqpxq. This proves the claim,
and the theorem follows directly:

P0pεqpnqpidq0 � Bpx yq0
� ε0pλx.x � Bpxqq
� zpn� 1, λx.Bpxq0qpaq
� zpn� 1, λx.Rn�1py, zqpxqqpaq � Rnpy, zqpaq.

�

� Corollary 22. Pn ô Tn�1.

Proof. One direction is given by Theorem 18. The other follows from Theorem 21: It can be
shown that any type of level n is isomorphic to the pure type of that level, and consequently
any two recursors of the same type level are inter-definable over T0. If degpXq � n then
degpX Ñ Xq � n� 1, therefore by Theorem 21, Pn ñ Tn�1. �

Theorem 22 tells us that, in particular, the product of selection functions over the type X
is strictly stronger than primitive recursion of type X. For the case X � N we can illustrate
this directly by constructing the Ackermann function in P0.

� Example 23 (Ackermann function). Define the selection functions εn,ai : JNNN parametrised
by natural numbers n and a as

εn,ai ppNÑNN
q

N:�

$'''''&
'''''%

pλx.ppxq1q
pa�1qp1q if i � 0

pλx.ppxqi�1q
ppp0Xqi�1�1qp1q if 0 i n

pp0Xqi�1 � 1 if i � n

0 otherwise

for n ¡ 0, and

ε0,a
i ppNÑNN

q
N:�
#
ppaq0 � 1 if i � 0

0 otherwise

where f pjq is defined in T0 by f p0qpxq � x and f pj�1qpxq � fpf pjqpxqq. We claim that

Apn, aq � pP0pε
n,aqpnqpidqq0 � pBpx yqq0

where A is the Ackermann function. For instance, Ap3, aq is the first entry in an optimal
play of a sequential game with selection functions ε3,a

i and id as the outcome function. We
sketch its derivation below.

Bpx0, x1, x2q � ε3,a
3 pλx.xx0, x1, x2, x, 0, 0, . . .yq, 0, 0, . . . � x2 � 1, 0,

Bpx0, x1q � ε3,a
2 pλx.xx0, x1, x, x� 1, 0, . . .yq, . . . � pλx.x� 1qpx1�1qp1q, . . . � x1 � 2, . . .

Bpx0q � ε3,a
1 pλx.xx0, x, x� 2, . . .yq, . . . � pλx.x� 2qpx0�1qp1q, . . . � 2x0 � 3, . . .

Bpx yq � ε3,a
0 pλx.xx, 2x� 3, . . .yq, . . . � pλx.2x� 3qpa�1qp1q, . . . � 2pa�3q � 3,

Similarly, the first entry in the 5-round game with selection functions ε4,a
i is p2 Ò2 n� 3q � 3

and so on. Thus the product of selection functions over N allows a much higher rate of
growth than primitive recursion over N.

14 System T and the Product of Selection Functions

PA0

��

IΣnoo

��

FΠn
oo

��

IΣn�1oo

��

PAoo

��
Tb Tn�1oo Pn�1Thm.19

oo Tn
+3

Thms.18,21
ks Too

Figure 1 Fragments of Peano arithmetic and corresponding fragments of system T.

To summarise, we have shown that the finite product of selections is equivalent to the
higher type recursor in the sense that Pn ô Tn�1 over T0. We conclude by pointing out
that these equivalences actually hold over a much weaker base theory, and that in particular
the finite product of lowest type defines the primitive recursors of lowest type over a weak
fragment of T0. This follows from the observation that in establishing the equivalences we
only make use of a very restricted class of primitive recursive functions, namely concatenation
of sequences and definition by cases.

� Definition 24. 1. The fragment Tb � T0 of system T is defined to be the T0 but with
constants for primitive recursion eliminated, save for definition by cases and concatenation
� for all types.

2. The binary product of selection functions can be defined in the language of Tb. Therefore,
we define the theory P̃n to be Tb plus the finite product of selection functions PX,R for
all types X with degpXq ¤ n.

It is easy to see that in the proof of Theorem 19 we only need to assume Tb (rather than
T0). Therefore we obtain the following:

� Theorem 25. P̃0 ñ T0, so in particular P̃n can be identified with Pn, for all n.

Hence all uses of T0 above can be replaced by Tb, and as such the finite product of
selection functions PX,R is truly interchangeable with Gödel’s primitive recursor RX (for all
types X).

6 Final Remarks

The first two authors have studied in [2] an unbounded product of selection functions

PX,Ri pεqpψqpqq
XN
�

$&
%

0XN if i ¡ ψpqp0qq�
εi b PX,Ri�1 pεqpψq

	
pqq if i ¤ ψpqp0qq

where the fixed bound m (cf. Definition 10) is replaced by a bounding function ψ on the
canonical outcome qp0q. When ψ is the constant functional m we obtain the finite product
as a particular case of this. They have shown that this unbounded product is primitive
recursively equivalent to Spector’s bar recursion [17], and hence it is precisely what is needed
to (dialectica) interpret full classical analysis. Combining this with our results above show
that the iterated product of selection functions P provides a uniform link between Gödel’s
primitive recursor R and Spector’s bar recursion, and hence, a uniform way to interpret
arithmetic and analysis.

Figure 1 shows the different subsystems of Peano arithmetic we have considered, and
the corresponding fragments of system T needed for a dialectica interpretation. Parsons

M. Escardó, P. Oliva and T. Powell 15

has shown that the fragment of PA based on Πn finite choice is strictly weaker than the
fragment based on Σn�1 induction. Nevertheless, we have shown that the product of selection
functions of type level n� 1 (which directly interprets Πn-FAC) is equivalent (over a weak
theory) to the recursor of type n (which directly interprets Σn�1-IND).

Given that FΠn is strictly weaker than IΣn�1, we conclude with the question of whether
FΠn can be (dialectica) interpreted in a fragment of T that is strictly weaker than Pn, or
whether it is in fact equivalent to IΣn�1 on a computational level, despite being logically
weaker?

Acknowledgements. The authors are grateful to Ulrich Kohlenbach for pointing out the
proof in [16] of the equivalence between Πn-FAC and Πn-BC.

References
1 S. R. Buss, editor. Handbook of Proof Theory, volume 137. Elsevier, Amsterdam, 1998.
2 M. H. Escardó and P. Oliva. Bar recursion and products of selection functions. Submitted

for publication, 2010.
3 M. H. Escardó and P. Oliva. Computational interpretations of analysis via products of

selection functions. In F. Ferreira, B. Lowe, E. Mayordomo, and L. M. Gomes, editors,
Computability in Europe 2010, LNCS 6158, pages 141–150. Springer, 2010.

4 M. H. Escardó and P. Oliva. The Peirce translation and the double negation shift. In
F. Ferreira, B. Löwe, E. Mayordomo, and L. M. Gomes, editors, Programs, Proofs, Processes
- CiE 2010, LNCS 6158, pages 151–161. Springer, 2010.

5 M. H. Escardó and P. Oliva. Selection functions, bar recursion, and backward induction.
Mathematical Structures in Computer Science, 20(2):127–168, 2010.

6 M. H. Escardó and P. Oliva. Sequential games and optimal strategies. Royal Society
Proceedings A, 467:1519–1545, 2011.

7 K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica, 12:280–287, 1958.

8 U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.
Monographs in Mathematics. Springer, 2008.

9 G. Kreisel. On the interpretation of non-finitist proofs, part I. The Journal of Symbolic
Logic, 16:241–267, 1951.

10 G. Kreisel. On the interpretation of non-finitist proofs, part II: Interpretation of number
theory. The Journal of Symbolic Logic, 17:43–58, 1952.

11 S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathem-
atical Journal, 3:35–47, 1951.

12 H. Lessan. Models of Arithmetic. PhD thesis, Manchester University, 1978.
13 J. B. Paris and L. A. S. Kirby. Σn-collection schemas in arithmetic. In Logic Colloquium

’77, pages 199–210. North Holland, Amserdam, 1978.
14 C. Parsons. On a number theoretic choice schema and its relation to induction. In A. Kino,

J. Myhill, and R. E. Vesley, editors, Intuitionism and Proof Theory: Proceedings of the
Summer Conference at Buffalo, N.Y. 1968, pages 459–473. North Holland, Amserdam,
1970.

15 C. Parsons. On n-quantifier induction. The Journal of Symbolic Logic, 37:466–482, 1972.
16 W. Sieg. Fragments of arithmetic. Annals of Pure and Applied Logic, 28:33–71, 1985.
17 C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by

an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor,
Recursive Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1–27.
American Mathematical Society, Providence, Rhode Island, 1962.

	Introduction
	Fragments of Arithmetic
	Fragments of Gödel's system T

	The Product of Selection Functions
	Finite sequential games

	Interpreting the Principle of Finite Choice
	The Recursor and the Product of Selection Functions
	Final Remarks

