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Abstract. We present three different functional interpretations of intuitionistic
linear logic and show how these correspond to well-known functional interpreta-
tions of intuitionistic logic via embeddings of ILω into ILLω. The main difference
from previous work of the second author is that in intuitionistic linear logic (as
opposed to classical linear logic) the interpretations of !A are simpler and simul-
taneous quantifiers are no longer needed for the characterisation of the interpre-
tations. We then compare our approach in developing these three proof interpre-
tations with the one of de Paiva around the Dialectica category model of linear
logic.

1 Introduction

This paper presents a family of functional interpretations of intuitionistic linear logic.
First, we present a single functional interpretation of pure (i.e., the exponential-free
fragment of) intuitionistic linear logic. This is followed by a parametrised interpretation
of the exponential !A. Finally, three possible instances of the parameter are considered
and shown to correspond to three well-known functional interpretation of intuitionistic
logic.

The second author [10–13] has recently shown how different functional interpre-
tations of intuitionistic logic can be factored into a uniform family of interpretations
of classical linear logic combined with Girard’s standard embedding (·)∗ of intuition-
istic logic into linear logic (see also [5]). In the symmetric context of classical linear
logic each formula A is associated with a simultaneous one-move two-player game |A|xy .
Intuitively, the two players, say Eloise and Abelard, must pick their moves x and y si-
multaneously and Eloise wins if and only if |A|xy holds. The symmetric nature of the
game implies that (proof-theoretically) the formula A is interpreted as the formula

Æx
y |A|

x
y

where

Æx
y A is a simple form of branching quantifier – termed simultaneous quantifier in

[11]. Following this game-theoretic reading, the different interpretations of the modality
!A are all of the following form: First, it (always) turns a symmetric game into an asym-
metric one, where Eloise plays first, giving Abelard the advantage of playing second.
In the symmetric context, this asymmetric game can be modelled by allowing Abelard
to play a function f which calculates his move from a given Eloise move x. Secondly,
the game !A gives a further (non-canonical) advantage to Abelard, by allowing him to
play a set of moves, rather than a single move. The idea is the following: Abelard wins
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the game !A if there is a move y ∈ f x that is winning with respect to Eloise’s move x,
i.e. ¬|A|xy . Formally

|!A|xf ≡ ∀y∈ f x |A|xy .

Therefore, the game !A always introduces a break of symmetry, but it leaves open what
kind of sets Abelard is allowed to play. What the second author has shown is that if only
singleton sets are allowed the resulting interpretation corresponds to Gödel’s Dialectica
interpretation [1, 7, 12]; if finite sets are allowed then it corresponds to the Diller-Nahm
variant of the Dialectica interpretation [4, 13]; and if these sets are actually the whole
set of moves then it corresponds to Kreisel’s modified realizability interpretation [9,
11].

In the present paper we show that in the context of intuitionistic linear logic every
formula can be interpreted as a game where Eloise plays first and Abelard plays second,
the branching quantifiers being no longer needed. In other words, Abelard’s advantage
of playing second, which was limited to the game !A in classical linear logic, is ubiq-
uitous in intuitionistic linear logic. In this way, the game-theoretic interpretation of the
modality !A is simply to lift the moves of Abelard from a single move to a set of moves.
Formally,

|!A|xa ≡ ∀y∈ a |A|xy .

Therefore, by working in the context of ILLω, we can fully separate the canonical part
of the interpretation (pure intuitionistic linear logic), where all interpretations coincide,
and the non-canonical part where each choice of “sets of moves” gives rise to a different
functional interpretation.

As we shall see, the functional interpretation of pure intuitionistic linear logic co-
incides with Gödel’s Dialectica interpretation of intuitionistic logic, reading (,⊗ and
⊕ as →,∧ and ∨, respectively. This is so because the Dialectica interpretation iden-
tifies the games A and !A. The connection between Gödel’s Dialectica interpretation
and intuitionistic linear logic was first studied by de Paiva [14]. One can view our work
here as a proof-theoretic reading of de Paiva’s category-theoretic work, together with an
extension linking the “Dialectica” interpretation of intuitionistic linear logic also with
Kreisel’s modified realizability (see also Biering’s recent work [2]).

The paper is organised as follows: In Section 2 we present the basic interpreta-
tion of pure intuitionistic linear logic. In the same section we outline which principles
are needed for the characterisation of the interpretation (Subsection 2.1). Section 3 de-
scribes three different interpretations of the modality !A. This is followed (Section 4)
by a description of how these choices correspond to three well-known functional in-
terpretations of intuitionistic logic: Kreisel’s modified realizability, Diller-Nahm inter-
pretation and Gödel’s Dialectica interpretation. Finally, in Section 5 we compare our
approach (based on finite types) with that of de Paiva (based on cartesian closed cate-
gories).

1.1 Intuitionistic Linear Logic

Intuitionistic linear logic can be viewed as a fragment of Girard’s linear logic [6] which
is sufficient for embedding intuitionistic logic into the linear context. We will make use
of the formulation of intuitionistic linear logic shown in Tables 1 and 2 with the usual
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(id)
A ` A Γ, 0 ` A

Γ ` A ∆, A ` B
(cut)

Γ, ∆ ` B

Γ ` A
(per)

π{Γ} ` A

Γ ` A ∆ ` B
(⊗R)

Γ, ∆ ` A ⊗ B

Γ, A, B ` C
(⊗L)

Γ, A ⊗ B ` C

Γ, A ` B
((R)

Γ ` A( B

Γ ` A ∆, B ` C
((L)

Γ, ∆, A( B ` C

Γ ` A Γ ` B
(&R)

Γ ` A & B

Γ, A ` B
(&L)

Γ, A & C ` B

Γ, A ` B
(&L)

Γ,C & A ` B

Γ ` A
(⊕R)

Γ ` A ⊕ B

Γ ` B
(⊕R)

Γ ` A ⊕ B

Γ, A ` C Γ, B ` C
(⊕L)

Γ, A ⊕ B ` C

Table 1. Intuitionistic Linear Logic (connectives)

side conditions in the rules ∀R and ∃L. Our system is denoted by ILLω since we work
in the language of all finite types.

The finite types are inductively defined in the usual way: i is a finite type and if ρ
and σ are finite types then ρ → σ is a finite type. The terms of ILLω are: the constants
(including one of type i to ensure that all types are inhabited by a closed term and the
typed combinators Πσ→τ→σ and Σ(ρ→σ→τ)→(ρ→σ)→ρ→τ), infinitely many variables xρ of
each finite type ρ, and if tσ→τ and sσ are terms then the application ts is a term of
type τ. We assume a neutral treatment of equality in the system ILLω (cf. [18]), i.e. the
combinators are axiomatised as

A[Π xy/w] � A[x/w] and A[Σxyz/w] � A[xz(yz)/w].

where A � B is an abbreviation from (A ( B) & (B ( A). By combinatorial com-
pleteness, we know that we can associate to each term tσ and variable xτ a term λx.t of
type τ→ σ also satisfying A[(λx.t)(s)/w] � A[t[s/x]/w].

The atomic formulas of ILLω are denoted by Aat (the linear logic constant 0 is an
atomic formula) and if A and B are formulas, then A ⊗ B, A & B, A ⊕ B, A ( B, !A,
∀xA(x) and ∃xA(x) are also formulas.

In this paper we will also work with a subsystem of ILLω, dubbed ILLωr , where the
following restriction is assumed on the &R-rule: The context Γ must consist entirely of
formulas of the kind !A. In Section 4 we will see why we need this technical restriction.
Nevertheless, note that both systems ILLω and ILLωr are strong enough to capture intu-
itionistic logic ILω into the linear context, as made precise in the following proposition.
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Γ ` A
(∀R)

Γ ` ∀xρA

Γ, A[tρ/x] ` B
(∀L)

Γ,∀xρA ` B

Γ ` A[tρ/x]
(∃R)

Γ ` ∃xρA

Γ, A ` B
(∃L)

Γ,∃xρA ` B

Γ, !A, !A ` B
(con)

Γ, !A ` B

Γ ` B
(wkn)

Γ, !A ` B

!Γ ` A
(!R)

!Γ `!A

Γ, A ` B
(!L)

Γ, !A ` B

Table 2. Intuitionistic Linear Logic (quantifiers and modality)

Proposition 1 ([6]). Define two translations of formulas of ILω into formulas of ILLωr
inductively as follows:

A∗at :≡ Aat A◦at :≡ !Aat, if Aat . ⊥

⊥∗ :≡ 0 ⊥◦ :≡ 0

(A ∧ B)∗ :≡ A∗& B∗ (A ∧ B)◦ :≡ A◦ ⊗ B◦

(A ∨ B)∗ :≡ !A∗⊕ !B∗ (A ∨ B)◦ :≡ A◦ ⊕ B◦

(A→ B)∗ :≡ !A∗ ( B∗ (A→ B)◦ :≡ !(A◦ ( B◦)

(∀xA)∗ :≡ ∀xA∗ (∀xA)◦ :≡ !∀xA◦

(∃xA)∗ :≡ ∃x!A∗ (∃xA)◦ :≡ ∃xA◦

If A is provable in ILω then A∗ and A◦ are provable in ILLωr (and hence also in ILLω).
Moreover, it is easy to check that A◦ � !A∗.

Proof. It is already known that if Γ `ILω A then !Γ∗ `ILLω A∗ (see [6, 17]). The result
with ILLω replaced by ILLωr just requires our attention in the rule &R. The result for A◦

follows immediately from the fact that in ILLωr we can prove A◦ � !A∗. �

The systems ILLω and ILLωr will be called interpreted systems, to distinguish them
from the verifying system presented in the next subsection. The interpretations we will
discuss map formulas and proofs in the interpreted system into formulas and proofs
of the verifying system. In order to obtain a general notion of interpretation, we must
work with the simplest (yet relevant) interpreted system possible. When extending the
interpretation to more complex systems we must then ensure that the extra axioms and
rules are also interpreted, but these might be interpreted by some interpretation but
not others. For instance, we chose a neutral treatment of equality in the interpreted
system because that is what can be interpreted in general, by all three interpretations
considered. If one were to add full extensionally the Dialectica interpretation would no
longer work, whereas this would be no problem for the realizability interpretation.
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Notation. Throughout the paper, boldface letters a, b, . . . or x, y, . . . stand for tuples of
terms or variables.

1.2 Verifying system

As we will show in the next sections, the three presented functional interpretations
translate the formula A ⊕ B via a sort of flagged disjoint union, i.e. a boolean and a
witness for either A or B. Therefore, in the verifying system, which we shall denote by
ILLωb , we assume that the language also contains the booleans b as base type. We also
assume the existence of two boolean constants true and false (T, F), boolean variables,
an equality relation =b between terms of boolean type, and a constant of type b →
ρ → ρ → ρ that should be seen as a conditional λ-term z(t, q) that equals either t or q
depending on whether zb equals true or false. ILLωb is assumed to contain the following
axioms for equality:

1. !(x =b x)

2. !(x =b y)( !(y =b x)

3. !(x =b y) ⊗ !(y =b z)( !(x =b z)

4. !(x =b y) ⊗ A[x/w]( A[y/w].

We would also like to ensure that true and false are distinct and that there are no other
elements of boolean type

5. !(T =b F)( 0

6. !(z =b T)⊕ !(z =b F).

The axioms for the conditional λ-term are as follows

7. A[T(t, q)/w] � A[t/w] and A[F(t, q)/w] � A[q/w].

For simplicity, we use the following abbreviation:

A ^z B :≡ (!(z =b T)( A) & (!(z =b F)( B).

Lemma 1. The following are derivable in ILLωb

(i)
` A[T] ` A[F]

` A[z]

(ii) !(T =b T)( A ` A and !(F =b F)( A ` A

(iii) A ` !(T =b F)( B

(iv) A ^T B � A and A ^F B � B

(v) !A ^z !B � !(!A ^z !B).
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Proof. Assertion (i) can be derived from axioms 4. and 6.; (ii) follows easily from
axiom 1.; (iii) can be deduced from axiom 5. and the forward implications in (iv) follow
immediately from item (ii) and the inverse implications can easily be deduced using
(iii). The forward implication in assertion (v) can be derived using assertions (i) and
(iv), the other implication being trivial. �

We stress again that we do not need to worry about which axioms are added to
the verifying system ILLωb , as these do not need to be interpreted. For instance, in the
verifying system we could even have assumed full extensionality. What we listed above
in the description of ILLωb is the minimal necessary to verify the basic interpretation
of ILLω and ILLωr , to be described in the following section. When extending the basic
interpretation to deal with !A we will also need to extend the verifying system ILLωb .
The extensions of ILLωb , however, will depend on the particular interpretation of !A, and
will be introduced in Proposition 4 (Section 3).

2 A Basic Interpretation of Pure ILLω

In this section we present a basic functional interpretation of pure (without the expo-
nential !A) intuitionistic linear logic, and prove its soundness. In the next section we
then consider different extensions of this interpretation to full intuitionistic linear logic.

Definition 1 (Basic functional interpretation of pure ILLω). For each formula A of
pure ILLω, let us associate a formula |A|xy of ILLωb , with two fresh lists of free-variables
x and y, inductively as follows: For atomic formulas Aat we let |Aat| :≡ Aat. Assume the
interpretations of A and B have already been defined as |A|xy and |B|vw, we then define

|A( B| f ,gx,w :≡ |A|xf xw ( |B|
gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|
v
w

|A & B|x,vy,w,z :≡ |A|xy ^z |B|vw

|A ⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw

|∃zA(z)|x,zy :≡ |A(z)|xy

|∀zA(z)| fy,z :≡ |A(z)| fz
y .

Intuitively, the meaning of A is reduced to the existence of a tuple of objects x such
that ∀y|A|xy . The x’s are called witnesses and the y’s challenges. Note that, contrary
to the interpretation of classical linear logic [10, 13], the functional interpretation of
intuitionistic linear logic is no longer symmetric. In terms of games, the interpretation
above can be seen as associating to each formula A a one-move two-player sequential
game |A|xy . In this game, Eloise starts by playing a move x followed by Abelard playing
a move y. Eloise wins if |A|xy holds, otherwise Abelard wins.

Theorem 1 (Soundness). Let A0, . . . , An, B be formulas of pure ILLω, with z as the only
free-variables. If
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A0(z), . . . , An(z) ` B(z)

is provable in pure ILLω then terms a0, . . . , an, b can be extracted from this proof such
that

|A0(z)|x0
a0 , . . . , |An(z)|xn

an ` |B(z)|bw
is provable in ILLωb , with FV(ai) ⊆ {z, x0, . . . , xn,w} and FV(b) ⊆ {z, x0, . . . , xn}.

Proof. By induction on the derivation of A0(z), . . . , An(z) ` B(z). The axioms are trivial
since the interpretation does not change atomic formulas and every type is inhabited.
Note that for the axiom Γ, 0 ` A, the interpretation of 0 is 0 itself, and so we can take
arbitrary terms of the right type. The fact that every type is inhabited is also used in the
study of the rules &L and ⊕R. The permutation rule is immediate. Let us consider a few
other cases:

Cut. By induction hypothesis, assume we already terms witnessing the two premises as
|Γ|uγ ` |A|

a0
y and |∆|vδ, |A|

x
a1[x] ` |B|

b
w. We must construct terms that witness the conclusion

Γ, ∆ ` B. That can be done as follows:

|Γ|uγ ` |A|
a0
y

[ a1[a0]
y ]

|Γ|uγ′ ` |A|
a0
a1[a0]

|∆|vδ, |A|
x
a1[x] ` |B|

b
w

[ a0
x ]

|∆|vδ′ , |A|
a0
a1[a0] ` |B|

b′
w

(cut)
|Γ|uγ′ , |∆|

v
δ′ ` |B|

b′
w

where γ′ and δ′, b′ are obtained from γ and δ, b via the substitutions [a1[a0]/y] and
[a0/x], respectively.

Tensor.
|Γ|uγ ` |A|

a
y |∆|vδ ` |B|

b
w

(⊗R)
|Γ|uγ, |∆|

v
δ ` |A|

a
y ⊗ |B|

b
w

(D1)
|Γ|uγ, |∆|

v
δ ` |A ⊗ B|a,by,w

|Γ|uγ, |A|
x
a, |B|

v
b ` |C|

c
w

(⊗L)
|Γ|uγ, |A|

x
a ⊗ |B|

v
b ` |C|

c
w

(D1)
|Γ|uγ, |A ⊗ B|x,va,b ` |C|

c
w

(L introduction.

|Γ|uγ[y] ` |A|
a
y

[ f a(b[ga])
y ]

|Γ|uγ[ f a(b[ga])] ` |A|
a
f a(b[ga])

|∆|wδ[v], |B|
v
b[v] ` |C|

c[v]
z

[ ga
v ]

|∆|wδ[ga], |B|
ga
b[ga] ` |C|

c[ga]
z

(( L)
|Γ|uγ[ f a(b[ga])], |∆|

w
δ[ga], |A|

a
f a(b[ga]) ( |B|

ga
b[ga] ` |C|

c[ga]
z

(D1)
|Γ|uγ[ f a(b[ga])], |∆|

w
δ[ga], |A( B| f ,ga,b[ga] ` |C|

c[ga]
z

Universal quantifier.

|Γ|uγ[z] ` |A(z)|a[z]
y

|Γ|uγ[z] ` |A(z)|(λz.a[z])z
y

(D1)
|Γ|uγ[z] ` |∀zA(z)|λz.a[z]

y,z

|Γ|uγ[x], |A(t)|xa[x] ` |B|
b[x]
w

[ f t
x ]

|Γ|uγ[ f t], |A(t)| f t
a[ f t] ` |B|

b[ f t]
w

(D1)
|Γ|uγ[ f t], |∀zA(z)| fa[ f t],t ` |B|

b[ f t]
w

Existential quantifier.

|Γ|uγ ` |A(t)|ay
(D1)

|Γ|uγ ` |∃zA(z)|a,ty

|Γ|uγ[z], |A(z)|xa[z] ` |B|
b[z]
y

(D1)
|Γ|uγ[z], |∃zA(z)|x,za[z] ` |B|

b[z]
y
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&R introduction.

|Γ|uγ0
` |A|ay |A|ay ` |A|

a
y ^T |B|bw

|Γ|uγ0
` |A|ay ^T |B|bw

` |Γ|uγ0
( |A|ay ^T |B|bw

(Ax. 7)
` |Γ|uT(γ0,γ1) ( |A|

a
y ^T |B|bw (+)

(L1(i))
` |Γ|uz(γ0,γ1) ( |A|

a
y ^z |B|bw

(D1)
` |Γ|uz(γ0,γ1) ( |A & B|a,by,w,z

|Γ|uz(γ0,γ1) ` |A & B|a,by,w,z

where (+) is the dual case.

&L introduction and ⊕R introduction.

|Γ|uγ, |A|
x
a ` |B|

b
w

(L1(iv))
|Γ|uγ, |A|

x
a ^T |C|vc ` |B|

b
w

(D1)
|Γ|uγ, |A & C|x,va,c,T ` |B|

b
w

|Γ|uγ ` |A|
a
y |A|ay ` |A|

a
y ^T |B|bw

(cut)
|Γ|uγ ` |A|

a
y ^T |B|bw

(D1)
|Γ|uγ ` |A ⊕ B|a,b,Ty,w

The other &L and ⊕R are similar.

⊕L introduction.

(+)

|Γ|uγ1
, |B|vb ` |C|

c2
w

(Ax. 7/ L1(iv))
|Γ|uF(γ0,γ1), |A|

x
a ^F |B|vb ` |C|

F(c1,c2)
w

(L1(i))
|Γ|uz(γ0,γ1), |A|

x
a ^z |B|vb ` |C|

z(c1,c2)
w

(D1)
|Γ|uz(γ0,γ1), |A ⊕ B|x,v,za,b ` |C|

z(c1,c2)
w

where (+) is the dual case. The other rules are treated similarly. �

2.1 Characterisation

As mentioned in the introduction, one of the main advantages of working in the context
of intuitionistic linear logic is that we no longer need branching quantifiers. The asym-
metry introduced in ILLω turns the symmetric games of classical linear logic into games
where Eloise always plays first, so formulas A are interpreted as ∃x∀y|A|xy .

Proposition 2. The following principles, denoted by ACl, MPl, IPl and EP (acronyms
for linear versions of Axiom of Choice, Markov Principle, Independence of Premises
and Extra Principle) characterise the basic interpretation presented above

ACl : ∀x∃yA∀(y)( ∃ f∀xA∀( f x)

MPl : (∀xAqf ( Bqf)( ∃x(Aqf ( Bqf)

IPl : (A∀ ( ∃yB∀)( ∃y(A∀ ( B∀)

EP : ∀x, v(Aqf ⊗ Bqf)( (∀xAqf ⊗ ∀vBqf)
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where Aqf, Bqf and A∀, B∀ are quantifier-free formulas and purely universal formulas of
ILLωb respectively. It is also assumed that x does not occur in Bqf, y does not occur in
A∀ in the principle IPl and v does not occur in Aqf in the principle EP. Formally,

ILLωb + ACl + MPl + IPl + EP ` A � ∃x∀y|A|xy .

Moreover, assuming that ^ is a primitive symbol, interpreted as in [11], the charac-
terisation result still holds when bang does not occur in ACl, MPl, IPl and EP and these
principles are interpretable, i.e. denoting by P any instance of these principles, there
are terms a such that ILLωb ` ∀y|P|ay .

Proof. The linear equivalence can be proved by induction on the logical structure of A.
Let us consider a few cases:

Tensor.

A ⊗ B
(IH)
� ∃x∀y|A|xy ⊗ ∃v∀w|B|vw
(EP)
� ∃x, v∀y,w(|A|xy ⊗ |B|

v
w)

≡ ∃x, v∀y,w|A ⊗ B|x,vy,w.

With.

A & B
(IH)
� ∃x∀y|A|xy &∃v∀w|B|vw
� ∀z(∃x∀y|A|xy ^z ∃v∀w|B|vw)

� ∀z∃x, v(∀y|A|xy ^z ∀w|B|vw)

� ∀z∃x, v∀y,w(|A|xy ^z |B|vw)

(ACl)
� ∃ f , g∀z, y,w(|A| fz

y ^z |B|
gz
w )

� ∃x, v∀z, y,w(|A|xy ^z |B|vw)

≡ ∃x, v∀y,w, z|A & B|x,vy,w,z.

Linear implication.

A( B
(IH)
� ∃x∀y|A|xy ( ∃v∀w|B|vw

(IPl,MPl)
� ∀x∃v∀w∃y(|A|xy ( |B|

v
w)

(ACl)
� ∃ f , g∀x,w(|A|xf xw ( |B|

gx
w ) ≡ ∃ f , g∀x,w|A( B| f ,gx,w.

Universal quantifier.

∀zA
(IH)
� ∀z∃x∀y|A|xy

(ACl)
� ∃ f∀y, z|A| fz

y ≡ ∃ f∀y, z|∀zA| fy,z.

The other cases are treated similarly. In fact, for the remaining cases (once the induction
hypothesis is assumed) the equivalence can be proved in ILLωb alone.
With the assumptions presented, the interpretability of the principles is easily checked
since quantifier-free formulas are interpretable by themselves, i.e. they do not ask for
realisers. We illustrate with the principle ACl where the premise is interpreted as

|∀x∃y∀zAq f |
f
z,x ≡ |∃y∀zAq f (x, y, z)| f x

z ≡ |∀zAq f (x, f x, z)|z ≡ Aq f (x, f x, z)
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whereas the conclusion is interpreted as

|∃ f∀x∀zAq f (x, f x, z)| fz,x ≡ |∀x∀zAq f (x, f x, z)|z,x ≡ |∀zAq f (x, f x, z)|z ≡ Aq f (x, f x, z).

Since the realisers of the premise are the same as those of the conclusion, the identity
and projection functions can be taken as realisers of the implication. �

Remark 1. Note that if we are embedding ILω via the standard embedding (·)∗ then the
connective ⊗ is not needed, and hence the extra principle EP is not needed either.

3 Some Interpretations of ILLω

In this section we consider a few choices of how the basic interpretation given in Defi-
nition 1 can be extended to full intuitionistic linear logic, i.e. we present three possible
interpretations of !A. All choices considered will have the form

|!A|xy :≡ !∀y′@ y |A|xy′ (1)

where ∀y@ a A is a meta-level formula construction which we will assume to satisfy the
following: For some terms1 η(·), (·) ⊗ (·) and (·) ◦ (·) the conditions below are provable
in ILLωb

(A1) !∀y@η(z) A[y]( A[z]

(A2) !∀y@ (y1 ⊗ y2) A[y]( !(∀y@ y1 A[y])⊗ !(∀y@ y2 A[y])

(A3) !∀y@ ( f ◦ z) A[y]( !∀x@ z !∀y@ f x A[y].

The three instances of such meta-level formula construction ∀y@ a A we will con-
sider are ∀yA, ∀y∈ a A (where y∈ a will be defined later), and A[a/y].

Proposition 3. Under the assumptions (A1 – A3) on the formula construction ∀y@ a A,
the generic interpretation of !A as above leads to a sound functional interpretation of
ILLω.

Proof. By Theorem 1 we just have to analyse the rules of contraction, weakening, !R,
and !L.

Contraction. Assume by induction hypothesis that we already have terms witnessing the
premise of the rule, i.e. |Γ|uγ, |!A|

x0
a0 , |!A|

x1
a1 ` |B|

b
w. We must from these construct witnesses

for the conclusion Γ, !A ` B. That can be done as follows:

|Γ|uγ, |!A|
x0
a0
, |!A|x1

a1
` |B|bw

[ x
x0
, x

x1
]

|Γ|uγ, |!A|
x
a0
, |!A|xa1

` |B|bw
(1)

|Γ|uγ, !∀y′@ a0 |A|xy′ , !∀y′@ a1 |A|xy′ ` |B|
b
w

(⊗L)
|Γ|uγ, !∀y′@ a0 |A|xy′ ⊗ !∀y′@ a1 |A|xy′ ` |B|

b
w

(A2)
|Γ|uγ, !∀y′@ a0 ⊗ a1 |A|xy′ ` |B|

b
w

(1)
|Γ|uγ, |!A|

x
a0⊗a1

` |B|bw
1 Note that these terms are allowed to be specific to the formula A, in particular, the free variables

of η(·), (·) ⊗ (·) and (·) ◦ (·) are assumed to be contained in the free-variables of ∀yA[y] (i.e. all
free-variables of A except y).
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Weakening.
|Γ|uγ ` |B|

b
w

(wkn)
|Γ|uγ, !∀y′@ a |A|xy′ ` |B|

b
w

(1)
|Γ|uγ, |!A|

x
a ` |B|

b
w

where a are arbitrary closed terms of the appropriate types. Note that every type is
inhabited by a closed term.

!R.
|!Γ|uγ[y′] ` |A|

a
y′

(1)
!∀w′@γ[y′] |Γ|uw′ ` |A|

a
y′

!∀y′@ y !∀w′@ (λy′.γ[y′])y′ |Γ|uw′ ` !∀y′@ y |A|ay′
(A3)

!∀w′@ (λy′.γ[y′]) ◦ y |Γ|uw′ ` !∀y′@ y |A|ay′
(1)

|!Γ|u(λy′.γ[y′])◦y ` |!A|
a
y

!L.
|Γ|uγ, |A|

x
a ` |B|

b
w

(A1)
|Γ|uγ, !∀y@η(a) |A|xy ` |B|

b
w

(1)
|Γ|uγ, |!A|

x
η(a) ` |B|

b
w

That concludes the proof. �

Remark 2. Assume that the types of yρ and aTρ in ∀y@ a |A|xy are as shown, for a fixed
A. Then, our three families of terms have types

η : ρ→ Tρ

⊗ : Tρ × Tρ→ Tρ

◦ : (τ→ Tρ) × Tτ→ Tρ.

In category theory, one could think of (T, η, ◦) as forming a Kleisli triple (∼ monad),
with ⊗ being a commutative monoid on Tρ. This in turn extends to a comonad on
formulas as

T (A[y]) :≡ !∀y@ a A,

where the formula A with free-variables y is transformed in the new formula !∀y@ a A
with free-variables a. See e.g. the work of Valeria de Paiva [15] and Martin Hyland ([8],
section 3.1) on categorical logic for more information about the connection between
functional interpretations and comonads. More on the relation between ours and de
Paiva’s work can be found in Section 5.

Next, we present three sound interpretations of !A by providing three instances of
∀y@ a A which satisfy conditions (A1), (A2), and (A3). It is important to observe that
the meta-level formula construction ∀y@ a A is part of the verifying system. Therefore,
when discussing particular instances of ∀y@ a A it is not relevant for the interpretation
how the terms needed are axiomatised. Only axioms in the interpreted system needed
to be interpreted.
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Proposition 4. We have the following:

(a) |!A|x :≡ !∀y|A|xy is a sound interpretation of !A.

(b) Assume that the language of the verifying system ILLωb has a new finite type σ∗ for
each finite type σ. An element of type σ∗ is a finite set of elements of type σ. The
extended language has a relation symbol ∈ infixing between a term of type σ and
a term of type σ∗ with axioms to ensure that !(x ∈ y) if and only if x is an element
in the set y. Let then the formula ∀x ∈ t A abbreviate ∀x(!(x ∈ t) ( A). Assume
also the existence of three more constants η : σ → σ∗, ⊗ : σ∗ → σ∗ → σ∗ and
◦ : σ∗ → (σ→ ρ∗)→ ρ∗ that should be seen as terms such that η(t) is the singleton
set with tσ as the only element (in particular !(t ∈ η(t))), t ⊗ q is the union of two
finite sets t and q, and f ◦ q is the set that results from the union of all sets f x with
x ∈ q. Then |!A|xa :≡ !∀y∈ a |A|xy is a sound interpretation of !A.

(c) Assume the verifying system ILLωb has an extra axiom schema ` !A ⊕ (!A ( 0),
asserting the decidability of quantifier free-formulas A. Assume also that definition
by cases is definable over quantifier-free formulas A in the term language of ILLωb ,
i.e.

t ⊗ s :=

 t if !A( 0

s if !A,
with the rules

Γ ` B[t ⊗ s]

Γ, !A ` B[s]

Γ ` B[t ⊗ s]

Γ, !A( 0 ` B[t]
Then, |!A|xy :≡ !|A|xy is a sound interpretation of !A.

Proof. (a) This interpretation of !A corresponds to the choice ∀y@ t A :≡ ∀yA. It is easy
to check that conditions (A1), (A2) and (A3) become

!∀yA[y]( A[z]

!∀yA[y]( !∀yA[y]⊗ !∀yA[y]

!∀yA[y]( !∀x!∀yA[y]

respectively, which are trivially derivable in ILLωb .

(b) The interpretation |!A|xa :≡ !∀y∈ a |A|xy corresponds to the choice ∀y@ t A :≡ ∀y∈ t A,
i.e. ∀y(!(y ∈ t)( A[y]). In this context, the conditions (A1), (A2) and (A3) become

!∀y∈η(z) A[y]( A[z]

!∀y∈ y1 ⊗ y2 A[y]( !∀y∈ y1 A[y]⊗ !∀y∈ y2 A[y]

!∀y∈ f ◦ z A[y]( !∀x∈ z !∀y∈ f xA[y],

which are derivable in the extension of ILLωb outlined above.

(c) This interpretation of !A corresponds to the choice ∀y @ t A[y] :≡ A[t/y]. Given a
formula A[y] we define η(·), as being the identity, ◦ is defined as f ◦ x :≡ f x and y1 ⊗ y2
as
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y1 ⊗ y2 :=

 y1 if !A[y1]( 0

y2 if !A[y1].

Conditions (A1), (A2) and (A3) then become

!A[η(z)]( A[z]

!A[y1 ⊗ y2]( !A[y1]⊗ !A[y2]

!A[ f ◦ z]( !!A[ f z]

respectively. From the definitions of η(·) and (·)◦(·) conditions (A1) and (A3) are trivially
derivable. In the derivation of (A2) we use

` !A ⊕ (!A( 0)

!A[y1], !A[y1 ⊗ y2] ` !A[y1]⊗ !A[y2], and

!A[y1]( 0, !A[y1 ⊗ y2] ` 0.

More precisely,

(+)

!A[y1], !A[y1 ⊗ y2] ` !A[y1]⊗!A[y2]

!A[y1]( 0, !A[y1 ⊗ y2] ` 0
(cut)

!A[y1]( 0, !A[y1 ⊗ y2] ` !A[y1]⊗!A[y2]

!A[y1] ⊕ (!A[y1]( 0), !A[y1 ⊗ y2] ` !A[y1]⊗!A[y2]

!A[y1 ⊗ y2] ` !A[y1]⊗!A[y2]

where (+) is an instance of the assumed axiom !A[y1] ⊕ (!A[y1]( 0). �

4 Relation to Standard Interpretations of ILω

We argued in the introduction (see Proposition 1) that for the purpose of analysing ILω

via linear logic it suffices to work with the system ILLωr . As it turns out, in ILLωr , we can
simplify the interpretation of the connective & , so that we no longer need the boolean
variable z in ^z in that particular case.

Proposition 5. When interpreting the subsystem ILLωr , the interpretation of A & B pre-
sented in Definition 1 can be simplified so that the parametrised interpretation

|A( B| f ,gx,w :≡ |A|xf xw ( |B|
gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|
v
w

|A & B|x,vy,w :≡ |A|xy & |B|vw

|A ⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw

|∃zA(z)|x,zy :≡ |A(z)|xy

|∀zA(z)| fy,z :≡ |A(z)| fz
y

|!A|xy :≡ !∀y′@ y |A|xy′
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is sound for ILLωr , assuming (A1), (A2), and (A3) are satisfied.

Proof. We just have to analyse the rules for & having in mind that, in the case of
the system under interpretation, the &R introduction is restricted of the form !Γ. The
simplified interpretation of A & B is shown sound as:

|!Γ|uγ0
` |A|ax

(P5)
!∀y′@γ0 |Γ|

u
y′ ` |A|

a
x

(A2)
!∀y′@ (γ0 ⊗ γ1) |Γ|uy′ ` |A|

a
x

|!Γ|uγ1
` |B|by

(P5)
!∀y′@γ1 |Γ|

u
y′ ` |B|

b
y

(A2)
!∀y′@ (γ0 ⊗ γ1) |Γ|uy′ ` |B|

b
y

(&R)
!∀y′@ (γ0 ⊗ γ1) |Γ|uy′ ` |A|

a
x & |B|by

(P5)
|!Γ|uγ0⊗γ1

` |A & B|a,bx,y

And for the left introduction:

|Γ|uγ, |A|
x
a ` |C|

c
w

(&L)
|Γ|uγ, |A|

x
a & |B|vb ` |C|

c
w

(P5)
|Γ|uγ, |A & B|x,va,b ` |C|

c
w

The other &L introduction is similar. �

Since in the remaining part of this section we work with translations of intuitionistic
logic into linear logic, by |A|xy we refer to the (simplified) parametrised interpretation
described in Proposition 5. Next we prove that the three different ways of interpret-
ing !A (cf. Proposition 4) give rise to interpretations of ILLωr that correspond (via the
translations of intuitionistic logic into intuitionistic linear logic) to Kreisel’s modified
realizability, the Diller-Nahm interpretation, and Gödel’s Dialectica interpretation, as:

|!A|xa Interpretation of ILω

!∀y|A|xy Kreisel modified realizability

!∀y∈ a |A|xy Diller-Nahm interpretation

!|A|xa Gödel’s Dialectica interpretation.

But first we introduce a simplified version of the translation (·)∗ from ILω into ILLωr ,
which we will use in the treatment of the Diller-Nahm and the Dialectica interpretations
(for modified realizability we use the translation (·)◦). This simplification of Girard’s
translation is necessary so as to obtain an exact match between intuitionistic and linear
interpretations. The simplification, however, requires two additional principles which,
as we will see, turn out to be interpretable.

Proposition 6. Consider the following simplification of Girard’s translation (·)∗, where
the translation of ∨ and ∃ no longer needs the introduction of ! (cf. Proposition 1)
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A+
at :≡ Aat, if Aat . ⊥

⊥+ :≡ 0

(A ∧ B)+ :≡ A+ & B+

(A ∨ B)+ :≡ A+ ⊕ B+

(A→ B)+ :≡ !A+ ( B+

(∀xA)+ :≡ ∀xA+

(∃xA)+ :≡ ∃xA+.

If A is provable in ILω then A+ is provable in ILLωr + P⊕ + P∃, where

P⊕ : !(A ⊕ B)( !A⊕ !B

P∃ : !∃xA( ∃x!A.

Proof. First we show that given the principles P⊕ and P∃, we have !A∗ � !A+. The
proof is done by induction on the complexity of the formula A. Conjunction, implica-
tion and universal quantification follow easily by induction hypothesis using that ILLωr
proves:

!(A & B) � !A⊗ !B

!(!A( B) � !(!A( !B)

!∀xA � !∀x!A

respectively. Disjunction and existential quantification are studied below:

!(A ∨ B)∗ ≡ !(!A∗ ⊕ !B∗) �!A∗ ⊕ !B∗

(IH)
� !A+ ⊕ !B+ (P⊕)

�!(A+ ⊕ B+) ≡ !(A ∨ B)+

and !(∃xA)∗ ≡ !∃x!A∗ � ∃x!A∗
(IH)
� ∃x!A+ (P∃)

� !∃xA+ ≡ !(∃xA)+. Applying
Proposition 1, we know that from ILω ` A we have ILLωr ` A∗. So, ILLωr ` !A∗ and hence
ILLωr +P⊕+P∃ ` !A∗. Using the equivalence proved before we have ILLωr +P⊕+P∃ ` !A+.
In particular, we conclude ILLωr + P⊕ + P∃ ` A+. �

The reason we are freely allowed to assume the principles P⊕ and P∃ is that they
are interpretable in all choices of interpretations we consider. Let us argue that P⊕ and
P∃ are interpretable, by showing that the interpretation of premise implies that of the
conclusion (hence the identity and projection functions can be taken as realisers for the
implication). For the three choices of ∀x@a A we have considered one can show that

∀x@a (A(x) & B)( (∀x@a A(x) & B) and

∀x@a (B( A(x))( (B( ∀x@a A(x))

when the variable x does not occur free in B. Also, !(A ^b B) ( !A ^b !B. Therefore,
we have that
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|!(A ⊕ B)|x,v,ba,c ≡ !∀y@ a∀w@ c (|A|xy ^b |B|vw)

( !(∀y@ a |A|xy ^b ∀w@ c |B|vw)

( !∀y@ a |A|xy ^b !∀w@ c |B|vw ≡ |!A ⊕ !B|x,v,ba,c .

Similarly, |!∃zA|x,za ≡ !∀y@ a |∃zA|x,zy ≡ !∀y@ a |A|xy ≡ |!A|xa ≡ |∃z!A|x,za . Therefore, we
can make use of the principles P⊕ and P∃ to simplify the embeddings of intuitionistic
logic into (this extension of) linear logic, since the interpretation of linear logic will
interpret these principles taking us back to standard linear logic (without P⊕ and P∃).
This is illustrated in the following diagram, where ILLωP abbreviates ILLωr + P⊕ + P∃ and
ILωef abbreviates ILω without disjunctions and existential quantifications:

ILLωP

(·)+

-

| · |

ILLωb

(·)+ = (·)∗

6 6

ILω -
Interpretation

ILωef

The equality on the rightmost upward arrow represents the fact that all our interpreta-
tions transform proofs in ILω into proofs in ILωef, where the two translations (·)∗ and (·)+

coincide.

4.1 Modified realizability

Kreisel’s modified realizability associates with each formula A of intuitionistic logic
a new formula “x mr A”, where x is a sequence of fresh variables not present in A
(see [18] for the formal definition). We are going to prove that this form of realizability
once translated to the linear logic context via (·)◦ corresponds (according to Theorem 2
below) to the interpretation of ILLωr with |!A|x :≡ !∀y|A|xy . First an auxiliary result:

Lemma 2. |A◦|x � !|A◦|x.

Proof. Note that, because of the way we interpret !A, it can be checked by induction on
A that the interpretation of A◦ has an empty tuple of challenge variables, i.e. we obtain a
formula of the form |A◦|x. To verify the lemma, it is enough to prove that |A◦|x � !A′,
for some formula A′, since assuming this we have !|A◦|x � !!A′ � !A′ � |A◦|x.
The proof is done by induction on the complexity of the formula A. We just sketch the
cases of conjunction and disjunction, the other cases being immediate.
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|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y

≡ |A◦|x ⊗ |B◦|y

(IH)
� !A′ ⊗ !B′ � !(A′& B′).

|(A ∨ B)◦|x,y,z ≡ |A◦ ⊕ B◦|x,y,z ≡ |A◦|x^z |B◦|y

(IH)
� !A′ ^z !B′

(L1(v))
� !(!A′ ^z !B′).

That other cases are treated similarly. �

Theorem 2. |A◦|x � (x mr A)◦.

Proof. The proof is done by induction on the complexity of the formula A. If A is an
atomic formula, the result is trivial. Consider the case of conjunction:

|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y

(IH)
� (x mr A)◦ ⊗ (y mr B)◦

≡ (x mr A ∧ y mr B)◦ ≡ (x, y mr A ∧ B)◦.

The universal and existential quantifications also follow immediately using the induc-
tion hypothesis, and the way we define the translation and the interpretations. Implica-
tion is treated as

|(A→ B)◦|g ≡ |!(A◦ ( B◦)|g ≡ !∀x|A◦ ( B◦|gx

≡ !∀x(|A◦|x ( |B◦|gx)
(IH)
� !∀x((x mr A)◦ ( (gx mr B)◦)

� !∀x!((x mr A)◦ ( (gx mr B)◦)

≡ (∀x(x mr A→ gx mr B))◦ ≡ (g mr (A→ B))◦

whereas disjunction uses the auxiliary result above:

|(A ∨ B)◦|x,y,z
(L2)
� !|(A ∨ B)◦|x,y,z ≡ !|A◦ ⊕ B◦|x,y,z ≡ !(|A◦|x ^z |B◦|y)
(IH)
� !((!(z = T)( (x mr A)◦) & (!(z = F)( (y mr B)◦))

� !(!(z = T)( (x mr A)◦)⊗ !(!(z = F)( (y mr B)◦)

≡ ((z = T→ x mr A) ∧ (z = F→ y mr B))◦

≡ (x, y, z mr A ∨ B)◦.

That concludes the proof. �
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4.2 Gödel’s Dialectica interpretation

Recall that Gödel’s Dialectica interpretation first associates with each formula A a
quantifier-free formula AD(x; y) inductively. Then, each formula A is interpreted as the
new formula ∃x∀yAD(x; y) (see [1], section 2.3). The next result shows that the Dialec-
tica interpretation corresponds to the ILLωr interpretation where |!A|xy :≡ !|A|xy , via the
simplified embedding (·)+ (cf. Proposition 6).

Theorem 3. |A+|xy � (AD(x; y))+.

Proof. The proof is again an easy induction on the complexity of the formula A. The
atomic formulas are checked trivially and the other formulas follow immediately by
induction hypothesis using the definitions of the (·)+-translation and the interpretations.
We illustrate with two cases: conjunction

|(A ∧ B)+|
x,v
y,w ≡ |A+ & B+|

x,v
y,w ≡ |A+|xy & |B+|vw

(IH)
� (AD(x; y))+ & (BD(v; w))+

≡ (AD(x; y) ∧ BD(v; w))+ ≡ ((A ∧ B)D(x, v; y,w))+

and disjunction

|(A ∨ B)+|
x,v,z
y,w ≡ |A+ ⊕ B+|

x,v,z
y,w ≡ |A+|xy ^z |B+|vw

≡ (!(z = T)( |A+|xy) & (!(z = F)( |B+|vw)
(IH)
� (!(z = T)( (AD(x; y))+) & (!(z = F)( (BD(v; w))+)

≡ (z = T→ AD(x; y))+ & (z = F→ BD(v; w))+

≡ ((z = T→ AD(x; y)) ∧ (z = F→ BD(v; w)))+

≡ ((A ∨ B)D(x, v, z; y,w))+.

The other cases are treated similarly. �

Note that although (·)+ translates formulas from ILω into ILLωr + P⊕ + P∃, since these
two principles are interpretable the verifying system is still ILLωb .

4.3 Diller-Nahm interpretation

The Diller-Nahm interpretation differs from Gödel’s Dialectica interpretation since it
allows finite sets to witness the negative content of an implication. Formally, the Diller-
Nahm interpretation can be defined inductively as

(Aat)dn(; ) :≡ Aat

(A ∧ B)dn(x, v; y,w) :≡ Adn(x; y) ∧ Bdn(v; w)

(A ∨ B)dn(x, v, z; y,w) :≡ (z = T→ Adn(x; y)) ∧ (z = F→ Bdn(v; w))

(A→ B)dn( f , g; x,w) :≡ ∀y ∈ f xwAdn(x; y)→ Bdn(gx; w)

(∀zA)dn( f ; y, z) :≡ Adn( fz; y)

(∃zA)dn(x, z; y) :≡ Adn(x; y).
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Next we show that the Diller-Nahm interpretation of ILω corresponds to the inter-
pretation of ILLωr with |!A|xa :≡ !∀y∈ a |A|xy .

Theorem 4. |A+|xy � (Adn(x; y))+.

Proof. The proof, by induction on the structure of A, is similar to the one concerning
Gödel’s interpretation. The only case which needs attention is that of implication, which
we analyse below.

|(A→ B)+|
f ,g
x,w ≡ |!A+ ( B+|

f ,g
x,w ≡ |!A+|xf xw ( |B

+|
gx
w

≡ !∀y ∈ f xw|A+|xy ( |B
+|

gx
w

(IH)
� !∀y ∈ f xw(Adn(x; y))+ ( (Bdn(gx; w))+

≡ !(∀y ∈ f xwAdn(x; y))+ ( (Bdn(gx; w))+

≡ (∀y ∈ f xwAdn(x; y)→ Bdn(gx; w))+

≡ ((A→ B)dn( f , g; x,w))+.

Note that the (·)+ translation of ∀y∈a A is ∀y∈a A+, as we can see below:

(∀y∈a A)+ ≡ (∀y(y∈a→ A))+

≡ ∀y(!(y∈a)+ ( A+) ≡ ∀y(!(y∈a)( A+) ≡ ∀y∈a A+.

That concludes the proof. �

5 The Categorical Approach

The study developed in this paper (and in previous work of the second author) is
strongly inspired by work of de Paiva and Hyland on categorical models of linear logic
using Gödel’s Dialectica interpretation. In this section we try to explain and make more
explicit the link between our framework for unifying interpretations of IL via interpreta-
tions of ILL and the categorical approach on [14–16] for modelling ILL. More precisely,
in [14] one finds a categorical version of the Dialectica interpretation and an endofunc-
tor interpretation for the modality !A that corresponds to the Diller-Nahm interpretation.
Our goal is to relate this approach with the work in the previous sections.

Before presenting de Paiva’s category DC that models ILL, for sake of intuition, let
us informally sketch the correspondence between our framework and hers through the
following table.

Our framework de Paiva’s framework

Realizers in T ω - finite types C - cartesian closed category

Formulas |A| ⊆ X × Y X
α
8 Y (object of DC)

Sequents A ` B A
( f ,F)
−→ B (morphism of DC)

Linear implication A( B [A, B]DC or BA
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First, we point out that in de Paiva’s work the realisers of the functional interpretation
are taken from a given (fixed) cartesian closed category C. In our case, we work with the
particular cartesian closed category of the functionals of finite type. Also, our interpre-
tations are given syntactically, and hence, a formula A is interpreted as another formula
|A|xy , which can be thought of as a binary relation between x and y. In de Paiva’s work
these relations are at the core of constructing a new category DC out of the given ccc C.

Let us briefly describe how the category DC is defined and its associated construc-
tions. Starting with C, a finitely complete cartesian closed category with stable and
disjoint coproducts, we can define the monoidal closed category DC as follows. An ob-
ject of DC is a subobject of the product U × X, thus a monomorphism A

α
� U × X

with A, U and X objects of C also denoted by U
α
8 X. If we think of these objects as

set-theoretic relations between U and X, and considering α as the identity monic, we
get that A ⊆ U × X, precisely as in our framework.

A map between two such objects A
α
� U × X and B

β
� V × Y consists of a pair of

maps of C, ( f , F), f : U → V , F : U ×Y → X such that pulling back A
α
� U ×X along

U × Y
(π1,F)
−→ U × X and B

β
� V × Y along U × Y

f×Y
−→ V × Y (see the diagram below), the

first subobject A′
α′

� U × Y is smaller than the second B′
β′

� U × Y , i.e. there is a map
k : A′ → B′ in C making the triangle in the diagram below commute:

A′ - A

B′ >
β′-

�

k

U × Y

α′

?

∨

(π1, F)- U × X

α

?

∨

B
?
>

β- V × Y

f × Y

?

If we write the two relations in the short version U
α
8 X and V

β
8 Y and (−)−1

for the pullback functor, then a map in DC can be represented as the pair ( f , F) in the
diagram below

U �
α
+ X

F

V

f

?
�

β
+

-

Y

satisfying the condition (π1, F)−1(α) ≤ ( f × Y)−1(β).
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The intuition in terms of set-theoretic relations is the following: there is a map

α
( f ,F)
→ β in DC if and only if whenever uαF(u, y) then f (u)βy. In what follows we are

going to say that two elements, x and y are related via α (i.e. xαy) by αx
y . This way

the comparison with our framework becomes easier. Using this notation, the condition
above says that whenever αu

F(u,y) then β f (u)
y .

In the category DC we can also define the bifunctors ⊗, [−,−]DC and & and the
operation ⊕ of weak-coproducts that can be read intuitively as

(α ⊗ β)u,v
x,y iff αu

x and βv
y

[α, β]F, f
v,z ≡ (βα)F, f

v,z iff αv
F(v,z) ⇒ β

f (v)
z

(α& β)u,v
w iff αu

w or βv
w depending whether w is in X or Y

(α ⊕ β)w
f ,g iff αw

f (w) or βw
g(w) depending whether w is in U or V .

Apart from the relation α ⊕ β, our interpretation of the linear logic connectives (Defini-
tion 1) coincides precisely with the definitions above. Let us examine in more detail the
interpretation of ⊕, where our two approaches lead to different interpretations.

The main reason why we can have a simpler definition of α ⊕ β (with no need for
the second player to play higher order moves f , g) is because we always assume that
each finite type is inhabited by at least one element, while de Paiva’s imposes no similar
restriction. More precisely, in our setting we have

|α ⊕ β| ⊆ (U × V × B) × (X × Y),

with B for the set of boolean constants, while in de Paiva’s setting, considering set-
theoretic relations,

(α ⊕ β) ⊆ (U + V) × (XU × YV ).

If U and V are non-empty, then the two types U × V × B and U + V are isomorphic. In
case, however, one of U or V is empty then U ×V ×B is also empty, whereas U + V can
still be non-empty. In other words, in the most general case, when types can be empty,
we must indeed work with the type U + V rather than with U × V × B. Let us see then,
how the interpretation of α⊕ β works in the case when some of the move-sets of Eloise
could be empty.

While in the first situation Eloise plays one element of U, one from V , and a boolean
choosing which game is going to count, in the second case Eloise plays an element of
U + V . As we are going to see, in the latter case (with no extra assumptions) we need
Abelard to play functions. Consider the ⊕L-rule, where from Γ, A ` C and Γ, B ` C we
can conclude Γ, A⊕B ` C (for simplicity we shall omit the context Γ). In our framework,
the proof of the two premises will provide realisers F and H such that the premises of
the following rule are derivable:

|A|uFuw ( |C|
f u
w |B|vHvw ( |C|

hv
w

|A ⊕ B|u,v,bFuw,Hvw ( |C|
b( f u,hv)
w

.

In order to realise C in the conclusion of the rule we can make use of the boolean b to
choose between f u and hv. Moreover, the “negative” realiser for A ⊕ B is just a pair
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〈Fuw,Hvw〉. Now, in de Paiva’s more general setting, we have the same information
about the realisers for the premises of the rule

|A|uFuw ( |C|
f u
w |B|vHvw ( |C|

hv
w

|A ⊕ B|aF′aw,H′aw ( |C|
(a∈U)( f a)(ha)
w

.

but in the conclusion we no longer have a triple 〈u, v, b〉, but rather an element a ∈ U+V .
Therefore, the functionals F and H are lifted to functionals F′ and H′ as

F′aw :=

λuU .Faw if a ∈ U

λuU .Fuw if a ∈ V
H′aw :=

λvV .Hvw if a ∈ U

λvV .Haw if a ∈ V.

The extra arguments u and v are used in the cases when the parameter a has the “wrong”
type to be used in either F or G, and a standard value must be used.

For the rest of the section, let us analyse how the linear logic exponential !A is
interpreted in both approaches. As pointed by Blute and Scott in [3], apropos natural and
satisfying categorical models for the LL connectives “unfortunately, the exponentials
are less clear: the structure seems less canonical’’. In terms of monoidal categories
the structure used to model !A is that of comonads and comonoid objects. In [14], it is
shown that if the category C has a free monoid structure with countable coproducts then

the endofunctor ! can be defined on objects of DC as the pullback of A∗
α∗

� (U × X)∗

along U × X∗
C(U,X)
−→ (U × X)∗:

!A - A∗ A

� ∗

U × X∗

!α

?

∨

C(U,X)- (U × X)∗

α∗

?

∨

U × X

α

?

∨

Note that the functor ∗ : C→ MonC is left-adjoint to the forgetful functor U : MonC→
C (see [14] for more details). Intuitively, the relation αu

x is transformed into a new re-
lation (!α)u

{x1,...,xn}
which is equivalent to ∀x∈{x1, . . . , xn}α

u
x. The functor ! acts on mor-

phisms in DC as !( f , F) :≡ ( f , !F) where !F : U × Y∗ → X∗ is the composite of

U × Y∗
C(U,Y)
−→ (U × Y)∗

F∗
−→ X∗.

Since the functor ! : DC → DC has a natural comonad (!, ε, δ) structure and !A is a
comonoid object in DC, ! models the linear logic exponential in the style of the Diller-
Nahm variant of the Dialectica interpretation, via finite sets.

In our approach, we have chosen to take a formal (syntactic) approach for the in-
terpretation of !A. We identify three conditions (A1–A3) which !A needs to satisfy in
order for the resulting interpretation to be sound. Our conditions are more general, and
include as particular case the instance where ! is a comonad with comonoid objects.
In particular, we are able to obtain interpretations of !A that correspond to other well-
known functional interpretation such as Gödel’s Dialectica interpretation and Kreisel’s
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modified realizability. A natural question, of course, arises: Do the Dialectica and mod-
ified realizability interpretations fit into the framework of de Paiva as well, and can they
be seen as arising from other comonads with comonoidal structure? In the first case
(the Dialectica interpretation) the answer is yes, and de Paiva does have a few remarks
about the Dialectica interpretation in her paper and in her thesis. More precisely, let
! : DC→ DC be the identity endofunctor. Intuitively (!α)u

v if and only if αu
v . It is imme-

diate to check that (!, id, id) is a comonad, but in order for !α to be a comonoid object in
DC (not surprisingly) we need to require decidability. More precisely, !α → (!α⊗ !α)
is interpreted as (!α)x

y0·y1
→ (!α)x

y0
⊗ (!α)x

y1
with

y0 · y1 :=

 y0 if ¬αx
y0

y1 otherwise.

As for modified realizability, it is not clear to us at the moment whether it can also
be shown to arise from a different monoid (other than the free monoid) using a gen-
eralisation of de Paiva’s construction. We plan to consider this question in our future
investigations.
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