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Abstract. This paper surveys several computational interpretationsof classical
linear logic based on two-player one-move games. The moves of the games are
higher-order functionals in the language of finite types. All interpretations dis-
cussed treat the exponential-free fragment of linear logicin a common way. They
only differ in how much advantage one of the players has in theexponential
games. We discuss how the several choices for the interpretation of the modali-
ties correspond to various well-known functional interpretations of intuitionistic
logic, including Gödel’s Dialectica interpretation and Kreisel’s modified realiz-
ability.

1 Introduction

This article surveys several interpretations [4, 17, 19, 20] of classical linear logic based
on one-move two-player (Eloise and Abelard) games. As we will see, these are related
to functional interpretations of intuitionistic logic such as Gödel’s Dialectica interpre-
tations [12] and Kreisel’s modified realizability [14].

The intuition behind the interpretation is that each formula A defines an adjudica-
tion relation between arguments pro (Eloise’s move) and against (Abelard’s move) the
truth of A. Note that we do not ask the moves of Eloise and Abelard to be proofs (or
disproofs) ofA. The moves only need to be arguments, which can be thought of as
incomplete proofs. In this way, even ifA is an open problem, whose proof or disproof
has yet to be discovered, the gameA is still well-defined. If the formula is provable,
and hence true, Eloise should have no problem winning the game. On the other hand, if
the negation ofA is provable, and henceA is false, Abelard should be able to extract a
winning move from the refutation ofA.

Thinking of the moves as incomplete proofs, it is clear that we must require both
players to make their movessimultaneously. If one player is allowed to see what the
other has chosen for his/her move, that player could simply look for the gap in the
opponent’s move and provide a counterexample for that. So, the player which is allowed
to play second would in fact have a winning strategy, even without having a complete
(dis)proof ofA. As a simple example, think of the ancient “Odd or Even” game.Since
neither player has a winning strategy, it is crucial that both players make their moves
simultaneously.



2 Paulo Oliva

The fact that we work with one-move games is not a restrictionwhen the moves can
be higher-order. Consider the game of Chess, for instance. It can also be viewed as a
one-move game where each of the two players writes down theirstrategy as a function
mapping board configurations to moves. The game then consists of the two players
handing in their strategies, which are then simulated against each other.

The interpretation of linear negation, logical connectives, quantifiers and exponen-
tials corresponds to constructions for building new games out of previously built ones.
Given the symmetry of the interpretation, the game corresponding to the linear negation
of A is simply the gameA with the roles of the two players swapped. In this way, linear
double negation would bring us back to the original game, which should be the case
since linear negation is involutive. As we will see, the gameconstructions correspond-
ing to the logical connectives and quantifiers are canonical.

In the case of the exponentials, however, the situation is quite different. It is well
know that the rules for the exponentials do not uniquely determine these modalities.
This is reflected in the flexibility of interpreting the corresponding modal games. Never-
theless, all interpretations involve a break of symmetry inthe game, giving an advantage
to one of the players. How much advantage is given separates the different interpreta-
tions. In all cases, the advantage is given in the form of one of the players being allowed
to look at the opponents move, and make a set of possible moves, rather than a single
move. The simplest interpretation of the exponential gamesallows this set to contain all
possible moves, which is equivalent to not making a move at all and winning the game
in case a winning move exists.

The paper is organised as follows. The basic interpretationof the exponential-free
fragment of classical linear logic is presented in Section 2, and soundness of the inter-
pretation is proved. The interpretation is characterised in Section 2.1. A simple form of
branching quantifier is used for the characterisation. In Section 3, we discuss the vari-
ous possibilities for the interpretation of the exponentials.

Acknowledgements.The interpretations presented here come from work of de Paiva
[19], Blass [4], Shirahata [20] and recent work of the author[17]. I would like to thank
Hongseok Yang and Diana Ratiu for comments on earlier versions of this paper. I am
also grateful for the support from the Royal Society under grant 516002.K501/RH/kk.

1.1 Linear Logic

We work with an extension of classical linear logic to the language of all finite types.
The set offinite typesT is inductively defined as follows:i, b ∈ T ; and if ρ, σ ∈ T
thenρ → σ ∈ T . For simplicity, we deal with only two basic finite typesi (e.g.N) and
b (Booleans).

We assume that the terms ofLLω contain all typedλ-terms, i.e. variablesxρ for
each finite typeρ; λ-abstractions(λxρ.tσ)ρ→σ ; term applications(tρ→σsρ)σ, and con-
ditional (z)(t0, t1). The conditionalλ-term reduces to eithert0 or t1 depending on
whether the boolean variablez reduces to true or false, respectively. The atomic formu-
las ofLLω areAat, Bat, . . . andA⊥

at, B
⊥

at , . . .. For simplicity, the standard propositional
constants0, 1,⊥,⊤ of linear logic have been omitted, since the interpretationof atomic
formulas is trivial (see Definition 3).
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Table 1.Classical linear logicLLω

Formulas are built out of atomic formulasAat, Bat, . . . and A⊥

at, B
⊥

at , . . . via the
connectivesA O B (par),A ⊗ B (tensor),A 3z B (if-then-else), quantifiers∃xA and
∀xA, and modalities?A and!A. The linear negationA⊥ of an arbitrary formulaA is
an abbreviation as follows:

(Aat)
⊥ ≡ A⊥

at (A⊥
at)

⊥ ≡ Aat

(∃zA)⊥ ≡ ∀zA⊥ (∀zA)⊥ ≡ ∃zA⊥

(A O B)⊥ ≡ A⊥ ⊗ B⊥ (A ⊗ B)⊥ ≡ A⊥
O B⊥

(?A)⊥ ≡ !A⊥ (!A)⊥ ≡ ?A⊥

(A 3z B)⊥ ≡ A⊥
3z B⊥.

So,(A⊥)⊥ is syntactically equal toA. As usual, we writeA ⊸ B as an abbreviation
for A⊥

O B. We will denote bypLLω (pureLLω) the fragment ofLLω without the
exponentials, and byLLω

qf andpLLω
qf the corresponding quantifier-free fragments.

The formal system for classical linear logic that we will usein this paper is pre-
sented in Table 1. The contextsΓ and ∆ are sequences of formulas (possibly with
repetitions). The structural rules of linear logic (first row) do not contain the usual rules
of weakening and contraction. These are added separately, in a controlled manner via
the use of modalities (bottom row). We also have the usual side condition in the rule
(∀) that the variablez must not appear free inΓ .

Note that we are deviating from the standard formulation of linear logic, in the sense
that we use the if-then-else logical constructorA 3z B instead of standard additive
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conjunction and disjunction1. The logical rules forA 3z B are shown in Table 1. The
standard additives can be defined as

A ∧ B :≡ ∀zb(A 3z B)

A ∨ B :≡ ∃zb(A 3z B)

with the help of quantification over booleans. For more information on linear logic see
Girard’s original papers [10, 11].

1.2 Intuitionistic Logic

Table 2 describes a formal system for intuitionistic logic in all finite types, which also
uses the if-then-else connective, rather than the usual conjunction and disjunction. In the
case of intuitionistic logic, the contextΓ is a set of formulas (repetitions and order are
not relevant). We will be making use of the following variation of Girard’s embedding
of intuitionistic logic into linear logic with conditionals.

Definition 1 ([10]). For any formulaA of intuitionistic logic its linear translationAl

is defined inductively as

Al
at :≡ Aat

(A 3z B)l :≡ Al
3z Bl

(A → B)l :≡ !Al
⊸ Bl

(∀xA)l :≡ ∀xAl

(∃xA)l :≡ ∃x!Al.

The translation above is such thatA0, . . . , An ⊢ B is derivable inILω if and only
if (!Al

0)
⊥, . . . , (!Al

n)⊥, Bl is derivable inLLω. We will also consider the following
forgetful translation of intuitionistic logic into linearlogic.

Definition 2. For any linear logic formulaA in the image of the translation(·)l its
intuitionistic translationAi is defined inductively as

Ai
at :≡ Aat

(A 3z B)i :≡ Ai
3z Bi

(A ⊸ B)i :≡ Ai → Bi

(!A)i :≡ Ai

(∀xA)i :≡ ∀xAi

(∃xA)i :≡ ∃xAi.

1 See Girard’s comments in [10] (p13) and [11] (p73) on the relation between the additive con-
nectives and the if-then-else construct.
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{. . . , Aat, . . .} ⊢ Aat (id)
Γ ⊢ A Γ, A ⊢ B

(cut)
Γ ⊢ B

Γ ⊢ A
(3r

t )
Γ ⊢ A 3t B
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Γ ⊢ A 3f B
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(3l

t)
Γ, A 3t B ⊢ C

Γ, B ⊢ C
(3l

f)
Γ, A 3f B ⊢ C

Γ [γ0] ⊢ A Γ [γ1] ⊢ B
(3z)

Γ [(z)(γ0, γ1)] ⊢ A 3z B

Γ [γ0], A ⊢ C[c0] Γ [γ1], B ⊢ C[c1]
(3z)

Γ [(z)(γ0, γ1)], A 3z B ⊢ C[(z)(c0, c1)]

Γ, A ⊢ B
(→r)

Γ ⊢ A → B

Γ ⊢ A
(∀r)

Γ ⊢ ∀zA

Γ ⊢ A[t/z]
(∃r)

Γ ⊢ ∃zA

Γ ⊢ A Γ, B ⊢ C
(→l)

Γ, A → B ⊢ C

Γ, A ⊢ B
(∀l)

Γ,∀zA ⊢ B

Γ, A ⊢ B
(∃l)

Γ,∃zA ⊢ B

Table 2. Intuitionistic logicILω

The translation(·)i works as an inverse of(·)l, i.e.A ≡ (Al)i, for any formulaA of
intuitionistic logic, where≡ denotes syntactic equality.

For the rest of the article we use bold face variablesf , g, . . . , x, y, . . . for tuples of
variables, and bold face termsa, b, . . . , γ, δ, . . . for tuples of terms. Given sequence of
termsa andb, bya(b), we mean the sequence of termsa0(b), . . . , an(b). Similarly for
a[b/x].

2 Basic Interpretation

In this section we will describe the interpretation of the pure fragment of classical linear
logic. The interpretation of the exponentials is treated inSection 3. To each formulaA
of the exponential-free fragment of linear logic we associate a quantifier-free formula
|A|xy , wherex, y are fresh-variables not appearing inA. Intuitively, the interpretation
of a formulaA is a two-player (Eloise and Abelard) one-move game, where|A|xy is
the adjudication relation of the game. Eloise and Abelard simultaneously make moves
x andy, respectively, and Eloise wins if and only if|A|xy holds. For instance, in the
game “Odd of Even” the adjudication relation is “x + y is odd” (assuming Eloise is
playing Odd). We want that Eloise has a winning move wheneverA is provable in
LLω. Moreover, the linear logic proof ofA will provide Eloise’s winning movea and a
verification of this fact, i.e. a proof of∀y|A|ay . The interpretation of formulas of linear
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logic as adjudication relations is defined inductively on the structure of the formulas as
follows.2

Definition 3 (Basic interpretation [19, 20]). Assume we have already defined|A|xy
and|B|vw, we define

|A O B|f ,g
y,w :≡ |A|fw

y O |B|gy
w

|A ⊗ B|x,v
f ,g :≡ |A|xfv ⊗ |B|vgx

|A 3z B|x,v
y,w :≡ |A|xy 3z |B|vw

|∀zρA|fy,z :≡ |A|fz
y

|∃zρA|x,z
f :≡ |A|xfz.

The interpretation of atomic formulas are the atomic formulas themselves, i.e.

|Aat| :≡ Aat

|A⊥

at| :≡ A⊥

at.

Notice that for atomic formulas the tuples of witnesses and challenges are both empty.
It is easy to see that|A⊥|yx ≡ (|A|xy)⊥.

Let us briefly motivate this choice of interpretation. Assume we have already de-
fined the gamesA andB, i.e. we have adjudication relations|A|xy and|B|vw. Consider,
for instance, the adjudication relation for the gameA O B. In this case, we are giving
Eloise a certain advantage, since her move in gameA can be depend on Abelard’s move
in gameB, and her move in gameB can depend on Abelard’s move in gameA. The
dependence on Eloise’s move is formalised by allowing her move in the gameA O B
to be a pair of functionalsf , g. The reason for this cross-dependence is that she might
not have a winning move for the gameA nor for the gameA⊥, and yet we expect her to
easily win the gameA O A⊥. The cross-dependence allows a pair of simple copy-cat
moves (f , g being identity functions) to be her winning move. A symmetric situation
occurs in the gameA⊗B, only that now Abelard has the advantage and can easily win
the gameA ⊗ A⊥, as expected.

Given thatA ⊸ B is an abbreviation forA⊥
O B, in particular we have that the

adjudication relation for the gameA ⊸ B is

|A ⊸ B|f ,g
x,w ≡ |A|xfw ⊸ |B|gx

w .

The gameA 3z B is simply a flagged disjoint union of the gamesA andB. More
precisely, the gameA 3z B is either the gameA or the gameB, depending on the
boolean flagz. Since the moves in the gamesA andB might be of different types, we
ask the players to make moves in both games, although only oneof their moves will be
actually used.

2 We will make use the language of linear logic itself to describe the adjudication relations. If
one wishes, a further embedding of linear logic into classical logic would give a semantics
for linear logic. Due to the fact that the embedding of linearlogic into classical logic is not
faithful, however, the semantics will be sound but not complete.
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Finally, the quantifier games can be viewed as a family of games parametrised by
zρ. In the case of the game∀zA(z) for instance, Abelard chooses which game in the
family he wants to play (by choosingz) while Eloise is allowed to make a conditional
move (in the form of a functionalf ) which produces her move in the gameA(z) for
each givenz. Again, a symmetric situation occurs in the game∃zA(z): Eloise chooses
one of the games and Abelard has to be prepared for any possible choice of Eloise.

The following theorem formalises the intuition that Eloise’s winning move in the
game|A|xy can be extracted from a proof ofA in classical linear logic (exponentials
treated in Section 3).

Theorem 1 (Soundness).Let A0, . . . , An be formulas ofpLLω, with z as the only
free-variables. If

A0(z), . . . , An(z)

is provable inpLLω then termsa0, . . . , an can be extracted from this proof such that

|A0(z)|a0

y
0

, . . . , |An(z)|an

y
n

is also provable inpLLω
qf , whereFV(ai) ∈ {z, y0, . . . , yn}\{yi}.

Proof. See [17]. 2

Remark 1 (Semantics).Note that the interpretation described above gives rise to ase-
mantics for pure linear logic: Simply replace linear logic connectives by classical con-
nectives in the interpreted formulas:

|A O B|f ,g
y,w :≡ |A|fw

y or |B|gy
w

|A ⊗ B|x,v
f ,g :≡ |A|xfv and|B|vgx

|A 3z B|x,v
y,w :≡ if z then|A|xy else|B|vw

|∀zρA|fy,z :≡ |A|fz
y

|∃zρA|x,z
f :≡ |A|xfz.

A formula A is said to be “true” if Eloise has a winning move for the game|A|xy , for
any given assignment of one-move two-player games to atomicformulas.

2.1 Characterisation of Basic Interpretation

In this section we investigate the characterisation of the interpretation given above.
More precisely, we ask the question: for which extension of pure linear logic it is the
case that if there are termsa0, . . . , an such that

|A0(z)|a0

y
0

, . . . , |An(z)|an

y
n

is provable then the sequentA0, . . . , An is also provable? In other words, we have seen
how provability in pure linear logic gives rise to a winning move for Eloise. What can
we say about the converse? How do we turn a winning move of Eloise for the symmetric
game|A|xy into a proof ofA?
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We can only answer these questions once we understand precisely how provabil-
ity of the formulaA relates to winning moves for Eloise in the game|A|xy . Since the
provability ofA gives a winning move for Eloise in the corresponding game, wewould
be tempted to think that a formulaA is interpreted as the existence of a winning move
for Eloise, i.e. thatA is equivalent to∃x∀y|A|xy . If that were the case, thenA⊥ would
be equivalent to∃y∀x(|A|xy)⊥, since|A⊥|yx ≡ (|A|xy)⊥. Hence, the trivial theorem
A O A⊥ would be equivalent to∃x∀y|A|xy O (∀y∃x|A|xy)⊥, which is not always true.

The problem can be solved if we take seriously the fact that a formulaA is in-
terpreted as asymmetricgame|A|xy between the two players, where the players must
make their moves simultaneously. That can be done using a simple form of branching
quantifier to ensure that no player has an advantage over the other. Therefore, assume
that for all sequences of variables of finite typex andy, we can form a new formulaÆx

y A, and let us refer to these assimultaneous quantifiers. In the same way that a
formula∃x∀y|A|xy can be interpreted as a game where Eloise makes a movex and
then Abelard chooses his movey, the formula

Æx
y |A|xy corresponds to the game where

both players choose their moves simultaneously. With the help of this simple branch-
ing quantifier we can, for instance, describe the “Odd or Even” game in terms of the
formula

Æn
m(n + m is even). The simultaneous quantifier can be viewed as a simplifi-

cation of Henkin’s (branching) quantifier [5, 13], in which no alternation of quantifiers
is allowed on the two branches3.

It was shown by Ehrenfeucht (cf. [13]) that Henkin’s quantifier can be used to define
the quantifier “there exists infinitely many”. It follows from a result of Mostowski [15]
that the classical predicate calculus extended with Henkin’s quantifier is not axiomati-
sable4. Since linear logic does not have a standard truth semantics, it is impossible to
talk about a standard axiomatisation of the simultaneous quantifier overpLLω. Never-
theless, as we will see, the following derivation rule is sound and complete with respect
to the game semantics (cf. Remark 1) outlined above:

A0(a0, y0), . . . , An(an, yn)
(

Æ

)Æx0

y
0

A0(x0, y0), . . . ,

Æxn

y
n

An(xn, yn)

with the side-condition:yi may only appear free in the termsaj , for j 6= i. In particular,
we will have that eachyi will not be free in the conclusion of the rule. Note thatxi, yi

are sequences of variables, andai are sequences of terms.
The standard quantifier rules can be obtained from this single rule. The rule (∀)

can be obtained in the case when only the tupleyn is non-empty. The rule (∃) can be
obtained in the case when only the tuplexn is non-empty. Hence, for the rest of this
section we will consider that standard quantifiers∀xA and∃xA are in fact abbreviations
for

Æ

xA and

ÆxA, respectively.
The most interesting characteristic of this simultaneous quantifier is with respect to

linear negation, which is defined as

3 See Bradfield [6] as well, where this simple form of branchingquantifier is also used.
4 Mostowski uses that the ring of integers is not axiomatisable, and that a non-densely ordered

ring is isomorphic to the ring of integers if and only if for each positivex there are finitely
many elements between0 andx.
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Symbol System

pLLω Pure linear logic

sLLω Pure linear logic with simultaneous quantifier

sLL∗ sLLω + (ACs) + (ACp)

Table 3.Systems of linear logic

(

Æx
y A)⊥ ≡

Æy
x A⊥

and corresponds precisely to the switch of roles between theplayers. Let us refer to the
extension ofpLLω with the new simultaneous quantifier bysLLω.

Theorem 2 ([18]). Consider the extension to the systemsLLω of the interpretation
given in Definition 3, where the simultaneous quantifier is interpreted as

|

Æv
wA(v, w)|f ,v

g,w :≡ |A(v, w)|fw
gv .

Theorem 1 holds for the extended systemsLLω , where the verifying system is stillpLLω
qf .

In fact, since the simultaneous quantifiers are eliminated,we obtain an interpretation
of sLLω into pLLω

qf . In particular, this implies that the rule suggested above is sound. Let
us proceed now to define a further extension ofsLLω which is complete with respect to
the interpretation of Section 2. Consider the following principles for the simultaneous
quantifier

ACs : ∀z

Æx
y Aqf(x, y, z) ⊸

Æf
y,zAqf(fz, y, z)

ACp :

Æx
y Aqf(x) O

Æv
wBqf(v) ⊸

Æf ,g
y,w(Aqf(fw) O Bqf(gy))

for quantifier-freeformulaAqf andBqf . We refer to these as thesequential choiceACs

andparallel choiceACp. For those familiar with the usual functional interpretations of
intuitionistic logic, the principleACs corresponds to the standard (intentional) axiom
of choice, whileACp is a generalisation of the independence of premise principle (case
when tuplesy andw are empty). It is an easy exercise to check that the converse of the
two implications above can be derived insLLω.

Let us denote bysLL∗ the extension ofsLLω with these two extra schemataACs and
ACp. These extra principles are all one needs to show (oversLLω) the equivalence be-
tweenA and its interpretation

Æx
y |A|xy . One then obtains the following characterisation

theorem.

Theorem 3. LetA be a formula in the language ofsLLω. ThenA is derivable insLL∗

if and only if|A|ty is derivable inpLLω
qf , for some sequence of termst.
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3 Interpretations of the Exponentials

The exponential-free fragment ofLLω, despite its nice properties, bears little relation
to the standard logical systems of classical and intuitionistic logic. In order to recover
the full strength of classical logic, we need to add back contraction and weakening.
These are recovered in linear logic in a controlled manner, with the help of modalities
(exponentials)?A and!A. The exponentials are dual to each other, i.e.

(?A)⊥ ≡ !A⊥ (!A)⊥ ≡ ?A⊥.

Girard points out in several places (cf. [11] (p84)) that these modalities, contrary
to the other connectives, are not canonical. More precisely, if we add new modalities
?′A and!′A with the same rules as shown in Table 1, we will not be able to derive the
equivalences?A ↔ ?′A and !A ↔ !′A. This is reflected in the flexibility (discussed
below) with which we can interpret these modalities.

In terms of games, we will see that the exponentials correspond to a break of sym-
metry between the two players, allowing one player to see theopponent’s move before
making his/her move. Besides the advantage of allowing one of the players to play sec-
ond, the exponential can be interpreted in such a way that thefavoured player can play
aset of moves, rather than a single move. Ifρ is the type of the move in question, let us
writeρ∗ for the type corresponding to the sets of moves of typeρ (i.e.ρ∗ ⊆ P(ρ)). The
choice of how big we allow that set of moves to be determines the interpretation. As we
will see, for instance, we can choose the set of moves to be thewhole type (ρ∗ ≡ {ρ}),
finite sets (ρ∗ ≡ Pfin(ρ)), sets with common majorant (see Section 3.5), or singleton
sets (ρ∗ ∼= ρ).

Let us start by analysing which are the allowed sets of subsets ρ∗ that give rise
to proper interpretations (cf. [16]). We do that by considering an abstract interpretation
where the choice of sets is left open, and only certain conditions are put on these sets. In
the remaining subsections we will look at particular choices which are related to well-
known functional interpretations of intuitionistic logic(see Figure 1). For each finite
typeρ let ρ∗ be a new abstract type. Moreover, for each formulaA, let∀xρ

<aρ∗

A and
∃xρ

<aρ∗

A be formula abbreviations such that

(∃x<aA)⊥ ≡ ∀x<aA⊥ (∀x<aA)⊥ ≡ ∃x<a A⊥.

A formula A is called<-fixed if it does not contain unbounded quantifiers and all
bounded quantifiers∀x < aA and∃x < aA are immediately preceded by a! and?,
respectively. For each<-fixed formulaA, assume we have sequence of termsǫ, η and
µ such that the following sequents are derivable:

(D) !∀y<ηx A(y) ⊢ A(x)

(C) !∀y<ǫy0y1 A(y) ⊢ !∀y<yi A(y) (i ∈ {0, 1})

(P) !∀y<µhw A(y) ⊢ !∀x<w !∀y<hx A(y)

The provability sign in the conditions stands for provability in the system under which
the functional interpretation will be verified, which mightbe an extension ofLLω.
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ILω

?

(·)l

-
derived inter.

LLω

ILω

6

(·)i

-
| · |

LLω

Fig. 1. Deriving functional interpretations of intuitionistic logic

Intuitively, the first condition says that for any typeρ we must have an injection
η into ρ∗. Condition (C) says that for any two sets inρ∗ there is a bigger set which
includes both. Finally, condition (P) corresponds to a collection principle which says
that any collection of setshx parametrised by a boundedx < w can be uniformly
bounded.

We can then show that, for any formula abbreviation satisfying conditions (D, C, P),
a functional interpretation of classical linear logic can be obtained by defining the in-
terpretation of the exponentials as

|!A|xf :≡ !∀y<fx |A|xy

|?A|fy :≡ ?∃x<fy |A|xy .

The conditions (D, P) are used to ensure the soundness of the dereliction and promotion
rules, respectively. The condition (C) is used for the soundness of the contraction rule.
The rule of weakening only needs thatρ∗ is not empty, so that that∀x<aA is a proper
formula for somea.

3.1 Interpretation 1: Kreisel’s Modified Realizability

The first alternative for the interpretation of the exponentials we consider is one in
which the game?A gives maximal advantage to Eloise, and game!A gives maximal
advantage to Abelard. The maximal advantage corresponds tothe player in question
not needing to make any move, with their best possible move being played for them.
This corresponds to allowing the move of the player to be the whole set of possible
moves. More precisely, the interpretation is defined as:

Definition 4. Extend the interpretation given in Definition 3 as

|!A|x :≡ !∀y|A|xy

|?A|y :≡ ?∃x|A|xy .

It is easy to see that Theorem 1 still holds when Definition 3 isextended in this way.
Note, however, that once exponentials are treated as in Definition 4, the relation|A|xy is
no longer quantifier-free. Nevertheless, it is the case thatformulas in the image of the
interpretation (we call thesefixed formulas) are also in the kernel of the interpretation.
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More, precisely, ifA is in the kernel of the interpretation then|A| ≡ A. The complete-
ness result of Section 2.1 needs to be calibrated, as the schemataACs andACp need
to be taken for all fixed-formulas (and not just quantifier-free formulas). Moreover, we
need an extra principle

TA : !

Æx
y A ⊸ ∃x!∀yA

calledtrump advantage, for fixed-formulas5 A, in order to obtain the equivalences in-
volving exponentials, i.e. equivalence between!A and its interpretation∃x!∀yA. The
principle TA in particular implies that the modality! commutes with the existential
quantifier, i.e.!∃xA ↔ ∃x!A.

We have shown [17] that when combined with the embedding of intuitionistic logic
into linear logic, this choice for the interpretation of theexponentials corresponds to
Kreisel’s modified realizability interpretation [14] of intuitionistic logic. This result is
rephrased in the theorem below. For an introduction to modified realizability see chapter
III of [22] or the book chapter [23].

Theorem 4 (Kreisel’s modified realizability). Let |A|xy be as in Definition 3 and 4.
For formulasA of intuitionistic logic let us define

x mr A :≡ (|!Al|x)i,

where(·)l and(·)i denote the embeddings described in Section 1.2. The following equiv-
alences hold intuitionistically:

x, v mr (A ∧ B) ⇔ (x mr A) ∧ (v mr B)

x, v, z mr (A ∨ B) ⇔ (x mr A) 3z (v mr B)

f mr (A → B) ⇔ ∀x((x mr A) → (fxmr B))

x, z mr ∃zA ⇔ x mr A

f mr ∀zA ⇔ ∀z(fz mr A).

3.2 Interpretation 2: Gödel’s Dialectica Interpretation

The most restricted interpretation we consider is the one where the favoured player has
to choose a singleton set in the exponential game. Therefore, the only head-start will
be to be able to see the opponents move. Based on the opponent’s move the player will
then have to make a single move. This leads to an extension of the interpretation given
in Definition 3 with the interpretation of the exponentials as:

Definition 5. Extend Definition 3 as

|!A|xf :≡ !|A|xfx

|?A|fy :≡ ?|A|fy
y

5 Although we only need the principleTA for fixed-formulas in order to obtain the characteri-
sation, modified realizability actually interprets this principle for arbitrary formulasA.
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where we are identifying the singleton sets (i.e.fx andfy) with their unique element.

Note that in this case the target of the interpretation is again a quantifier-free calcu-
lus (as in the basic interpretation of Section 2). For the soundness, however, we must
assume that quantifier-free formulas are decidable in orderto satisfy the contraction
rule, since we must choose one among two singleton sets of potential witnesses. The
soundness of the weakening rule, and the rules (!) and (?) is trivial. Besides being sound
for the principlesACs, ACp (Section 2.1) and the principleTA (Section 3.1) the Dialec-
tica interpretation ofLLω will also be sound for the following principle

MPD : ∀x!A ⊸ !∀xA

for quantifier-free formulasA. This is the linear logic counterpart of the semi intuition-
istic Markov principle. In fact, these are all the extra principles needed to show the
equivalence betweenA and its Dialectica interpretation

Æx
y |A|xy (see [17, 18]).

This interpretation corresponds to Gödel’s Dialectica interpretation [1, 12] of intu-
itionistic logic, used in connection to a partial realisation of Hilbert’s consistency pro-
gram: the consistency of classical first-order arithmetic relative to the consistency of the
quantifier-free calculusT. This correspondence is formalised in the following theorem.

Theorem 5 (Gödel’s Dialectica interpretation).Let |A|xy be as in Definition 3 and 5.
For formulasA of intuitionistic logic let us define

Ad(x; y) :≡ (|Al|xy)i.

The following equivalences hold intuitionistically:

(A ∧ B)d(x, v; y, w, z) ⇔ Ad(xz; y) 3z Bd(vz; w)

(A ∨ B)d(x, v, z; f , g) ⇔ Ad(x; fxvz) 3z Bd(v; gxvz)

(A → B)d(f , g; x, w) ⇔ Ad(x; gxw) → Bd(fx, w)

(∀zA)d(f ; y, z) ⇔ Ad(fz; y)

(∃zA)d(x, z; f) ⇔ Ad(x; fxz).

This is not exactly how Gödel defined his Dialectica interpretation [12], but it is
equivalent. In the case of conjunction and disjunction, theextra boolean informationz
given to the functionals is irrelevant, since each functional will only be applied when the
boolean is either true or false. The equivalence between thetwo different interpretations
of disjunction and existential quantifiers is discussed in the following theorem.

Theorem 6. Let AD be the interpretation ofA as in G̈odel’s original definition of the
Dialectica interpretation. ThenAD ≡ ∃v∀wAD(v; w) is intuitionistically equivalent
to ∃x∀yAd(x; y).

Proof. Using the characterisation principles for the Dialecticainterpretation of intu-
itionistic logic we can show that

∃v∀wAD(v; w) ↔ A ↔ ∃x∀yAd(x; y).
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We first look at the proof of the implication

(∗) ∃v∀wAD(v; w) → ∃x∀yAd(x; y).

By the Dialectica interpretation we can eliminate the characterisation principles from
this proof and at the same time produce termst, s such that

∀v, y(AD(v; svy) → Ad(tv; y))

is derivable in pure intuitionistic logic. But this in particular implies that (∗) is provable
in pure intuitionistic logic. The implication from right toleft can be proved similarly.
2

3.3 Interpretation 3: Diller-Nahm Interpretation

We have seen two extreme interpretations of the exponentialgames. One in which the
favoured player can try any of his possible moves (Section 3.1) and the other where
he/she chooses a single move (Section 3.2). Another possibility for the interpretation is
to give the player in question a restricted advantage by allowing the player to see the op-
ponent’s move and then select anon-empty finite set of moves6. If any of these is a good
move the player wins. This leads to the following interpretation of the exponentials:

Definition 6. Extend Definition 3 as

|!A|xf :≡ !∀y∈fx |A|xy

|?A|fy :≡ ?∃x∈fy |A|xy

wherefx andfy are finite sets.

Again, this extension of Definition 3 makes the Soundness Theorem 1 valid for
full classical linear logic. It is clear that in this case enough term construction needs
to be added to the verifying system in order to deal with finitesets of arbitrary type.
This choice for the treatment of the exponentials corresponds to a variant of Gödel’s
Dialectica interpretation due to Diller and Nahm [7], as formalised in the following
theorem.

Theorem 7 (Diller-Nahm interpretation). Let |A|xy be as in Definition 3 and 6. For
formulasA of intuitionistic logic let us define

Adn(x; y) :≡ (|Al|xy)i.

The following equivalences hold intuitionistically:

(A ∧ B)dn(x, v; y, w, z) ⇔ Adn(xz; y) 3z Bdn(vz; w)

(A ∨ B)dn(x, v, z; f , g) ⇔ ∀y∈fxvz Adn(x; y) 3z ∀w∈gxvz Bdn(v; w)

(A → B)dn(f , g; x, w) ⇔ ∀y∈gxw Adn(x; y) → Bdn(fx, w)

(∀zA)dn(f ; y, z) ⇔ Adn(fz; y)

(∃zA)dn(x, z; f) ⇔ ∀y∈fxz Adn(x; y).

6 Allowing the set of moves to be empty corresponds to allowingthe player to choose to “sur-
render” (see [3]).



Functional Interpretations of Linear and Intuitionistic Logic 15

As in the case of Gödel’s Dialectica, the interpretation derived above is intuitionis-
tically (but not syntactically) equivalent to the one introduced by Diller-Nahm [7].

3.4 Interpretation 4: Stein’s Interpretation

In Interpretation 1 we considered the case where the favoured player can choose the
set of all possible moves, whereas in Interpretation 3 only finite sets were allowed. The
whole setρ can be identified with the identity map of typeρ → ρ, while finite sets of
elements of typeρ can be viewed as partial functionsN → ρ with a finite support. In
both cases we have a family of objects of typeρ where the indexing set is eitherρ or a
finite subset ofN.

A hybrid interpretation between these two options can also be given for each natural
numbern, wheren controls the type level from which we should use option 3 (Diller-
Nahm), and up to which level we should choose option 1 (modified realizability). In
other words, the kind of subsets ofρ we allow are those which can be indexed by the
pure typen, i.e. elements ofn → ρ. Note that if the type level ofρ is less or equal
to n then the whole setρ is also an allowed move. Only when the type level ofρ is
bigger thann we have a restricted move for the favoured player. The sloganis “only
higher-type objects are witnessed”.

Given a tuple of variablesx, we will denote byx the sub-tuple containing the
variables inx which have type level≥ n, whereasx denotes the sub-tuple of the
variables inx which have type level< n. In the following we identifyn ∈ N with the
pure type of type leveln. Let us write∀y ∈ rng(bn→ρ)A[y] and∃y ∈ rng(bn→ρ)A[y]
as abbreviations for∀inA[bi] and∃inA[bi], respectively.

Definition 7. For any fixed pure typen, extend Definition 3 as

|!A|xf :≡ !∀y∈ rng(fx)∀y |A|xy

|?A|fy :≡ ?∃x∈ rng(fy)∃x |A|xy .

Note that ifn = 0 the interpretation above corresponds to Definition 6 where “finite
sets” are replaced by “countable sets”, whereas in the limit(n = ∞) this coincides
with that given in Definition 4. The interpretation of Definition 7 corresponds to Stein’s
interpretation [21], and again leads to a sound interpretation of full classical linear logic.

Theorem 8 (Stein’s interpretation).Let|A|xy be as in Definition 3 and 7. For formulas
A of intuitionistic logic let us define

As(x; y) :≡ (|Al|xy)i.

The following equivalences hold intuitionistically:

(A ∧ B)s(x, v; y, w, z) ⇔ As(xz; y) 3z Bs(vz; w)

(A ∨ B)s(x, v, z; f , g) ⇔ ∀y∈ rng(fxvz)∀y∀w∈ rng(gxvz)∀w

(As(x; y) 3z Bs(v; w))

(A → B)s(f , g; x, w) ⇔ ∀y∈ rng(gxw)∀y As(x; y) → Bs(fx, w)

(∀zA)s(f ; y, z) ⇔ As(fz; y)

(∃zA)s(x, z; f) ⇔ ∀y∈ rng(fxz)∀y As(x; y).
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3.5 Interpretation 5: Bounded Functional Interpretation

The interpretations presented in the previous sections arestraightforward instantiations
of the parametrised interpretation, in the sense that the choice ofρ∗ suggests natural
termsη, ǫ andµ satisfying conditions (D, C, P). Consider, however, choosingρ∗ as the
subsets ofρ which are defined by a majorant (in the sense of Bezem [2]), i.e. let

ρ∗ :≡ {{x : x ≤∗ y} : yρ monotone},

wherex ≤∗ y denotes Howard-Bezem’s strong majorizabilty relation between func-
tionals (cf. [2]), andy being monotone (self-majorizable) is defined asy ≤∗ y. Let us
abbreviate quantifications over monotone objects as∀̃aA and∃̃aA (cf. [8, 9]).

Unfortunately, there are a couple of problems with this choice of ρ∗. First of all,
in general, we do not have functionalsη producing for eachx a functional which ma-
jorizesx. We get into similar problems when trying to satisfy conditions (C) and (P).
A possible solution is to ensure that all functionals involved are monotone, since in this
case conditions (D, C, P) can be easily satisfied: takeη, ǫ andµ to be the identity func-
tional, the pointwise maximum and functional application,respectively. We can enforce
that all objects we are dealing with are monotone by working with “majorants of wit-
nesses” instead of “actual witnesses”. This involves changing the interpretation of the
quantifiers as:

|∃zρA|x,a
f :≡ ∃z≤∗a |A|xfa

|∀zρA|fy,a :≡ ∀z≤∗a |A|fa
y .

In this way, we can restrict quantifications overa to monotone quantifications, without
losing generality. If we also add to the language bounded quantifiers, and interpret them
as7

|∃zρ≤∗ t A|xy :≡ ∃z≤∗ t |A|xy

|∀zρ≤∗ t A|xy :≡ ∀z≤∗ t |A|xy

the interpretation of quantifiers above corresponds to a combination of the standard
interpretation (Section 2) with aprior relativisationof the quantifiers to Bezem’s model
M of strongly majorizable functionals [2]. More precisely: For each formulaA of LLω

let [A] be obtained inductively as

[Aat] :≡ Aat, for atomic formulas

[A ⋆ B] :≡ [A] ⋆ [B], for ⋆ ∈ {⊗, O , 3z }

[⋆A] :≡ ⋆[A], for ⋆ ∈ {!, ?}

[∀xA(x)] :≡ ∀̃b∀x ≤∗ b [A(x)]

[∃xA(x)] :≡ ∃̃b∃x ≤∗ b [A(x)].

7 We are assuming that the majorizability relation and bounded quantifiers have been added to
the language as in [8].
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The formula[A] can be viewed as a relativisation of the quantifiers inA to the model
M, since∀̃b ∀x ≤∗ b A(x), for instance, is equivalent to∀x(∃̃b(x ≤∗ b) → A(x)).

Although this solves the problem of interpreting the modalities, we have now changed
the way free-variables are dealt with (through the different treatment of quantifiers).
This leads to a second problem, namely the interpretation ofthe additive connectives,
since the interpretation presented in Section 2 relies on the if-then-else term constructor
(z)(t0, t1), which is not monotone8 on the argumentz.

In summary, this fifth interpretation of the modalities is sound given a prior rel-
ativisation of quantifiers to the model of strongly majorizable functionals. This rela-
tivisation, however, conflicts with the interpretation of the additives given above. We
conclude this section with two results. First, we show that the instantiationρ∗ above
is still sound for multiplicative-exponential linear logic (MELLω) plus bounded quanti-
fiers, when the interpretation is combined with the relativisation[·]. Second, we show
that the (unsound) formula interpretation of the additivesin the linear logic context still
corresponds to (an equivalent formulation of) the bounded functional interpretation of
intuitionistic logic.

Theorem 9. Extend Definition 3 as

|!A|xf :≡ !∀̃y≤∗fx |A|xy

|?A|fy :≡ ?∃̃x≤∗fy |A|xy

|∃zρ≤∗ t A|xy :≡ ∃z≤∗ t |A|xy

|∀zρ≤∗ t A|xy :≡ ∀z≤∗ t |A|xy

and drop the if-then-else constructor (i.e. the additives). If

A0(z), . . . , An(z)

is provable inMELLω then from this proofmonotonetermsa0, . . . , an can be extracted
such that

z ≤∗ z∗, yi ≤
∗ yi ⊢ |[A0(z)]|a0

y
0

, . . . , |[An(z)]|an

y
n

is also provable inMELLω, whereFV(ai) ∈ {z∗, y0, . . . , yn}\{yi}.

Proof. We consider only the case of existential quantifier

y ≤∗ y, z≤∗z∗ ⊢ |Γ |γ[y]
w , |[A(t[z])]|ay z≤∗z∗ ⊢ t[z] ≤∗ t∗[z∗]

y ≤∗ y, z≤∗z∗ ⊢ |Γ |γ[y]
w , ∃x≤∗ t∗[z∗]|[A(x)]|ay

f (t∗[z∗]) ≤∗ f(t∗[z∗]), z≤∗z∗ ⊢ |Γ |γ[f(t∗[z∗])]
w , ∃x≤∗ t∗[z∗]|[A(x)]|af (t∗[z∗])

z≤∗z∗, f ≤∗f ⊢ |Γ |γ[f(t∗[z∗])]
w , ∃x≤∗ t∗[z∗]|[A(x)]|af (t∗[z∗])

z≤∗z∗, f ≤∗f ⊢ |Γ |γ[f(t∗[z∗])]
w , |[∃xA(x)]|

a,t∗[z∗]
f

8 Although (z)(t0, t1) is not monotone, it can be easily majorized by the pointwise-maximum
functionalmax{t0, t1}. This is the solution used in the context of intuitionistic logic, where
the interpreted formulas are monotone on the witnessing variable. In linear logic this mono-
tonicity property does not hold.
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The other cases are treated similarly.2

Next, we show that by keeping the additives in the bounded functional interpreta-
tion of linear logic, through the relativisation of quantifiers, we obtain an equivalent
formulation of the bounded functional interpretation of intuitionistic logic.

Theorem 10 (Bounded functional interpretation). Let |A|xy be as in Definition 3
and Theorem 9 (keeping the additives and viewing boolean quantifications as bounded
quantifications). For formulasA of intuitionistic logic let us define

AB(x; y) :≡ (|[Al]|xy)i.

The following equivalences hold intuitionistically:

(A ∧ B)B(x, v; y, w) ⇔ AB(x; y) ∧ BB(v; w)

(A ∨ B)B(x, v; f , g) ⇔ ∀̃y≤∗fxvAB(x; y) ∨ ∀̃w≤∗gxvBB(v; w)

(A → B)B(f , g; x, w) ⇔ ∀̃y≤∗gxw AB(x; y) → BB(fx, w)

(∀zA)B(f ; y, a) ⇔ ∀z≤∗a AB(fa; y)

(∃zA)B(x, a; f) ⇔ ∃z≤∗a ∀̃y≤∗fxa AB(x; y).

Proof. By induction on the structure ofA. Consider, for instance, the case of existential
quantifier

(∃zA)B(x, a; f) ≡ (|[(∃zA)l]|x,a
f )i

(D1)
≡ (|[∃z!Al]|x,a

f )i

≡ (|∃a∃z≤∗a ![Al]|x,a
f )i

(D3,T9)
≡ (∃z ≤∗a |![Al]|xfa)i

(T9)
≡ (∃z ≤∗a!∀̃y ≤∗fxa|[Al]|xy)i

(D2)
≡ ∃z ≤∗a ∀̃y ≤∗fxa(|[Al]|xy)i

(IH)
≡ ∃z ≤∗a ∀̃y ≤∗fxa AB(x; y).

The other cases are treated similarly.2

AlthoughAB does not syntactically coincide with the bounded functional interpre-
tation of intuitionistic logic (because of the different treatment of∨ and∃), it is easy to
see that (cf. Theorem 6)

∃̃x, a∀̃f(∃zA)B(x, a; f) ≡ ∃̃x, a∀̃f∃z≤∗a∀̃y≤∗fxa AB(x; y)

⇔ ∃̃x, a∀̃c∃z≤∗a∀̃y≤∗ c AB(x; y).
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1. J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss,
editor, Handbook of proof theory, volume 137 ofStudies in Logic and the Foundations of
Mathematics, pages 337–405. North Holland, Amsterdam, 1998.

2. M. Bezem. Strongly majorizable functionals of finite type: a model for bar recursion con-
taining discontinuous functionals.The Journal of Symbolic Logic, 50:652–660, 1985.

3. B. Biering. Cartesian closed dialectica categories. Manuscript submitted, August 2007.
4. A. Blass. Questions and answers – a category arising in linear logic, complexity theory, and

set theory. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
volume 222, pages 61–81. London Math. Soc. Lecture Notes, 1995.

5. A. Blass and Y. Gurevich. Henkin quantifiers and complete problems.Annals of Pure and
Applied Logic, 32:1–16, 1986.

6. J. Bradfield. Independence: Logic and concurrency. InProceedings of Computer Science
Logic, 2000.

7. J. Diller and W. Nahm. Eine Variant zur Dialectica-interpretation der Heyting Arithmetik
endlicher Typen.Arch. Math. Logik Grundlagenforsch, 16:49–66, 1974.

8. F. Ferreira and P. Oliva. Bounded functional interpretation. Annals of Pure and Applied
Logic, 135:73–112, 2005.

9. F. Ferreira and P. Oliva. Bounded functional interpretation in feasible analysis.Annals of
Pure and Applied Logic, 145:115–129, 2007.

10. J.-Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–102, 1987.
11. J.-Y. Girard. Towards a geometry of interaction.Contemporary Mathematics, 92:69–180,

1989.
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