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Abstract
This article shows how different functional interpretations can be combined into what

we term hybrid functional interpretations. These hybrid interpretations work on the setting
of a multi-modal linear logic. Functional interpretations of intuitionistic logic can be com-
bined via Girard’s embedding of intuitionistic logic into linear logic. We first show how
to combine the usual Kreisel’s modified realizability, Gödel’s Dialectica interpretation, and
the Diller-Nahm interpretation into a basic hybrid interpretation. We then prove a monotone
soundness theorem for the basic hybrid interpretation, in the style of Kohlenbach’s mono-
tone interpretations. Finally, we present a hybrid bounded functional interpretation which,
except for the additives, corresponds to a combination of the recently developed bounded
functional interpretation and bounded modified realizability.

1 Introduction

This article deals with the problem of combining several functional interpretations when “min-
ing” mathematical proofs for hidden computational content or bounds. Usually, each interpre-
tation has its distinct features and limitations. The goal here is to maximise the applicability of
these techniques by combining the best of each. For instance, Kreisel’s modified realizability is
well suited to deal with proofs that make heavy use of extensionality,

x
ρ
= y → fx

τ= fy, (1)

where primitive equality for basic types (say n = m for numbers n,m ∈ N) is assumed, and
higher-type equality is defined as

f
ρ→τ
= g :≡ ∀xρ(fx τ= gx).

The Dialectica interpretation, however, requires witnesses for the universal quantifiers within
x

ρ
= y of (1), which cannot be majorised in general [13] and hence cannot be expressed inside

Gödel’s system T. On the other hand, the Dialectica interpretation is ideal to handle (via the
negative translation) classical proofs of Π2-theorems, since it interprets the Markov principle

¬∀xAqf(x) → ∃x¬Aqf(x) . (2)
∗The author gratefully acknowledges support of the Royal Society under grant 516002.K501/RH/kk

1



The question we address here is: Can we have any meta-theorem about the unwinding of proofs
which involve both full extensionally and the Markov principle? At present no proof interpreta-
tion is able to answer this question positively1.

We propose a solution to this question via the use of linear logic (as a refinement of intu-
itionistic logic). Recall that intuitionistic proofs can be embedded into linear logic ones, with
intuitionistic implications A → B translated as linear implications !A ( B. The difficulty of
Dialectica in dealing with full extensionality is that the “negative information” in the assumption
!A ≡ !(x

ρ
= y) of (1) should not (and cannot) be witnessed, i.e. the modality “!” should be given

a modified realizability interpretation. That can be formalised by rewriting the extensionality
axiom (1) using a “Kreisel modality” (!kA) expressing that the information in the premise of the
axiom schema should not be witnessed2

!k(x
ρ
= y) ( fx

τ= fy . (3)

In the case of Markov principle, since the premise of (2) corresponds in linear logic to
?∃xA⊥qf(x), the modality “?” should rather be treated as in Gödel’s Dialectica interpretation,
i.e. axiom (2) should be rewritten as

!g ?g ∃xAqf(x) ( ∃x ?g Aqf(x) . (4)

For proofs which use both extensionality (3) and Markov principle (4), constructive information
will be extracted whenever such a labelling of the modalities is possible.

This distinguished treatment of the modalities is possible because, as pointed out by Girard
(cf. [3] and [8], p84), the modalities are not canonical, thus different modalities can coexist into
a single system. We make use a multi-modal linear logic, which includes distinct modalities
corresponding to each of the various functional interpretations.

The paper is organised as follows. For the rest of this introduction we present the formal
system of multi-modal linear logic. In Section 2 we introduce a basic hybrid functional inter-
pretation of the multi-modal system. Section 2.3 contains a few illustrative applications of this
basic hybrid interpretation. In Section 3 we present an algorithm for decorating a (linear transla-
tion of a) given intuitionistic proof with different modalities, allowing us to apply the techniques
developed here to the context of intuitionistic logic (and hence classical logic, via the negative
translation). Finally, in Section 4 we consider a monotone soundness theorem for the hybrid
interpretation, and a bounded variant of the hybrid interpretation. Due to the absence of the
monotonicity property, the bounded hybrid interpretation does not apply to the additives. This
bounded variant incorporates into a single interpretation (the additive-free fragment of) both the
bounded modified realizability [4] and (a variant of) the bounded functional interpretation [5].

1.1 Multi-modal linear logic (in all finite types)

The set of finite types T is inductively defined by:
1By placing restrictions on the types involved, however, one can often guarantee the elimination of extensionality

via Luckhardt’s elimination procedure [17].
2Note that this generalises Spector’s quantifier-free rule of extensionality (see [16]) since it allows us to derive

rs
τ
= rt from s

ρ
= t in any context of the form !k∆.
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Aat, A
⊥
at (id)

Γ, A ∆, A⊥
(cut)

Γ,∆

Γ
(per)

π{Γ}

Γ[γ0], A Γ[γ1], B
(3z)

Γ[(z)(γ0,γ1)], A 3z B

Γ, A
(3t)

Γ, A 3tB

Γ, B
(3f)

Γ, A 3f B

Γ, A,B
(O)

Γ, A O B

Γ, A ∆, B
(⊗)

Γ,∆, A⊗B

Γ, A
(∀)

Γ,∀zA
Γ, A[t/z]

(∃)
Γ,∃zA

Table 1: Pure classical linear logic

• N,B ∈ T ,

• if ρ, σ ∈ T then ρ→ σ ∈ T .

For simplicity, we deal with only two basic finite types N (integers) and B (booleans). The
multi-modal classical linear logic LLωh is defined as follows3. The terms of LLωh contain all
typed λ-terms, i.e. variables xρ for each finite type ρ, λ-abstractions (λxρ.tσ)ρ→σ, applications
(tρ→σsρ)σ, and conditionals (sB)(tρ, rρ). The atomic formulas of LLωh are Aat, Bat, . . . and
A⊥at, B

⊥
at, . . .. For simplicity, the standard propositional constants 0, 1,⊥,> of linear logic have

been omitted, since the interpretation of atomic formulas is trivial (see Definition 2.1). Formulas
of LLωh are built from atomic formulas via:

• connectives A O B (par), A⊗B (tensor), A 3z B (if-then-else),

• quantifiers ∀xA and ∃xA, and

• modalities described below.

The linear implication A ( B abbreviates A⊥ O B, where the linear negation (·)⊥ is an
abbreviation such that (A⊥)⊥ is syntactically equal to A (see [7, 19]). Note that (following
[20]) we have deviated from the standard formulation of linear logic and use the if-then-else
logical constructor A 3z B instead of standard additive conjunction and disjunction4. In terms
of quantification over booleans, the standard additives can be defined as

A ∧B :≡ ∀zB(A 3z B) A ∨B :≡ ∃zB(A 3z B)

The logical rules of LLωh are shown in Table 1 (see also [7, 19]).

3We will use LLω to denote the standard system of linear logic in all finite types.
4See Girard’s comments in [7] (p13) and [8] (p73) on the relation between the additive connectives and the if-

then-else construct.
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?Y Γ, A
(!X)

?Y Γ, !XA

Γ, A
(?X)

Γ, ?XA

Γ, ?Z0A, ?Z1A (conX , ?)
Γ, ?XA

Γ
(wknX)

Γ, ?XA

Table 2: Rules for the exponentials (where X,Y ∈ {k < d < g} and Y ≤ X ≤ Zi)

The author [19, 20] has recently studied possible different interpretations for the exponen-
tials ! and ?, and how these correspond to well-known functional interpretations of intuitionistic
logic. We here introduce syntactically distinct exponentials (see Table 2) and show how these
different interpretations can coexist (whence the “hybrid” denomination). We consider here the
“Kreisel”, “Diller-Nahm” and “Gödel” modalities, denoted !k, !d, and !g, respectively (together
with their duals ?k, ?d and ?g). This will correspond to a combination of Kreisel’s modified real-
izability, Diller-Nahm interpretation and Gödel’s Dialectica interpretation into a single functional
interpretation which supersedes all of them.

The rules for all three exponentials are presented in Table 2, where ?Y Γ ≡ ?YB0, . . . , ?YBn.
Note that an “information ordering” is assumed on the distinct modalities, and this ordering
allows for some information to be lost in the promotion and contraction rules. This is because, as
will be reflected in the hybrid interpretation given below, the Gödel “whynot” is meant to carry
a finer information than ?d, and the ?d a finer information than ?k (symmetrically for the !).

Definition 1.1 (Computation/refutation relevant, and fixed formulas) Let CR (computation rel-
evant) denote the smallest classes of formulas satisfying:

• ∃xA ∈ CR,

• if A ∈ CR then {∀xA, ?dA, ?gA} ⊆ CR,

• if A ∈ CR then {!kA, !dA, !gA} ⊆ CR,

• if Ai ∈ CR then A0� A1 ∈ CR (� ∈ { O , ⊗, 3z }).

Also, let RR (refutation relevant) denote the class of formulas A such that A⊥ ∈ CR. We call
a formula A computation (resp. refutation) irrelevant if it is not computation (resp. refutation)
relevant. A formula which is both computation and refutation irrelevant will be called a fixed
formula.

The computation irrelevant formulas correspond to the intuitionistic notion of Harrop formu-
las5. Refutation relevant formulas are the dual notion. In mixing the three interpretations, we
must add also the following restriction on the “Gödel” contraction rule cong:

5Recall that a formulaA is called Harrop if it does not contain a strictly positive sub-formula of the kind ∃xB (cf.
[21]).
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(?) if the contraction formula A in cong is computation relevant, then it must not contain any
Kreisel whynot ?k in front of a computation relevant subformula, nor any Kreisel bang !k
in front of a refutation relevant subformula.

As we will see, condition (?) ensures that the interpretation of a contraction formula A is decid-
able (assuming that bounded formulas are decidable).

Finally, we assume that LLωh contains equality (together with defining axioms) for the basic
types B,N. Higher order equality is defined as

f
ρ→τ
= g :≡ ∀xρ(fx τ= gx).

We then assume the (Kreisel) extensionality schema

!k(x
ρ
= y)( fx

τ= fy. (5)

2 Hybrid Interpretation of Linear Logic

To each formula A of LLωh (multi-modal linear logic) we associate a formula |A|xy of LLω (stan-
dard linear logic), where x,y are fresh variables not appearing in A. The length and types of
x,y are inductively determined by the logical structure of the formulaA. Therefore, for the sake
of readability we will avoid writing types explicitly. The variables x in the superscript are called
the witnessing variables, while the subscript variables y are called the challenge variables. Intu-
itively, the interpretation of A is a two-player (Eloise and Abelard) one-move game, where |A|xy
is the adjudication relation. We want that Eloise has a winning move whenever A is provable.
Moreover, the proof of A will provide Eloise’s winning move a, i.e., ∀y|A|ay will hold, where a
is a tuple of terms of the corresponding types.

Definition 2.1 (Hybrid Interpretation) The interpretation of atomic formulas are the atomic
formulas themselves, with empty sets of witnessing and challenge variables, i.e. |Aat| :≡ Aat

and |A⊥at| :≡ A⊥at. Assuming |A|xy and |B|vw already defined, we define

|A O B|f ,gy,w :≡ |A|fwy O |B|gyw
|A⊗B|x,vf ,g :≡ |A|xfv ⊗ |B|vgx
|A 3z B|x,vy,w :≡ |A|xy 3z |B|vw
|∃zA(z)|x,zf :≡ |A(z)|xfz
|∀zA(z)|fy,z :≡ |A(z)|fzy .

The three sets of modalities are given different interpretations as6

6We are assuming a language extended with finite-multiset types τ∗ for every type τ , together with primitive
constructs such as singleton sets {·} : τ → τ∗ and union (·) ∪ (·) : τ∗ × τ∗ → τ∗. We assume also that a family
of primitive binary relations xτ ∈ aτ

∗
(with simple universal axioms) is also available, and that ∃xτ ∈ aτ

∗
A is an

abbreviation for ∃x(x ∈ a ∧A) (similarly for universal quantifiers).
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|!kA|x :≡ !∀y|A|xy |?kA|y :≡ ?∃x|A|xy
|!dA|xf :≡ !∀y∈fx |A|xy |?dA|fy :≡ ?∃x∈fy |A|xy
|!gA|xf :≡ !|A|xfx |?gA|fy :≡ ?|A|fyy .

It is easy to check that |A⊥|yx ≡ (|A|xy)⊥ and thus |A( B|f ,gx,w ≡ |A|xfw ( |B|
gx
w .

Note that the games |?kA|y, |?dA|
f
y and |?gA|fy correspond to a break of symmetry in the

game |A|xy , where Eloise has access to Abelard’s move, i.e. Abelard plays first, and Eloise
observes Abelard’s move. Moreover, Eloise is then allowed to play a set of moves, and wins
if any move in the set is winning. The nature of the set, however, changes with the different
interpretations: it can be whole set of possible moves (?k), a finite set (?d), or a singleton set
(?g). Dually for the games |!kA|x, |!dA|xf and |!gA|xf .

Proposition 2.2 Let |A|xy be the hybrid interpretation on A. Then the following holds

(i) A ∈ CR iff the tuple x is not empty.

(ii) A ∈ RR iff the tuple y is not empty.

Theorem 2.3 (Soundness of hybrid interpretation) LetA0, . . . , An be a sequence of formulas
of LLωh , with z as the only free-variables. If

`LLωh
A0, . . . , An

then terms a0, . . . ,an can be synthesised from its formal proof, such that

`LLω |A0|a0
y0
, . . . , |An|anyn ,

where FV(ai) ∈ {z,y0, . . . ,yn}\{yi}.

Proof. The soundness proof where only the Kreisel modality is considered is given in [20]. The
interpretation of the Gödel and Diller-Nahm modalities are shown to be (independently) sound
in [19]. In order to obtain the soundness of the hybrid interpretation we just need to observe that
these three different modalities only interfere with each other in the promotion and contraction
rules, where “loss of information” is allowed. Consider, for instance, the promotion rule (first
rule on Table 2) where Y = d and X = g. We have:

|?dΓ|
γ[y]
w , |A|a[w]

y

?∃v∈γ[y]w |Γ|vw, |A|
a[w]
y

[f(a[w])
y ]

?∃v∈γ[f(a[w])]w |Γ|vw, !|A|
a[w]
f(a[w])

|?dΓ|
λw.γ[f(a[w])]w
w , |!gA|a[w]

f

Similarly, for the other combinations, and the contraction rule. One has also to be careful with
the Gödel modalities, due to its side condition that the interpretation of the contraction formula
has to be decidable. That is, however, guaranteed by our restriction (?). 2
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2.1 Interpretable principles

We call a principle P interpretable, for a given fixed interpretation | · |, if there exists a term
t such that `LLω |P |ty. We have shown in Theorem 2.3 that every theorem A of multi-modal
linear logic is interpretable. It turns out some other principles, not provable in LLω, are also
interpretable.

Before we proceed to discuss the interpretable principles of the hybrid interpretation, let us
extend linear logic with a variant of Henkin’s branching quantifier, which we call simultaneous
quantifier. The logical rule for the simultaneous quantifier is as follows:

A0(a0,y0), . . . , An(an,yn)
(

Æ

)Æx0
y0
A0(x0,y0), . . . ,

Æxn
yn
An(xn,yn)

with the side-condition that yi may only appear free in the terms aj , for j 6= i. In particular, we
will have that each yi will not be free in the conclusion of the rule. We assume that when xi and
yi are empty tuples, the quantifier is omitted. Therefore, the simultaneous quantifiers generalise
both the universal and existential quantifiers. For instance, when ai, for 0 ≤ i ≤ n, are empty
and yj , for 0 ≤ j < n, are empty, the rule above becomes the universal introduction rule (with
side formulas A0, . . . , An−1).

The hybrid interpretation can be extended to deal with the simultaneous quantifiers as (cf.
[20])

|
Æv

wA(v,w)|f ,vg,w :≡ |A(v,w)|fwgv .

Proposition 2.4 (Characterisation) Let Ari denote an arbitrary refutation irrelevant formula,
and Afix, Bfix denote fixed formulas. The following principles are interpretable by the hybrid
functional interpretation described above:

ACs : ∀z

Æx
yAri(x,y, z)(

Æf
y,zAri(fz,y, z),

ACp : (

Æx
yAfix(y)(

Æv
wBfix(v))(

Æf ,g
x,w(Afix(fw)( Bfix(gx)),

TA : !∗

Æx
yA( ∃x!∗∀yA, (∗ ∈ {k, d, g})

MPgl : ?g∃xAri ( ∃x?gAri,

MPdl : ?d∃xAri ( ∃s?d∃x∈sAri.

These principles are also sufficient to characterise the hybrid interpretation, meaning that they
prove the equivalence between A and its interpretation7 Æx

y |A|xy .

The abbreviations above stand for: sequential and parallel choice, trump advantage, Gödel
Markov principle, and Diller-Nahm Markov principle, respectively.

It is well known that both the Dialectica interpretation and modified realizability, for instance,
interpret the axiom of choice

AC : !∀z∃xA(x, z)( ∃f∀zA(fz, z)
7Note that A is a formula of LLωh , whereas |A|xy is a formula of the standard LLω . For the equivalence above we

are assuming that |A|xy is translated back into LLωh , by labelling the modalities in |A|xy following the structure of A.
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for arbitrary matrices A(x, z). Note, however, that AC is weaker than its purely linear variant
(without the ! in the premise), since the bang (!) makes the premise stronger, and hence the whole
principle weaker. As expected, AC as above is also interpretable by the hybrid interpretation (for
any choice of !), and, as such, it is provable from the principles above.

One might consider splitting the principle ACp into an initial prenexation following by an
application of (a suitable form of) the axiom of choice, as done in the characterisation of the
Dialectica interpretation. In our context, however, this initial prenexation would need a proper
Henkin quantifier, going from

Æx
yAfix(y)(

Æv
wBfix(v) to

(
∀x∃v
∀w∃y )(Afix(y)( Bfix(v)),

which can only be expressed with our (simpler) simultaneous quantifier once a “choice step” is
performed.

The fact that TA is valid for all three interpretations, for arbitrary formulas A, suggests that
this should probably be a valid principle of linear logic. In particular (even in LLω, without
simultaneous quantifiers), the commuting property !∃xA( ∃x!A should be derivable in linear
logic. The intuitive justification in terms of games is as follows: Although the game !∃xA
consists of several copies of the game ∃xA, Eloise must make a uniform move for all copies of
the game. Hence, it is actually as if she is playing the game ∃x!A. It would be interesting to
investigate if other interpretations of linear logic (other than game interpretations) also validate
this principle.

2.2 Self-interpretable principles

We call a principle P self-interpretable, for a fixed given interpretation | · |, if there exists a
term t such that `LLω+P |P |ty. Clearly, every interpretable principle is self-interpretable. Not
every principle, however, is self-interpretable, since the hybrid interpretation may lead to a strict
strengthening of P . For instance, the following principle

∀F (N→N)→N∀f, g ≤ 1(!g∀n(fn = gn)→ Ff = Fg)

is not self-interpretable, since the hybrid interpretation will ask for a close primitive recursive
term t satisfying

∀F (N→N)→N, f, g ≤ 1(!g(f(tF ) = g(tF ))→ Ff = Fg),

which (as shown by Howard [13]) is impossible. We list bellow some principles which are self-
interpretable for the hybrid interpretation presented above:

EXT : !k(x
ρ
= y)( fx

τ= fy

IND : !∗∀n(A(n)( A(n+ 1))( ∀k(A(0)( A(k)) (∗ ∈ {k, d, g})

where x = y is as defined at the end of Section 1.1.
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2.3 Simple applications of hybrid interpretation

In this section we list some classes of theorems where it might pay off to analyse proofs using a
combination of the Kreisel, Diller-Nahm and Gödel modalities. We focus on theorems where us-
ing only one single interpretation would not directly yield the desired program. If some arbitrary
pre-processing of the given proof is allowed, it might be possible that one can always obtain the
same result indirectly using a single functional interpretation on the pre-processed proof. For
instance, in Example 1, if A is quantifier-free one could take ∀xA is a Π1 axiom, and analyse the
proof of ∀yB → ∀zC using the Dialectica interpretation, obtaining the same result. Using the
hybrid interpretation directly allows us to make full use of the modularity of functional interpre-
tations, which does not seem to be possible when (different parts of) given proofs are allowed to
be modified (in different ways) before a single functional interpretation is applied. Moreover, the
inter-dependencies between variables which are witness and those which not witnesses can be
very subtle. This begs for an automated process which only seems to be possible via the hybrid
interpretation (see Section 3, in particular the example in Section 3.1).

Example 1

Consider theorems of the form
∀xA→ ∀yB → ∀zC (6)

possibly with parameters, where the negative information on x is irrelevant, while the one on y
is of our interest. In this case, we would rather view this theorem as

!k∀xA( !g∀yB( ∀zC . (7)

For instance, consider the simple intuitionistic theorem

∀x(f(x) ≤ 1)→ ∀y(f(y) 6= f(y + 1))→ ∀z(f(z) = f(z + 2)). (8)

From a proof of this, using labelling (7), our hybrid interpretation extracts a realizer Φ(f, z) s.t.

∀z(∀x(f(x) ≤ 1)→ (f(Φ(f, z)) 6= f(Φ(f, z) + 1))→ (f(z) = f(z + 2))).

Indeed, one such witness is Φ(f, z) := if (f(z + 1) = f(z + 2)) then z else z + 1. The modified
realizability of (8) would not yield any information, since the theorem is existential-free. On the
other hand, the Dialectica interpretation of (8) would witness both x and y, giving rise to two
programs Φ(f, z) and Ψ(f, z) satisfying the stronger statement

∀z((f(Ψ(f, z)) ≤ 1)→ (f(Φ(f, z)) 6= f(Φ(f, z) + 1))→ (f(z) = f(z + 2))).

For a further example of a concrete theorem having the form (6) see Section 3.1.

Example 2

Examples of the form (6) above can come up when analysing classical proofs of theorems8

∀xA→ ∀y∃zB (9)
8Many thanks to Mircea-Dan Hernest for suggesting this class of examples, and in particular the theorem about

Fibonacci sequences.
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since these can be translated into intuitionistic proofs of

∀y(∀xA→ ∀z¬B →⊥) (10)

which again has the form (6). One such example is that of the classical existence proof of the
Fibonacci sequence, first used in [1] to illustrate the so-called “refined A-translation” and then in
[10] to illustrate the light Dialectica (see also Section 4.3 of [9]). The semi-classical Fibonacci
proof is a minimal-logic proof of ∀y∃zB(y, z), where

∃zB(y, z) :≡ ∀z(B(y, z)→ ⊥)→ ⊥

from assumptions expressing that B is the graph of the Fibonacci function (B is viewed as a
predicate constant without computational content), i.e., B(0, 0), B(1, 1) and

∀x1, x2, x3(B(x1, x2)→ B(x1 + 1, x3)→ B(x1 + 2, x2 + x3)).

Note that such a specification fits into the form (6) (with C :≡ ⊥).

Example 3

Consider also theorems of the form
∀x∀yA→ B (11)

where x can be witnessed precisely but y can only be approximated by a finite set. So, this would
be translated as

!g∀x!d∀yA( B.

For instance, consider the following simple theorem:

∀x, y(f(x+ y) ≥ xf(y))→ ∀neven(f(n) ≥ 2nf(0)).

It is easy to see that only x = 2 is needed from the assumption, whereas y ∈ {0, 2, . . . , n} must
be used. Therefore, we have the following stronger theorem

∀neven(∀y ∈ {0, 2, . . . , n− 2}(f(2 + y) ≥ 2f(y))→ f(n) ≥ 2nf(0)).

Example 4

Real numbers are normally represented in formal systems as Cauchy sequences of rationals with
a fixed rate of convergence. A real number being positive carries the extra information of a lower
bound on how far from zero the limit of the sequence can be (cf. [16]). In order to avoid going
into the representation level, when analysing the proof that a certain real function f is positive at
x, i.e. f(x) >R 0, it is often useful to view this as ∃l(f(x) >R 2−l). Although witnessing l gives
us some lower bound on the value of f(x) the formula f(x) >R 2−l still carries information on
how far above 2−l the value of f(x) is. This extra information is usually irrelevant in practice
and the purely existential matrix can be treated as quantifier-free, given that we can always forget
these witnesses later. When automatising program extraction, it thus proves to be useful to make
sure that the interpretation will not witness the innermost existential quantifier at all. This can be
achieved by viewing the statement f(x) >R 0 as ∃l?k(f(x) >R 2−l).

Consider the following example

10



∀fN→R(∀m(f(m) <R f(m+ 1))→ ∀n(f(n) <R f(n+ 2))).

Note that <R is an undecidable relation, but assume we are not interested in the information
hidden within f(m) <R f(m + 1). For the sake of program-extraction, the formula above is
thus better labelled as

∀fN→R(!d∀m?k(f(m) <R f(m+ 1))( ∀n?k(f(n) <R f(n+ 2)))

We can produce a finite collection of witnesses for m as Φ(f, n) := {n, n+ 1} so that

∀fN→R, n(∀m∈Φ(f, n) (f(m) <R f(m+ 1))→ (f(n) <R f(n+ 2))).

Example 5

The Dialectica interpretation and modified realizability also treat the induction rule9

A(0) A(n)→ A(n+ 1)
(IND)

A(k)

in slightly different ways. In both cases, the proofs of A(0) and A(n) → A(n + 1) provide a
realiser t[k] for the witnessing variables of A(k), i.e., |A|ty. However, only during the extraction
of t via Dialectica interpretation a functional which refutes A(n) when given a refutation for
A(n + 1) will also be extracted. Such realizer is nonetheless not used in the construction of
the desired term t. Therefore we could choose to always treat induction in the way modified
realizability does, even when constructing a Dialectica witness. In our multi-modal setting, this
can be achieved by formulating induction as

A(0) !kA(n)( A(n+ 1)
(IND)

A(k)

since the Kreisel modality blocks the witnessing of counter-example flows.

3 Hybrid Interpretation Applied to Intuitionistic Logic

Recall that intuitionistic logic can be embedded into linear logic as follows:

Definition 3.1 ([7]) For any formula A of intuitionistic logic its linear translation A∗ is defined
inductively as

A∗at :≡ Aat

(A 3z B)∗ :≡ A∗ 3z B
∗

(A→ B)∗ :≡ !A∗( B∗

(∀xA)∗ :≡ ∀xA∗

(∃xA)∗ :≡ ∃x!A∗.

9The induction stated here corresponds to the induction rule with no open assumption in natural deduction systems.
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If A is provable in intuitionistic logic then A∗ is provable in linear logic.

In this section we discuss how the hybrid interpretation of LLωh can be combined (via the
embedding above) to yield a hybrid interpretation of ILω. Let us assume we are starting with
an intuitionistic proof π of a theorem A, together with the desired information (i.e., quantified
variables of A to be realized) in the form of a labelling of the linear translation of A, i.e. A∗.
We wish to show how the proof π can be automatically translated into a multi-modal linear
logic proof, with the modalities decorated in such way that a proof analysis (via the hybrid
interpretation) will give us the information requested about A (whenever this is possible). For
instance, in a theorem of the form (9) it could be that we are interested only in the negative
universal information x, and not in the positive existential information z. Hence we rather present
(9) as a specification in multi-modal linear logic decorated like

!g∀xA( ∀y?k∃zB.

In Table 3 we describe an algorithm which can ascertain whether such labelling of the theo-
rem can be propagated through the whole proof or not. If the algorithm succeeds, the hybrid
interpretation can then be applied and will return a realizer t and a linear logic proof of

∀y(!A[ty/x] ( ?∃zB)

which can finally be translated back to an intuitionistic proof of

∀y(A[ty/x] → ∃zB).

Theorem 3.2 Let π be a proof of A in intuitionistic logic. Let A∗l be a labelling in LLωh of A∗.
If it is possbile for the modalities in π∗ (the translation of the proof π into linear logic) to be
labelled in such way that it yields a proof of A∗l in LLωh , then the algorithm of Table 3 will return
one such labelling.

Proof. Assume a possible labelling of π∗ exists. Then, it is easy to check that it must satisfy all
the equations and inequalities generated by the algorithm of Table 3. Therefore, the equations and
inequalities generated are solvable, and the solution we get must also yield a (possibly different)
correct labelling. 2

3.1 Example illustrating labelling algorithm

In this section we show (through a simple example) how the labelling algorithm described above
works.

Theorem. Let fN→N be a function such that

A ≡ ∀xN (f(x) = 3f(x+ 1))︸ ︷︷ ︸
A0(x)

,

and assume F (N→N)→N is an operator satisfying

12



Input: Intuitionistic proof π of theorem A plus decoration of A∗

Output: Decoration of π∗, if possible, which respects given decoration of A∗

Decorate whole proof π∗ bottom up, starting from theorem and working towards the axioms
For the modalities in A∗ not yet labelled, associate fresh label variable X,Y, . . .
For each rule encountered do the following:

Connectives/quantifiers: simply propagate assignment from conclusion to premise(s)
Cut rule: assign the modalities in the cut formula with fresh variable labels X,Y, . . .
Promotion rule: if conclusion is ?r0B0, . . . , ?rnBn, !tA premise becomes ?r0B0, . . . , ?rnBn, A

generate inequality r0 ≤ t and equalities ri = rj

Contraction rule: if conclusion is Γ, ?rA then premise becomes Γ, ?Z0A, ?Z1A

generated inequalities (r ≤ Zi)
if ?r is the Gödel modality, check that condition (?) is satisfied

Dereliction and weakening rule: simply propagate assignment
Axiom: generate unification equations for the assignments of A and A⊥

Solve generated set of equations and inequalities
If assignment found return it, otherwise return “not possible”

Table 3: Labelling algorithm

B ≡ ∀yN∀g (F (yg) = yF (g))︸ ︷︷ ︸
B0(y,g)

,

C ≡ ∀zN (F (f) ≤ F (λx.f(x+ z)) + z)︸ ︷︷ ︸
B0(z)

.

From this we can conclude

D ≡ F (2f) ≤ 3.

Proof. By assumption A and extensionality we get F (λx.3f(x + 1)) = F (f). By B we have
3F (λx.f(x + 1)) = F (f), whereas by C we get 2F (f) ≤ 3. Finally, by B again we get
F (2f) ≤ 3. The theorem we have proved is

∀xA0(x) ∧ ∀y, gB0(y, g) ∧ ∀zC0(z)→ D.

Despite the use of extensionality over the assumption A, it is clear that assumptions B and C
can be weakened. In fact, the following stronger theorem holds

∀xA0(x) ∧ ∀y∈{2, 3}∀g ∈ {f, λx.f(x+ 1)}B0(y) ∧ C0(1)→ D.

13



We will now show how this stronger theorem can be obtained from the proof above by the hybrid
functional interpretation, using the labelling algorithm described in Table 3.

We start by translating the theorem into linear logic, and choosing an appropriate labelling
of the modalities. In our case, a successful labelling would be

!k∀xA0(x)⊗ !d∀y, gB0(y, g)⊗ !g∀zC0(z)( D.

From this initial labelling, following the algorithm of Table 3 we get a successful labelling of the
(linear translation of) intuitionistic proof as10

!kA ` A

!kA ` !kA
(E)

!kA ` E

!dB ` B

!dB ` B0(3, λ.f(x+ 1))

!kA, !dB ` F

!gC ` C

!gC ` C0(1)

!kA, !dB, !kC ` G

!kA, !dB, !kC ` 2F (f) ≤ 3

!dB ` B

!dB ` B0(2, f)

!kA, !dB, !dB, !kC ` D
(cond)

!kA, !dB, !kC ` D

where we have used the following additional abbreviations

E ≡ F (λx.3f(x+ 1)) = F (f),

F ≡ 3F (λx.f(x+ 1)) = F (f),

G ≡ 3F (f)− 3 ≤ F (f).

Note that alternative labellings such as

!k∀xA0(x)⊗ !d∀y, gB0(y, g)⊗ !d∀zC0(z)( D,

and

!k∀xA0(x)⊗ !g∀y, gB0(y, g)⊗ !g∀zC0(z)( D,

would also work; whereas, a labelling such as

!d∀xA0(x)⊗ !g∀y, gB0(y, g)⊗ !g∀zC0(z)( D,

would fail to be propagated upwards through the proof, since the extensionality axiom requires
a Kreisel modality.

10For the sake of intuition we write A⊥0 , . . . , A⊥n , B as A0, . . . , An ` B.
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3.2 On a direct hybrid interpretation of ILω

One could think of developing a hybrid interpretation of ILω directly, without going through the
use of linear logic, by noticing that in the translated ILω-proof the modality ! only appears in the
premise of an implication11. Therefore, we could work with a “multi-implication” intuitionistic
logic (→k,→d and→g), and define the interpretation of each implication as

|A→k B|fx,w ≡ ∀y|A|xy → |B|
fx
w

|A→d B|f ,gx,w ≡ ∀y∈gxw |A|xy → |B|
fx
w

|A→g B|f ,gx,w ≡ |A|xgxw → |B|
fx
w .

The first thing to notice is that, unlike the modalities in linear logic, the intuitionistic implication
is canonical. More precisely, simply adding two or more distinct arrows, e.g. A →k B and
A →g B, with the same usual rules would not work, since we would be able to derive their
equivalence: A →k B ` A →g B and A →g B ` A →k B. Another problem is the
interpretation of the provability sign (`), which would have to correspond to one of the particular
implications. A way to remedy this would be to work with labelled contexts, where in a sequent
such as Γ ` A, each assumptionBi in the context Γ will be either a “Gödel’s”, “Diller-Nahm” or
“Kreisel” assumption. The sequents would then be of the form [Γ]k; [∆]d; [Θ]k ` A. That would
give rise to a form of multi-implication intuitionistic logic, together with a hybrid interpretation.
The full flexibility of working with linear logic, however, does not seem to be achievable, since
an implication of the form !d∀x!k∀yA ( B would not have a correspondence in the multi-
implication intuitionistic logic, for instance.

4 Variants of Hybrid Interpretation

Let us now look at two variants of functional interpretations which make use of Howard/Bezem’s
notion of (strongly) majorizable functionals [2, 13]. These are the “monotone” [14, 15] and
“bounded” interpretations [4, 5]. For simplicity we will use here Bezem’s strong notion of ma-
jorizability, although the monotone interpretations also work with Howard’s notion.

For the following two sub-sections, let us assume that our language contains the usual ≤
relation on natural numbers. We then assume the following abbreviations12

• n ≤∗N m :≡ n ≤ m and

• f ≤∗ g :≡ !k∀y∀x≤∗ y ((fx ≤∗ gy)⊗ (fx ≤∗ fy)).

Lemma 4.1 For each closed term t of LLωh there exists a closed term t∗ such that `LLωh
t ≤∗ t∗.

11Actually, the embedding also makes use of a further ! when treating the existential quantifier. This, however, is
inessential for the functional interpretations, given principle TA (see Section 2.1).

12Note that we use Kreisel’s modality in the definition of majorizability, so that x ≤∗ y is both refutation and
computation irrelevant (a fixed formula). In this way, bounded quantifiers of the form ∀x ≤∗ tA can denote precisely
∀x((x ≤∗ t) ( A) and the interpretation of the equivalence is still interpretable (for a suitable interpretation of
(bounded) quantifiers, see Section 4.2). The same would not happen had we used a Gödel modality in the definition
of the majorizability relation (cf. [5, 6]).
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4.1 Monotone hybrid interpretation

As shown in [18], the monotone variant of both the Dialectica and modified realizability in-
terpretations come from a “monotone” soundness theorem, rather than a new interpretation of
formulas. In this section we show that these monotone variants can also be combined in a single
hybrid monotone soundness theorem. For simplicity, assume that the Diller-Nahm modality has
been dropped, so that we avoid having to extend the majorizability relation to the type of finite
sets.

Lemma 4.2 Let

Æx≤∗a
y A be an abbreviation for

Æx
y ((x ≤∗ a) ∧A). The following are deriv-

able in LLω

(i)

Æx≤∗a
y0,y1

A(y0,y1)(

Æx≤∗a
y A(y,y)

(ii) if a ≤∗ a∗ is derivable then

Æx≤∗a
y A(

Æx≤∗a∗
y A.

Theorem 4.3 (Monotone soundness of hybrid interpretation) Let A0, . . . , An be a sequence
of formulas of LLωh , with u as the only free-variables. If

`LLωh
A0, . . . , An

then monotone closed terms a∗ ≡ a∗0, . . . ,a∗n can be automatically synthesised from its formal
proof, such that

`LLω

Æa≤∗a∗
y,u (|A0 O . . . O An|auy ).

Proof. By induction on the given derivation. For this proof only we deviate from our convention
and use a, b, . . . to stand for variables and a∗, b∗, . . . to stand for terms. We will consider the
free variables u only when treating the quantifiers, where they matter the most. Multiple steps
of derivation are denotes by (∗). Let us consider a few cases:

Cut rule

Æγ≤∗γ∗,a≤∗a∗
w,y |Γ O A|γ,aw,y

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y (|Γ|γyw O |A|awy )

Æγ≤∗γ∗,a≤∗a∗
w,b,z (|Γ|γ(bz)

w O |A|awbz )

Æδ≤∗δ∗,b≤∗b∗
z,x |∆ O A⊥|δ,bz,x

D2.1Æδ≤∗δ∗,b≤∗b∗
z,x (|∆|δxz O |A⊥|bzx )

Æδ≤∗δ∗,b≤∗b∗
z,a,w (|∆|δ(aw)

z O |A⊥|bzaw)
(∗)Æγ≤∗γ∗,δ≤∗δ∗

w,z |Γ O ∆|γ,δw,z

Tensor

Æγ≤∗γ∗,a≤∗a∗
w,y |Γ O A|γ,aw,y

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y (|Γ|γyw O |A|awy )

Æγ≤∗γ∗,a≤∗a∗
w,f ,b,z (|Γ|γf(bz)

w O |A|awf(bz))

Æδ≤∗δ∗,b≤∗b∗
z,x |∆ O B|δ,bz,x

D2.1Æδ≤∗δ∗,b≤∗b∗
z,x (|∆|δxz O |B|bzx )

Æδ≤∗δ∗,b≤∗b∗
z,g,a,w (|∆|δg(aw)

z O |B|bzg(aw)) (∗)Æγ≤∗γ∗,δ≤∗δ∗,a≤∗a∗,b≤∗b∗
w,z,f ,g (|Γ|γf(bz)

w O |∆|δg(aw)
z O (|A|awf(bz) ⊗ |B|

bz
g(aw)))

Æγ≤∗γ∗,δ≤∗δ∗
w,z,f ,g (|Γ|γzw O |∆|δwz O |A⊗B|aw,bzf ,g )
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Existential quantifier

Æγ≤∗γ∗,a≤∗a∗
w,y,u |Γ O A[t[u]/z]|γu,auw,y

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y,u (|Γ|γuyw O |A[t[u]/z]|auwy )

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y,u (|Γ|γuyw O |∃zA|auw,t[u]

y )
(∗)Æγ≤∗γ∗,a≤∗a∗,h≤∗t∗

w,y,u (|Γ|γuyw O |∃zA|auw,huy )

where λu.t[u] ≤∗ t∗.

Universal quantifier Æγ≤∗γ∗,a≤∗a∗
w,y,u |Γ O A|γu,auw,y

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y,u (|Γ|γuyw O |A|auwy )

D2.1Æγ≤∗γ∗,a≤∗a∗
w,y,u (|Γ|γuyw O |∀u0A|aûwy,u0

)

where û denotes the vector u minus the variable u0.

Contraction (Gödel modality)

Æγ≤∗γ∗,a0≤∗a∗0,a1≤∗a∗1
v,y0,y1

|Γ O ?gA O ?gA|γ,a0,a1
v,y0,y1 D2.1Æγ≤∗γ∗,a0≤∗a∗0,a1≤∗a∗1

v,y0,y1
(|Γ|γy0y1

v O ?|A|a0vy1y0
y0

O ?|A|a1vy0y1
y1

)
L4.2(i)Æγ≤∗γ∗,a0≤∗a∗0,a1≤∗a∗1

v,y (|Γ|γyyv O ?|A|a0vyy
y O ?|A|a1vyy

y )
L4.2(ii)Æγ≤∗γ∗,a0≤∗max{a∗0,a∗1},a1≤∗max{a∗0,a∗1}

v,y (|Γ|γyyv O ?|A|a0vyy
y O ?|A|a1vyy

y )
(∗)Æγ≤∗γ∗,a≤∗max{a∗0,a∗1}

v,y (|Γ|γyyv O ?|A|avyyy )

Contraction (Kreisel modality)

Æδ≤∗δ∗
u,y0,y1

|∆ O ?kA O ?kA|δu,y0,y1 D2.1Æδ≤∗δ∗
u,y0,y1

(|∆|δu O ?∃x|A|xy0
O ?∃x|A|xy1

)
L4.2(i)Æδ≤∗δ∗

u,y (|∆|δu O ?∃x|A|xy O ?∃x|A|xy)
(∗)Æδ≤∗δ∗

u,y (|∆|δu O ?∃x|A|xy)

The other cases are treated similarly. 2

Note that in the soundness of the Gödel contraction rule only the existence (provable in the
verifying system LLω) of a decision function is required. The majorant for the decision function,
however, needs to be part of the term language. Such majorant is normally taken to be the
computable term λx, y.max{x, y}. This means that the Gödel contraction can be allowed for a
larger class of formulas A, as long as the verifying system is able to prove that a definition-by-
cases function exists for conditions of the form |A|xy .

The main importance of the monotone soundness, however, comes from the ability to pro-
duce bounds for the conclusion given bounds for the premise. When premises do not have
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computable witnesses, but have computable bounds on these, the full power of the monotone
soundness comes into force. To see this, let ∆ consist the class of formulas of the form13

A ≡ !k∀x∃y ≤ tx!k∀zAqf(x,y, z)

and let ∆̃ denote the class of Skolem normal forms of ∆, i.e.

Ã ≡ ∃f ≤ t!k∀x, zAqf(x,fx, z).

Kohlenbach has shown that weak König’s lemma falls into the class of formulas ∆, and hence,
the monotone interpretation provides a way to extract bounds from ineffective proofs in mathe-
matics.

Corollary 4.4 Let A0, . . . , An be a sequence of formulas of LLωh , with u as the only free-
variables. If

`LLωh +∆ A0, . . . , An

then monotone closed terms a∗ ≡ a∗0, . . . ,a∗n can be automatically synthesised from its formal
proof, such that

`LLω+∆̃

Æa≤∗a∗
y,u (|A0 O . . . O An|auy ).

Proof. For simplicity, assume only one formula from the class ∆ is used to derive a particular
formula A, i.e.

!k∀x∃y ≤ tx!k∀zBqf(x,y, z)( A.

Theorem 4.3 implies that closed monotone terms a∗ can be extracted such that

ÆF≤∗a∗
f ,w,u (!k∀x(!k(fx ≤ tx)∧ !k∀zBqf(x,y, z))( |A|Ffuw ).

In particular, this implies

ÆF≤∗a∗
f ,w,u (!k(f ≤ t)∧ !k∀x, zBqf(x,y, z))( |A|Ffuw ).

and hence
∃f ≤ t !k∀x, zBqf(x,y, z)(

Æa≤∗a∗t∗
w,u |A|auw

where t ≤∗ t∗ (using that f ≤ t ∧ t ≤∗ t∗ implies f ≤∗ t∗). That concludes the proof. 2

13Here ≤ denotes pointwise inequality, i.e. f
ρ→τ
≤ g :≡ !k∀xρ(fx

τ

≤ gx).
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4.2 Hybrid bounded interpretation

We have conjectured in [11] that “Howard modalities” (!h, ?h) could also be added to the hy-
brid interpretation setting, in order to incorporate the bounded functional interpretation [5, 6].
Combined with the Kreisel modality, that would lead to a hybrid bounded interpretation which
incorporated both the bounded functional interpretation and the bounded modified realizability
[4]. In this section we look at this problem in more details, and explain what we have achieved
so far, and what problems we have encountered.

Assume we add a fourth set of modalities (!h, ?h) to the multi-modal linear logic and interpret
these using the majorisability relation ≤∗ as

|!hA|xf :≡ !∀̃y≤∗fx |A|xy
|?hA|fy :≡ ?∃̃x≤∗fy |A|xy ,

where ∀̃yA abbreviates ∀y((y ≤∗ y) ( A) (similarly for ∃̃xA). As argued before (cf. [18,
19]), this interpretation only works if all objects involved are monotone (i.e. self-majorisable).
That can be obtained by interpreting quantifiers as

|∃zA(z)|x,af :≡ ∃z≤∗a |A(z)|xfa
|∀zA(z)|fy,b :≡ ∀z≤∗ b |A(z)|fby ,

since an existential (respectively, universal) quantification over a (respectively, b) can be re-
stricted to monotone objects. Once we can confine ourselves to monotone objects, bounded
quantifiers can be viewed as a particular case of unbounded quantifiers where f can be chosen
uniformly, i.e.

|∃z≤∗ cA(z)|xy :≡ ∃z≤∗ c |A(z)|xy
|∀z≤∗ cA(z)|xy :≡ ∀z≤∗ c |A(z)|xy .

Unfortunately, there is a problem with this interpretation when dealing with the additive connec-
tives. In order the obtain the full bounded functional interpretation, we would like to interpret
these as

|A ∧B|x,yv,w :≡ |A|xy ∧ |B|vw
|A ∨B|x,yv,w :≡ |A|xy ∨ |B|vw.

Consider, however, the derivable rule (in sequent style)

A ` C B ` C

A ∨B ` C

Each of the two proofs in the premise of the rule might give rise to two different witnesses (c0

and c1) for C, depending on the assumption used (either A or B). In the conclusion, however,
we must choose a single witness, given witnesses for A ∨ B. When interpreting intuitionistic
logic, this problem is solved by making use of the following monotonicity property

if |C|xy and x ≤∗ x∗ and y ≤∗ y then |C|x∗y . (12)
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If (12) holds for all formulasC, then each |C|ciu implies |C|max{c0,c1}
u , so we can pick max{c0, c1}

for the witness of C in the conclusion A ∨B ` C.
The (asymmetric) monotonicity property (12), however, does not hold in the very symmetric

setting of linear logic. See, for instance, the interpretation of !hA, where a “bigger” x no longer
guarantees the truth of ∀̃y≤∗fx |A|xy , since the range of the bounded quantification over y might
also increase. A similar problem occurs in the interpretation of ∃zA.

This indicates that a sound bounded functional interpretation of the additives in the linear
logic context is unlike. On the other hand, property (12) is “only” needed for the treatment for the
additive connectives. Therefore, we present below a sound interpretation for the multiplicative
exponential fragment of linear logic (MELL). We consider the “Howard” and “Kreisel” sets of
modalities, which enables us to incorporate in one interpretation (the additive-free fragment of)
both the bounded functional interpretation [5] and the bounded modified realizability [4].

Definition 4.5 (Hybrid bounded interpretation for MELL) The interpretation of atomic for-
mulas are the atomic formulas themselves, with empty sets of witnessing and challenge variables,
i.e. |Aat| :≡ Aat and |A⊥at| :≡ A⊥at. Assuming |A|xy and |B|vw already defined, we define14

|A O B|f ,gy,w :≡ |A|fwy ∨ |B|gyw
|A⊗B|x,vf ,g :≡ |A|xfv ∧ |B|vgx
|∃zA|x,af :≡ ∃z≤∗a |A|xfa
|∀zA|fy,b :≡ ∀z≤∗ b |A|fby
|∃z≤∗ sA|xy :≡ ∃z≤∗ s |A|xy
|∀z≤∗ sA|xy :≡ ∀z≤∗ s |A|xy .

The Kreisel and Howard modalities are interpreted as

|!kA|x :≡ ∀̃y|A|xy |?kA|y :≡ ∃̃x|A|xy
|!hA|xf :≡ ∀̃y≤∗fx |A|xy |?hA|fy :≡ ∃̃x≤∗fy |A|xy .

Note that the hybrid bounded interpretation above is not an extension of hybrid interpretation
(Def 2.1), but rather a new distinct interpretation, due to the distinguished treatment of quanti-
fiers. Before we proceed let us state a second possibility for embedding intuitionistic logic into
linear logic, which we will make use of next.

Definition 4.6 ([7]) For any formula A of intuitionistic logic its linear translation A◦ is defined
inductively as

A◦at :≡ !Aat

(A 3z B)◦ :≡ A◦ 3z B
◦

(A→ B)◦ :≡ !(A◦( B◦)

(∀xA)◦ :≡ !∀xA◦

(∃xA)◦ :≡ ∃xA◦.
14For simplicity we will perform the verification of soundness in classical logic, rather than inside classical linear

logic.
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The following theorem shows how we can combine the hybrid bounded interpretation above
(Def 4.5) with the two possible embeddings (Defs 3.1 and 4.6) of ILω into LLω in order to
obtain the additive-free fragment of both the bounded modified realizability and (a variant of
the) bounded functional interpretation.

Proposition 4.7 Let us define

• AB̃(x;y) :≡ (|A∗|xy)i (embedding (·)∗ using Howard modalities)

• Ab̃r(x) :≡ (|A◦|x)i (embedding (·)◦ using Kreisel modalities)

where (·)i denotes the translation of LLω back into ILω. The following holds

(A→ B)B̃(f , g;x,w) ≡ ∀̃y≤∗fxwAB̃(x;y)→ BB̃(gx;w)

(∃zA)B̃(x, a;f) ≡ ∃z≤∗a∀̃y≤∗fxaAB̃(x;y)

(∀zA)B̃(f ;y, b) ≡ ∀z≤∗ bAB̃(fb;y)

(∃z≤∗ cA)B̃(x;f) ≡ ∃z≤∗ c∀̃y≤∗fxAB̃(x;y)

(∀z≤∗ cA)B̃(x;y) ≡ ∀z≤∗ cAB̃(x;y),

and

(A→ B)b̃r(f) ≡ ∀̃x(Ab̃r(x)→ Bb̃r(fx))

(∃zA)b̃r(x, a) ≡ ∃z≤∗aAb̃r(x)

(∀zA)b̃r(f) ≡ ∀̃b∀z≤∗ bAb̃r(fb)

(∃z≤∗ cA)b̃r(x) ≡ ∃z≤∗ cAb̃r(x)

(∀z≤∗ cA)b̃r(x) ≡ ∀z≤∗ cAb̃r(x),

where A ≡ B denotes that A is syntactically equal to B.

Although we obtain precisely the bounded modified realizability, the treatment of the exis-
tential (and bounded existential) quantifier in (·)B̃(· ; ·) differs from the original bounded func-
tional interpretation. Note, however, that the following equivalence (similarly for the bounded
existential quantifier) holds

∃x, a∀f(∃zA)B̃(x, a;f) ≡ ∃x, a∀f∃z≤∗a∀y≤∗fxaAB̃(x;y)

⇔ ∃x, a∀y∃z≤∗a∀y′≤∗yAB̃(x;y′).

Finally, let us present the soundness theorem for our hybrid bounded interpretation of MELL.

Theorem 4.8 (Soundness of hybrid bounded interpretation) Let A0, . . . , An be a sequence
of formulas of MELL, with z as the only free-variables. If

` A0, . . . , An

is provable in MELL then monotone terms a0, . . . ,an can be automatically synthesised from its
formal proof, such that
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(z ≤∗ z∗), (y0 ≤∗ y0), . . . , (yn ≤∗ yn) ` |A0|a0
y0
, . . . , |An|anyn

where FV(ai) ∈ {z∗,y0, . . . ,yn}\{yi}.

Proof. By induction on the given derivation. We assume that bounded quantifiers are axioma-
tised as

∀x ≤∗ t A↔ ∀x((x ≤∗ t)( A)

∃x ≤∗ t A↔ ∃x((x ≤∗ t)⊗A)

where↔ denotes linear equivalence. Note that since the majorazability relation has been defined
using the Kreisel modality (see beginning of Section 4), x ≤∗ t is a fixed formula and hence these
axioms have simple realisers. We work under assumptions

(i) z ≤∗ z∗

(ii) y0 ≤∗ y0, . . . ,yn ≤∗ yn.

Whenever some of the components of these assumptions are actively used we will write them
explicitly in the proof.

Tensor. Assume monotone terms γ[y], δ[w],a, b have been obtained for the premise of the rule.
We construct monotone terms for the conclusion as follows:

(y≤∗y) ` |Γ|γ[y]
v , |A|ay

[fby ]
(fb≤∗fb) ` |Γ|γ[fb]

v , |A|afb
(f≤∗f) ` |Γ|γ[fb]

v , |A|afb

(w≤∗w) ` |∆|δ[w]
u , |B|bw

[gaw ]
(ga≤∗ga) ` |∆|δ[ga]

u , |B|bga
(g≤∗g) ` |∆|δ[ga]

u , |B|bga
(f≤∗f), (g≤∗g) ` |Γ|γ[fb]

v , |∆|δ[ga]
u , |A|afb ∧ |B|bga

(f≤∗f), (g≤∗g) ` |Γ|γ[fb]
v , |∆|δ[ga]

u , |A⊗B|a,bf ,g

Given the assumptions, it is clear that γ[fb] and δ[ga] are also monotone. For the rest of proof
we omit the straightforward verification that the constructed terms are monotone.

Cut.

(y≤∗y) ` |Γ|γ[y]
w , |A|a0[w]

y

(a1[u]≤∗a1[u]) ` |Γ|γ[a1[u]]
w , |A|a0[w]

a1[u]

(x≤∗x) ` |∆|δ[x]
u , |A⊥|a1[u]

x

(a0[w]≤∗a0[w]) ` |∆|δ[a0[w]]
u , |A⊥|a1[u]

a0[w]

(a0[w]≤∗a0[w]) ` |∆|δ[a0[w]]
u , (|A|a0[w]

a1[u] )
⊥

(a0[w]≤∗a0[w]), (a1[u]≤∗a1[u]) ` |Γ|γ[a1[u]]
w , |∆|δ[a0[w]]

u

|Γ|γ[a1[u]]
w , |∆|δ[a0[w]]

u

since ai≤∗ai follows from assumptions (i) and (ii).
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Universal quantifier.
z0≤∗ z∗0 ` |Γ|

γ[y,z∗0 ]
w , |A(z0)|a[z∗0 ]

y

z∗0≤∗ z∗0 , z0≤∗ z∗0 ` |Γ|
γ[y,z∗0 ]
w , |A(z0)|a[z∗0 ]

y

z∗0≤∗ z∗0 ` |Γ|
γ[y,z∗0 ]
w , ∀z0≤∗ z∗0 |A(z0)|a[z∗0 ]

y

z∗0≤∗ z∗0 ` |Γ|
γ[y,z∗0 ]
w , |∀z0A(z0)|λz0.a[z0]

y,z∗0

Existential quantifier.

y ≤∗ y, z≤∗z∗ ` |Γ|γ[y]
w , |A(t[z])|ay z≤∗z∗ ` t[z] ≤∗ t∗[z∗]

y ≤∗ y, z≤∗z∗ ` |Γ|γ[y]
w ,∃x≤∗ t∗[z∗]|A(x)|ay

[f(t∗[z∗])
y ]

f(t∗[z∗]) ≤∗ f(t∗[z∗]), z≤∗z∗ ` |Γ|γ[f(t∗[z∗])]
w , ∃x≤∗ t∗[z∗]|A(x)|af(t∗[z∗])

z≤∗z∗,f≤∗f ` |Γ|γ[f(t∗[z∗])]
w , ∃x≤∗ t∗[z∗]|A(x)|af(t∗[z∗])

z≤∗z∗,f≤∗f ` |Γ|γ[f(t∗[z∗])]
w , |∃xA(x)|a,t

∗[z∗]
f

Howard dereliction and promotion.

|Γ|γw, |A|ay ` a≤∗a

|Γ|γw, ∃̃x≤∗a |A|xy
|Γ|γw, |?hA|ay

|?hΓ|γ[y]
w , |A|ay

∃̃v≤∗γ[y] |Γ|vw, |A|ay y ≤∗ fa ` y ≤∗ fa

∃̃y≤∗fa ∃̃v≤∗γ[y] |Γ|vw, ∀̃y≤∗fa |A|ay
f≤∗f ` ∃̃v≤∗γ[fa] |Γ|vw, ∀̃y≤∗fa |A|ay

f≤∗f ` |?hΓ|γ[fa]
w , |!hA|af

Howard weakening and contraction.

|Γ|γw
|Γ|γw, ∃̃x≤∗ c |A|xy
|Γ|γw, |?hA|cy

|Γ|γ[y0,y1]
w , |?hA|a0

y0
, |?hA|a1

y1

|Γ|γ[y]
w , |?hA|a0

y , |?hA|a1
y

|Γ|γ[y]
w , |?hA|

max{a0,a1}
y , |?hA|

max{a0,a1}
y

|Γ|γ[y]
w , |?hA|

max{a0,a1}
y

Kreisel dereliction and promotion.

|Γ|γ[y]
w , |A|ay ` a≤∗a

|Γ|γ[y]
w , ∃̃x|A|xy

|Γ|γ[y]
w , |?kA|ay

y ≤∗ y ` |?kΓ|w, |A|ay
` |?kΓ|w, ∀̃y|A|ay
` |?kΓ|w, |!kA|a

Kreisel weakening and contraction.

|Γ|γw
|Γ|γw, ∃̃x|A|xy
|Γ|γw, |?kA|y

|Γ|γ[y0,y1]
w , |?kA|y0

, |?kA|y1

|Γ|γ[y]
w , |?kA|y, |?kA|y
|Γ|γ[y]
w , |?kA|y
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That concludes the proof. 2

Remark 4.9 A final remark about the additives. Note that we could have defined an interpreta-
tion for the if-then-else connective as

|A 3z B|x,vy,w :≡ |A|xy 3z |B|vw

and this would give rise to a formula interpretation of additives (viewing boolean quantifications
as bounded quantifications) which indeed corresponds precisely to the formula interpretation of
bounded modified realizability, and to the formula interpretation of a variant of the bounded
functional interpretation (of intuitionistic logic). The correspondence on the level of formulas,
however, does not lift to a sound proof interpretation in linear logic, due to the lack of the
monotonicity property (12).
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