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Abstract. This paper surveys several computational interpretatidredassical
linear logic based on two-player one-move games. The mdvdgea@ames are
higher-order functionals in the language of finite typed.iAferpretations dis-
cussed treat the exponential-free fragment of linear lmgiccommon way. They
only differ in how much advantage one of the players has inemonential
games. We discuss how the several choices for the intetiorets the modali-
ties correspond to various well-known functional intetptions of intuitionistic
logic, including Goddel's Dialectica interpretation andeisel’s modified realiz-
ability.

1 Introduction

This article surveys several interpretations [4,17, 19a?@lassical linear logic based
on one-move two-player (Eloise and Abelard) games. As wiesed, these are related
to functional interpretations of intuitionistic logic su@as Godel's Dialectica interpre-
tations [12] and Kreisel's modified realizability [14].

The intuition behind the interpretation is that each foranldefines an adjudica-
tion relation between arguments pro (Eloise’s move) anéhagéAbelard’s move) the
truth of A. Note that we do not ask the moves of Eloise and Abelard to befpi(or
disproofs) of A. The moves only need to be arguments, which can be thought of a
incomplete proofs. In this way, even.f is an open problem, whose proof or disproof
has yet to be discovered, the gamas still well-defined. If the formula is provable,
and hence true, Eloise should have no problem winning theeg@m the other hand, if
the negation ofd is provable, and henc is false, Abelard should be able to extract a
winning move from the refutation of.

Thinking of the moves as incomplete proofs, it is clear thatmust require both
players to make their movesmultaneouslylf one player is allowed to see what the
other has chosen for his/her move, that player could singdk ffor the gap in the
opponent’s move and provide a counterexample for thath®glayer which is allowed
to play second would in fact have a winning strategy, evehauit having a complete
(dis)proof of A. As a simple example, think of the ancient “Odd or Even” gaB8iace
neither player has a winning strategy, it is crucial thahbaayers make their moves
simultaneously.
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The fact that we work with one-move games is not a restriatiban the moves can
be higher-order. Consider the game of Chess, for instahcanlalso be viewed as a
one-move game where each of the two players writes downdtraiegy as a function
mapping board configurations to moves. The game then cergfighe two players
handing in their strategies, which are then simulated agaiamch other.

The interpretation of linear negation, logical conneaj\guantifiers and exponen-
tials corresponds to constructions for building new gamgbpreviously built ones.
Given the symmetry of the interpretation, the game corredjpg to the linear negation
of A is simply the gamel with the roles of the two players swapped. In this way, linear
double negation would bring us back to the original gamechvisihould be the case
since linear negation is involutive. As we will see, the garaestructions correspond-
ing to the logical connectives and quantifiers are canonical

In the case of the exponentials, however, the situation ii© glifferent. It is well
know that the rules for the exponentials do not uniquely meitge these modalities.
This is reflected in the flexibility of interpreting the cosponding modal games. Never-
theless, all interpretations involve a break of symmetth@game, giving an advantage
to one of the players. How much advantage is given sepataedifferent interpreta-
tions. In all cases, the advantage is given in the form of dtieeoplayers being allowed
to look at the opponents move, and make a set of possible m@tasr than a single
move. The simplest interpretation of the exponential gaamiewss this set to contain all
possible moves, which is equivalent to not making a movel ana winning the game
in case a winning move exists.

The paper is organised as follows. The basic interpretatighe exponential-free
fragment of classical linear logic is presented in Sectipar2l soundness of the inter-
pretation is proved. The interpretation is characterigggdction 2.1. A simple form of
branching quantifier is used for the characterisation. lctiSe 3, we discuss the vari-
ous possibilities for the interpretation of the expondstia
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1.1 Linear Logic

We work with an extension of classical linear logic to thegaage of all finite types.
The set offinite typesT is inductively defined as follows; b € 7; and ifp,0 € T
thenp — o € 7. For simplicity, we deal with only two basic finite typéée.g.N) and
b (Booleans).

We assume that the terms bf® contain all typed\-terms, i.e. variables” for
each finite type; \-abstractiongz”.t?)?—7; term applicationgt*—“ s*)°, and con-
ditional (z)(to, t1). The conditional\-term reduces to eithe or t; depending on
whether the boolean variableaeduces to true or false, respectively. The atomic formu-
las of LLY are A, Bat, . .. and A%, B, .. .. For simplicity, the standard propositional
constant®), 1, L, T of linear logic have been omitted, since the interpretadicatomic
formulas is trivial (see Definition 3).
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Table 1.Classical linear logi¢.L*

Formulas are built out of atomic formula,, B.t, ... and A%, BZ, ... via the
connectivesA » B (par),A ® B (tensor),A <, B (if-then-else), quantifiersz A and
vz A, and modalitie€ A and!A. Thelinear negationA+ of an arbitrary formula is
an abbreviation as follows:

(A)t = Ay (A" = Ax
(3z4)t = vzAL (VzA)+ = 3F:4+
(A Bt = At® Bt (A Byt = Al Bt
(4t = 14t (14t = 74t
(AC.B)t = At o, B:.

So, (A+)+ is syntactically equal tol. As usual, we writed — B as an abbreviation
for AL » B. We will denote bypLL“ (purelLL“) the fragment ofLL* without the
exponentials, and byl ;¢ andpLL the corresponding quantifier-free fragments.

The formal system for classical linear logic that we will usethis paper is pre-
sented in Table 1. The contexts and A are sequences of formulas (possibly with
repetitions). The structural rules of linear logic (firsiwalo not contain the usual rules
of weakening and contraction. These are added separateycontrolled manner via
the use of modalities (bottom row). We also have the usual sahdition in the rule
(V) that the variable must not appear free ifi.

Note that we are deviating from the standard formulatioimadr logic, in the sense
that we use the if-then-else logical constructbr$, B instead of standard additive
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conjunction and disjunctidn The logical rules ford <. B are shown in Table 1. The
standard additives can be defined as

ANB:=Vzb(A <, B)
AV B :=3z(A 0, B)

with the help of quantification over booleans. For more infation on linear logic see
Girard's original papers [10, 11].

1.2 Intuitionistic Logic

Table 2 describes a formal system for intuitionistic logiall finite types, which also
uses the if-then-else connective, rather than the usualeatiion and disjunction. In the
case of intuitionistic logic, the context is a set of formulas (repetitions and order are
not relevant). We will be making use of the following varatiof Girard’s embedding
of intuitionistic logic into linear logic with conditional

Definition 1 ([10]). For any formulaA of intuitionistic logic its linear translationA’
is defined inductively as

AL = Aat
(AC,B) = Al &, B!
(A— B) =14l — B!
(VrA)  =VaA
(3zA)t = 3z A
The translation above is such thag, ..., A,, = B is derivable inlL* if and only
if (1AL, ..., (1AL)+, Bt is derivable inLL“. We will also consider the following

forgetful translation of intuitionistic logic into linedogic.

Definition 2. For any linear logic formulad in the image of the translatiof)’ its
intuitionistic translationA’ is defined inductively as

AL = At
(A, BY = Ai O, B
(A — B)! .= A" — Bt
(1A) = A’
(VxrA) =Vz A
(FzA)? = dz A

! See Girard’'s comments in [10] (p13) and [11] (p73) on thetimebetween the additive con-
nectives and the if-then-else construct.
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Table 2. Intuitionistic logicIL“

The translatior{-)* works as an inverse ¢f), i.e. A = (A')?, for any formulaA of
intuitionistic logic, where= denotes syntactic equality.

For the rest of the article we use bold face varialfleg, . .., x, y, . . . for tuples of
variables, and bold face termsb, ..., v, 4, . .. for tuples of terms. Given sequence of
termsa andb, by a(b), we mean the sequence of terms$b), . . ., a,, (b). Similarly for
alb/x).

2 Basic Interpretation

In this section we will describe the interpretation of thegfragment of classical linear
logic. The interpretation of the exponentials is treate8attion 3. To each formuld
of the exponential-free fragment of linear logic we asscaquantifier-free formula
|A|Z, wherez, y are fresh-variables not appearing4n Intuitively, the interpretation
of a formula4 is a two-player (Eloise and Abelard) one-move game, whét§ is
the adjudication relation of the game. Eloise and AbelamLianeously make moves
x andy, respectively, and Eloise wins if and only|il|3 holds. For instance, in the
game “Odd of Even” the adjudication relation is %+ y is odd” (assuming Eloise is
playing Odd). We want that Eloise has a winning move whenevés provable in
LL“. Moreover, the linear logic proof of will provide Eloise’s winning move and a
verification of this fact, i.e. a proof ofy| Ag. The interpretation of formulas of linear
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logic as adjudication relations is defined inductively oa structure of the formulas as
follows 2

Definition 3 (Basic interpretation [19, 20]). Assume we have already defingd|y
and|B|?,, we define

|A e B|5:§’D = |A|£“’ 2 |B|9Y
|[A® Blyg =A%, ® |Blg,
|AC: By, = |Aly ©z (B3,
|VZPA|£7Z = |A|{:Z
3, AT = Al
The interpretation of atomic formulas are the atomic forasuhemselves, i.e.
|Aat| = Aat
|AL| := AL,

Notice that for atomic formulas the tuples of witnesses dralenges are both empty.
Itis easy to see thatd - |¥ = (|A|Z)*.

Let us briefly motivate this choice of interpretation. Assume have already de-
fined the gamesl and B, i.e. we have adjudication relationd[; and|B|;,. Consider,
for instance, the adjudication relation for the garhep B. In this case, we are giving
Eloise a certain advantage, since her move in gdroan be depend on Abelard’s move
in gameB, and her move in gamB can depend on Abelard’s move in gameThe
dependence on Eloise’s move is formalised by allowing heramio the gamed = B
to be a pair of functionalg, g. The reason for this cross-dependence is that she might
not have a winning move for the garmenor for the gamed*, and yet we expect her to
easily win the gamel »® A*. The cross-dependence allows a pair of simple copy-cat
moves (f, g being identity functions) to be her winning move. A symmesituation
occurs in the gamd ® B, only that now Abelard has the advantage and can easily win
the gamed ® A+, as expected.

Given thatA — B is an abbreviation fordl* > B, in particular we have that the
adjudication relation for the gamé — B is

|A— BILE, = |Al$, — Bl

The gamed <, B is simply a flagged disjoint union of the gamésand B. More
precisely, the gamel <, B is either the gamel or the gameB, depending on the
boolean flag:. Since the moves in the gamdsand B might be of different types, we
ask the players to make moves in both games, although onlgfaheir moves will be
actually used.

2 We will make use the language of linear logic itself to ddserihe adjudication relations. If
one wishes, a further embedding of linear logic into claddioegic would give a semantics
for linear logic. Due to the fact that the embedding of linkmyic into classical logic is not
faithful, however, the semantics will be sound but not caetegal
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Finally, the quantifier games can be viewed as a family of gapagametrised by
z”. In the case of the gam#: A(z) for instance, Abelard chooses which game in the
family he wants to play (by choosing while Eloise is allowed to make a conditional
move (in the form of a functionaf) which produces her move in the gam¢z) for
each givere. Again, a symmetric situation occurs in the gafizel(z): Eloise chooses
one of the games and Abelard has to be prepared for any possibice of Eloise.

The following theorem formalises the intuition that Eldéseinning move in the
game|A[g can be extracted from a proof ef in classical linear logic (exponentials
treated in Section 3).

Theorem 1 (Soundness)Let Aq, ..., A, be formulas ofpLL*, with z as the only
free-variables. If

Ao(z),..., An(2)

is provable inpLL® then termsa, ..., a,, can be extracted from this proof such that
[Ao(2) 50, -+ [An(2)l5n

is also provable irpLLy, whereFV(a;) € {z,yo, -, ¥, }\{9;}-

Proof. See [17]. O

Remark 1 (Semanticd)lote that the interpretation described above gives rises®-a
mantics for pure linear logic: Simply replace linear logimaectives by classical con-
nectives in the interpreted formulas:

|A%® Blfg, = |A[f* or|BIgY

|A® B|§fg’ = |A[}, and|B[g,,

|A ¢, B3y, :=if 2z then| A else| B3,

VAl . = A7

3P AR = AR
A formula A is said to be “true” if Eloise has a winning move for the gamé¢;, for
any given assignment of one-move two-player games to atfmmiulas.

2.1 Characterisation of Basic Interpretation

In this section we investigate the characterisation of titerpretation given above.
More precisely, we ask the question: for which extensionwkginear logic it is the

case that if there are termas, . . ., a,, such that
[Ao(2)[5°, - - -+ [An(2) 5"
is provable then the seques, . . ., A, is also provable? In other words, we have seen

how provability in pure linear logic gives rise to a winningwe for Eloise. What can
we say about the converse? How do we turn a winning move o$é&for the symmetric
game|A[g into a proof ofA?
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We can only answer these questions once we understandglyelotav provabil-
ity of the formulaA relates to winning moves for Eloise in the gafag. Since the
provability of A gives a winning move for Eloise in the corresponding gamewaeld
be tempted to think that a formuldis interpreted as the existence of a winning move
for Eloise, i.e. thatd is equivalent tadz:vy| A|Z. If that were the case, thetr" would
be equivalent talyVa(|A[Z)*, since|A*+|Y = (JA[Z)*. Hence, the trivial theorem
A At would be equivalent tdxVy|A|Z » (Vy3x|A|Z)*, which is not always true.

The problem can be solved if we take seriously the fact thairendila A is in-
terpreted as aymmetricgame| Al between the two players, where the players must
make their moves simultaneously. That can be done using@esiimrm of branching
quantifier to ensure that no player has an advantage ovettiee @herefore, assume
that for all sequences of variables of finite typeandy, we can form a new formula
EV,:A, and let us refer to these afmultaneous quantifierdn the same way that a
formula 3xVy|Al5 can be interpreted as a game where Eloise makes a marel
then Abelard chooses his moyethe formula/;;| A|5 corresponds to the game where
both players choose their moves simultaneously. With the diethis simple branch-
ing quantifier we can, for instance, describe the “Odd or Eyme in terms of the
formula®,, (n + m is ever). The simultaneous quantifier can be viewed as a simplifi-
cation of Henkin’s (branching) quantifier [5, 13], in whicb alternation of quantifiers
is allowed on the two branchés

It was shown by Ehrenfeucht (cf. [13]) that Henkin’s quaetifian be used to define
the quantifier “there exists infinitely many”. It follows foa result of Mostowski [15]
that the classical predicate calculus extended with Hémkumantifier is not axiomati-
sablé. Since linear logic does not have a standard truth semaittissmpossible to
talk about a standard axiomatisation of the simultaneoasitifier overpLL“. Never-
theless, as we will see, the following derivation rule isrsband complete with respect
to the game semantics (cf. Remark 1) outlined above:

AO(a07y0)7 R An(anvyn)
0 Ao(x0,Yo), - - -, Ty " An(@n, Y,)

X

with the side-conditiony; may only appear free in the terras, for j # . In particular,
we will have that eacly, will not be free in the conclusion of the rule. Note that y,
are sequences of variables, andare sequences of terms.

The standard quantifier rules can be obtained from this singk. The rule Y)
can be obtained in the case when only the tup]ds non-empty. The ruled) can be
obtained in the case when only the tuplg is non-empty. Hence, for the rest of this
section we will consider that standard quantifiérslt and3xz A are in fact abbreviations
for ¥, A andZ/* A, respectively.

The most interesting characteristic of this simultaneawndjfier is with respect to
linear negation, which is defined as

% See Bradfield [6] as well, where this simple form of branchipgntifier is also used.

4 Mostowski uses that the ring of integers is not axiomatisabhd that a non-densely ordered
ring is isomorphic to the ring of integers if and only if foramapositivex there are finitely
many elements betweénandz.
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Symbol System

pLL® Pure linear logic

sLL® Pure linear logic with simultaneous quantifier
sLL* sLLY + (ACs) + (AC,)

Table 3. Systems of linear logic

(FTA)L =Ty AL

and corresponds precisely to the switch of roles betweepl#yers. Let us refer to the
extension obLL* with the new simultaneous quantifier biy.“.

Theorem 2 ([18]). Consider the extension to the systehh” of the interpretation
given in Definition 3, where the simultaneous quantifier isripreted as

| Fo Alv, w)| 55 = |Av, w)|.
Theorem 1 holds for the extended systeit’, where the verifying system is spllLL .

In fact, since the simultaneous quantifiers are eliminatedybtain an interpretation
of sLL* into pLLg;. In particular, this implies that the rule suggested abs®ind. Let
us proceed now to define a further extensiosnldf* which is complete with respect to
the interpretation of Section 2. Consider the followingpiples for the simultaneous
quantifier

AC, : Ve Ag(m,y,z) — nyf,quf(fZ, Y,2)
AC, : HgAg(m)® Ty Bes(v) — FJ 9 (Agr(fw) ® Bys(gy))

for quantifier-freeformula Aqs and B,¢. We refer to these as tisequential choicéC,
andparallel choiceAC,. For those familiar with the usual functional interpretas of
intuitionistic logic, the principleAC, corresponds to the standard (intentional) axiom
of choice, whileAC,, is a generalisation of the independence of premise pria¢galse
when tuplegy andw are empty). It is an easy exercise to check that the convétbe o
two implications above can be derivedsin_“.

Let us denote byLL* the extension ofLL“ with these two extra schemai& , and
AC,. These extra principles are all one needs to show (gMef) the equivalence be-
tweenA and its interpretatiod,; | A| . One then obtains the following characterisation
theorem.

Theorem 3. Let A be a formula in the language eEL“. ThenA is derivable insLL*
if and only if| A% is derivable inpLL;}, for some sequence of terrhs
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3 Interpretations of the Exponentials

The exponential-free fragment €f., despite its nice properties, bears little relation
to the standard logical systems of classical and intuigiimlogic. In order to recover
the full strength of classical logic, we need to add back @mtibn and weakening.
These are recovered in linear logic in a controlled mannigh, tee help of modalities
(exponentialsy A and! A. The exponentials are dual to each other, i.e.

(7A)L =14+ (1A =74+,

Girard points out in several places (cf. [11] (p84)) thatsthenodalities, contrary
to the other connectives, are not canonical. More pregigelye add new modalities
7’ A and!’ A with the same rules as shown in Table 1, we will not be able tvel¢he
equivalence8A — A and!A — !"A. This is reflected in the flexibility (discussed
below) with which we can interpret these modalities.

In terms of games, we will see that the exponentials corm$pma break of sym-
metry between the two players, allowing one player to se@pp®nent’s move before
making his/her move. Besides the advantage of allowing étteelayers to play sec-
ond, the exponential can be interpreted in such a way thdatloaired player can play
aset of movegather than a single move. gfis the type of the move in question, let us
write p* for the type corresponding to the sets of moves of fyfiee. p* C P(p)). The
choice of how big we allow that set of moves to be determinesrtterpretation. As we
will see, for instance, we can choose the set of moves to belibée type p* = {p}),
finite sets p* = Psn(p)), Sets with common majorant (see Section 3.5), or singleton
sets p* = p).

Let us start by analysing which are the allowed sets of sahsethat give rise
to proper interpretations (cf. [16]). We do that by considgian abstract interpretation
where the choice of sets is left open, and only certain cmrditare put on these sets. In
the remaining subsections we will look at particular cheiagich are related to well-
known functional interpretations of intuitionistic log{see Figure 1). For each finite
typep let p* be a new abstract type. Moreover, for each formiyléet Ya* — a” A and
JxP C a”” A be formula abbreviations such that

(BxCaAd)t =vzCa At (VxCa At =3zCa At

A formula A is called-fixed if it does not contain unbounded quantifiers and all
bounded quantifiersx C a A and3x C a A are immediately preceded byl and?,
respectively. For eacti-fixed formulad, assume we have sequence of teepg and
u such that the following sequents are derivable:

(D) WyCnz A(y) F A(x)
Q) VyCeyoyy, A(y) FVyCy; Alty) (i €{0,1})
(P) WyC phw A(y) - VeCw WyC hx A(y)

The provability sign in the conditions stands for provapiin the system under which
the functional interpretation will be verified, which mighé an extension dfL*.
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LL® > LL

Fig. 1. Deriving functional interpretations of intuitionisticdic

Intuitively, the first condition says that for any tygewe must have an injection
7 into p*. Condition () says that for any two sets " there is a bigger set which
includes both. Finally, conditiorP) corresponds to a collection principle which says
that any collection of sethax parametrised by a bounded— w can be uniformly
bounded.

We can then show that, for any formula abbreviation satigfgionditions D, C, P),
a functional interpretation of classical linear logic candbtained by defining the in-
terpretation of the exponentials as

'A% ==Yy C fz |Af}
[7A[f =732z C fy |AJZ.

The conditions, P) are used to ensure the soundness of the dereliction andfoom
rules, respectively. The conditio€]) is used for the soundness of the contraction rule.
The rule of weakening only needs thitis not empty, so that thate —a A is a proper
formula for somen.

3.1 Interpretation 1: Kreisel's Modified Realizability

The first alternative for the interpretation of the expormaatwe consider is one in
which the game& A gives maximal advantage to Eloise, and gdmegives maximal
advantage to Abelard. The maximal advantage corresponitietplayer in question
not needing to make any move, with their best possible moirgh@ayed for them.
This corresponds to allowing the move of the player to be thelevset of possible
moves. More precisely, the interpretation is defined as:

Definition 4. Extend the interpretation given in Definition 3 as
TA[* = Vy|Al7
I7A], = 3z A3,

Itis easy to see that Theorem 1 still holds when Definitionéktended in this way.
Note, however, that once exponentials are treated as inibDefid, the relatiorf Al is
no longer quantifier-free. Nevertheless, it is the caseftratulas in the image of the
interpretation (we call thedixed formulayare also in the kernel of the interpretation.
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More, precisely, ifA is in the kernel of the interpretation théA| = A. The complete-
ness result of Section 2.1 needs to be calibrated, as thenstheC, and AC, need
to be taken for all fixed-formulas (and not just quantifierefformulas). Moreover, we
need an extra principle

TA : 1FTA o 3zlvyA

calledtrump advantaggfor fixed-formula$ A, in order to obtain the equivalences in-
volving exponentials, i.e. equivalence betweédmand its interpretatiodz!vVy A. The
principle TA in particular implies that the modalitycommutes with the existential
quantifier, i.e!dz A « Jz!A.

We have shown [17] that when combined with the embeddingtattionistic logic
into linear logic, this choice for the interpretation of theponentials corresponds to
Kreisel's modified realizability interpretation [14] oftuntionistic logic. This result is
rephrased in the theorem below. For an introduction to mediréalizability see chapter
Il of [22] or the book chapter [23].

Theorem 4 (Kreisel's modified realizability). Let [A[5 be as in Definition 3 and 4.
For formulasA of intuitionistic logic let us define

zmrA = (JA2),

where(-)! and(-)? denote the embeddings described in Section 1.2. The fatioagjuiv-
alences hold intuitionistically:

z,v mr (AANB) < (xmrA)A(vmrB)

z,v,zmr (AVB) & (xmrA) <, (vmrB)
f mr(A—-B) & Ve((xmrA) — (fxmrB))
x,z mr dzA & xzmrA
f mr VzA & Vz(fzmrA).

3.2 Interpretation 2: Godel's Dialectica Interpretation

The most restricted interpretation we consider is the onerevthe favoured player has
to choose a singleton set in the exponential game. Thereforeonly head-start will
be to be able to see the opponents move. Based on the opgoment the player will
then have to make a single move. This leads to an extensidw dfiterpretation given
in Definition 3 with the interpretation of the exponentiads a

Definition 5. Extend Definition 3 as
|!A|’]’i = !|A|§€gc
7A[f = 7| ALY

5 Although we only need the principl€A for fixed-formulas in order to obtain the characteri-
sation, modified realizability actually interprets thisrmiple for arbitrary formulasA.



Functional Interpretations of Linear and Intuitionistiodic 13

where we are identifying the singleton sets (fe.and fy) with their unique element.

Note that in this case the target of the interpretation isregaguantifier-free calcu-
lus (as in the basic interpretation of Section 2). For thendoess, however, we must
assume that quantifier-free formulas are decidable in daleatisfy the contraction
rule, since we must choose one among two singleton sets ehpaitwitnesses. The
soundness of the weakening rule, and the rules (1) and (fi&ltBesides being sound
for the principlesAC,, AC,, (Section 2.1) and the principleA (Section 3.1) the Dialec-
tica interpretation of L will also be sound for the following principle

MPp : VzlA —olVxA

for quantifier-free formulag!. This is the linear logic counterpart of the semi intuition-
istic Markov principle. In fact, these are all the extra pipies needed to show the
equivalence between and its Dialectica interpretaticﬁir’ym|A|Z (see [17,18]).

This interpretation corresponds to Godel's Dialectidaripretation [1, 12] of intu-
itionistic logic, used in connection to a partial realisatiof Hilbert's consistency pro-
gram: the consistency of classical first-order arithmediative to the consistency of the
quantifier-free calculu$. This correspondence is formalised in the following theore

Theorem 5 (Godel's Dialectica interpretation). Let| A[§ be as in Definition 3 and 5.
For formulasA of intuitionistic logic let us define

Aa(zyy) = (JA5)"

The following equivalences hold intuitionistically:
(AAB)a(z,viy,w,2z) & Azziy) O: Ba(vz;w)
(AV B)a(m, v,z f,9) < Aw; fovz) O, Ba(vigovz)
(A= Ba(f,giz,w) < Ag(x;grw) — Ba(fz,w)
(VzA)a(f3y, 2) & Ad(fzy)

(FzA)a(x, 2 f) & Ag(w; fzz).

This is not exactly how Godel defined his Dialectica intetption [12], but it is
equivalent. In the case of conjunction and disjunction gkiea boolean information
given to the functionals s irrelevant, since each funclavill only be applied when the
boolean is either true or false. The equivalence betweemhdifferent interpretations
of disjunction and existential quantifiers is discussedhafbllowing theorem.

Theorem 6. Let Ap be the interpretation ofi as in Gdel’s original definition of the
Dialectica interpretation. Theml? = JvvVwAp (v; w) is intuitionistically equivalent
to JxVyAq(z; y).

Proof. Using the characterisation principles for the Dialeciiti@rpretation of intu-
itionistic logic we can show that

JvVwAp(v;w) — A« JxVyAlq(z;y).
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We first look at the proof of the implication
(x) FJoVwAp(v;w) — FeVyAs(x;y).
By the Dialectica interpretation we can eliminate the cbimasation principles from
this proof and at the same time produce tetmssuch that
Vo, y(Ap(v; svy) — Aa(tv;y))

is derivable in pure intuitionistic logic. But this in partilar implies that«) is provable
in pure intuitionistic logic. The implication from right tieft can be proved similarly.
a

3.3 Interpretation 3: Diller-Nahm Interpretation

We have seen two extreme interpretations of the exponeyaiaks. One in which the
favoured player can try any of his possible moves (Sectidh &1d the other where
he/she chooses a single move (Section 3.2). Another plitysibr the interpretation is
to give the player in question a restricted advantage bwallpthe player to see the op-
ponent’'s move and then seleat@n-empty finite set of moes#f any of these is a good
move the player wins. This leads to the following interptietaof the exponentials:

Definition 6. Extend Definition 3 as
'A% = IVy e fz A}
[7A[f .= "3z e fy|AZ
where fx and fy are finite sets.

Again, this extension of Definition 3 makes the Soundnessiéme 1 valid for
full classical linear logic. It is clear that in this case egb term construction needs
to be added to the verifying system in order to deal with fisis of arbitrary type.
This choice for the treatment of the exponentials corredpda a variant of Godel's
Dialectica interpretation due to Diller and Nahm [7], asnfiatised in the following
theorem.

Theorem 7 (Diller-Nahm interpretation). Let |A[f be as in Definition 3 and 6. For
formulasA of intuitionistic logic let us define

Aan(ziy) = (JA'5)"
The following equivalences hold intuitionistically:

(AN B)an(x,v;y,w,2) < Agn(xz;y) Op Ban(vz;w)

(AV B)gn(x,v,2; f,9) < Yye favz Ag,(x;y) O, Vw € grvz By, (v; w)
(A= B)an(f,giw,w) & Vyegrw Aa(x;y) — Bin(fz, w)
(VzA)an(f;y, 2) & Aan(fzy)

(FzA)an(z, 23 f) & Vye frz Aa(wy).

6 Allowing the set of moves to be empty corresponds to allowiegplayer to choose to “sur-
render” (see [3]).
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As in the case of Godel’s Dialectica, the interpretatiorivéel above is intuitionis-
tically (but not syntactically) equivalent to the one irdteed by Diller-Nahm [7].

3.4 Interpretation 4: Stein’s Interpretation

In Interpretation 1 we considered the case where the fadoplagyer can choose the
set of all possible moves, whereas in Interpretation 3 onliefisets were allowed. The
whole setp can be identified with the identity map of type— p, while finite sets of
elements of type can be viewed as partial functiohs— p with a finite support. In
both cases we have a family of objects of typahere the indexing set is eithpror a
finite subset oNN.

A hybrid interpretation between these two options can aésgiten for each natural
numbern, wheren controls the type level from which we should use option 3I€Dil
Nahm), and up to which level we should choose option 1 (matiifgalizability). In
other words, the kind of subsets pfwe allow are those which can be indexed by the
pure typen, i.e. elements of. — p. Note that if the type level op is less or equal
to n then the whole sep is also an allowed move. Only when the type leveloois
bigger thann we have a restricted move for the favoured player. The slagéonly
higher-type objects are withessed”.

Given a tuple of variables:, we will denote byx the sub-tuple containing the
variables inz which have type level> n, whereasz denotes the sub-tuple of the
variables inz which have type levek n. In the following we identifyn € N with the
pure type of type levek. Let us writeVy € rng(b"?) Aly] and3y € rmg(b"?) Aly]
as abbreviations for:"” A[bi] and3i"™ A[bi], respectively.

Definition 7. For any fixed pure type, extend Definition 3 as
'Al3 = Vy emg(fz)vy |Al}
[7A[f .= 73z emg(fy)IT |AlZ.
Note that ifn = 0 the interpretation above corresponds to Definition 6 whénié
sets” are replaced by “countable sets”, whereas in the [imit oo) this coincides

with that given in Definition 4. The interpretation of Defioih 7 corresponds to Stein’s
interpretation [21], and again leads to a sound interpoataff full classical linear logic.

Theorem 8 (Stein’s interpretation).Let| Al be as in Definition 3 and 7. For formulas
A of intuitionistic logic let us define

Awiy) = (A2).

The following equivalences hold intuitionistically:
(A/\B)s(fﬂw;%wJ) g As(wz§y) O BS(’UZ;’LU)
(AV B)s(x,v,2; f,g) & Vyermg(frvz)VyYw € mg(gzvz)vw

(As(z5y) O Bs(v;w))

(A= B)s(f,g;z,w) < Vyemg(gzw)Vy Ay(z;y) — Bs(fz, w)
(VzA)s(f;y,2) & A(fzy)
(FzA)s(x, 2z f) & Vyermg(fxz)Vy As(x;y).
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3.5 Interpretation 5: Bounded Functional Interpretation

The interpretations presented in the previous sectionstaaightforward instantiations
of the parametrised interpretation, in the sense that tbeelof p* suggests natural
termsn, e andu satisfying conditionsl, C, P). Consider, however, choosing as the
subsets op which are defined by a majorant (in the sense of Bezem [2])gite

p*={{z : z<*y} : y? monotone,

wherexz <* y denotes Howard-Bezem'’s strong majorizabilty relationmesin func-
tionals (cf. [2]), andy being monotone (self-majorizable) is definedjas* y. Let us
abbreviate quantifications over monotone objectéas and3a A (cf. [8, 9]).
Unfortunately, there are a couple of problems with this caaf p*. First of all,
in general, we do not have functionajsroducing for eaclr a functional which ma-
jorizesx. We get into similar problems when trying to satisfy coratis (C) and @).
A possible solution is to ensure that all functionals ineahare monotone, since in this
case conditiondy, C, P) can be easily satisfied: talkg e andu to be the identity func-
tional, the pointwise maximum and functional applicati@spectively. We can enforce
that all objects we are dealing with are monotone by workiith Wnajorants of wit-
nesses” instead of “actual witnesses”. This involves chanthe interpretation of the
quantifiers as:

3P AP = 32<*a AR,
V2P Alf , = Vz<*a A"
In this way, we can restrict quantifications oveto monotone quantifications, without

losing generality. If we also add to the language boundedtifiexs, and interpret them
as

|[FzP <*t A|Z =z <*¢ |A|$

V2P <*t A|Z =Ve<*t |A|Z
the interpretation of quantifiers above corresponds to abomation of the standard
interpretation (Section 2) witharior relativisationof the quantifiers to Bezem'’s model

M of strongly majorizable functionals [2]. More preciselarfeach formulad of LL*
let [A] be obtained inductively as

[Aat] := A,;, foratomic formulas
[AxB] = [A]x[B], forxe{®,®, <.}
[*xA] = x[A4], forxe {7}

VzA(z)] := Vbvz <*b[A(z)]

[FzA(z)] = JFbIz <*b[A(x)].

" We are assuming that the majorizability relation and bodrgleantifiers have been added to
the language as in [8].
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The formula[A] can be viewed as a relativisation of the quantifierslito the model
M, sinceVbVa <*b A(x), for instance, is equivalent tor(Ib(z <*b) — A(z)).

Although this solves the problem of interpreting the maiksi we have now changed
the way free-variables are dealt with (through the diffetematment of quantifiers).
This leads to a second problem, namely the interpretaticdheofdditive connectives,
since the interpretation presented in Section 2 relies eifitmen-else term constructor
(2)(to, t1), which is not monotorfeon the argument.

In summary, this fifth interpretation of the modalities isued given a prior rel-
ativisation of quantifiers to the model of strongly majohilmfunctionals. This rela-
tivisation, however, conflicts with the interpretation betadditives given above. We
conclude this section with two results. First, we show that instantiatiorp* above
is still sound for multiplicative-exponential linear lagiMELL") plus bounded quanti-
fiers, when the interpretation is combined with the relatition[-]. Second, we show
that the (unsound) formula interpretation of the additinethie linear logic context still
corresponds to (an equivalent formulation of) the boundedtional interpretation of
intuitionistic logic.

Theorem 9. Extend Definition 3 as
'A% vy <* fax |A]2
17Alf 3@ <* fy|A[Z
|3z §*tA|Z =z §*t|A|$
V2P <Mt Al = Ve < t|Al}

and drop the if-then-else constructor (i.e. the additivéfs)
Ao(2),..., An(2)

is provable inMELL® then from this proomonotondermsay, . . . , a,, can be extracted
such that
z2 <" 2%y <Ty E[Ao()Ngss - [An(2)]gr

is also provable iMELL®, whereFV(a;) € {z*,yq,---, ¥, } \{¥;}-
Proof. We consider only the case of existential quantifier
y <"y, z<"2" HTIY[[At2])]l; z2< 2" 2] < ]2
y <"y, z< 2 DY e <t (27| [Ae)] g
F( =) < F¢ =) 2 <2 (DT CED), 30 < (27| [A@)]|§ - 12
<N <R |F|Z)[f(t*[z*])]aEIS*t*[Z*]HA(I)H;(t*[z*])
2<7 2" F<FHIPCED) | BeA@) 3

8 Although (z)(to, t1) is not monotone, it can be easily majorized by the pointwisedmum
functionalmax{to, t1}. This is the solution used in the context of intuitionistgic, where
the interpreted formulas are monotone on the witnessinighla: In linear logic this mono-
tonicity property does not hold.
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The other cases are treated similarlya

Next, we show that by keeping the additives in the boundedtfonal interpreta-
tion of linear logic, through the relativisation of quardif, we obtain an equivalent
formulation of the bounded functional interpretation dlitionistic logic.

Theorem 10 (Bounded functional interpretation). Let |A[§ be as in Definition 3
and Theorem 9 (keeping the additives and viewing booleantdications as bounded
quantifications). For formulas! of intuitionistic logic let us define

Ap(x;y) = ([[A5)"

The following equivalences hold intuitionistically:

(AN B)p(z,v;y,w) < Ap(z;y) A Bp(v;w)
(AVB)p(z,v; f,g9) & Vy<* fevAp(z;y)V Yw<*gzvBp(v;w)
(A— B)p(f,giz,w) & Vy<*gzw Ap(z;y) — Bp(fz,w)
(V2A)p(f3y,a) & Vz<*aAp(fay)

(3z4)p(z, a; f) & Jz<*aVy<* fraAp(z;y).

Proof. By induction on the structure of. Consider, for instance, the case of existential
quantifier

@eA)p(@,aif) = (@A)
EN(EREUFO
= (|FaTz<rallAl|50)
PEY @ < allalg,)
T (@ < alVy <* FrallA)p)
2 30 <y < faa(A)5)

=
Iz

Jz <*aVy <* fxa Ap(x;y).
The other cases are treated similarlyd
Although A5 does not syntactically coincide with the bounded functiagmarpre-

tation of intuitionistic logic (because of the differeré&tment ofy and3), it is easy to
see that (cf. Theorem 6)

Elcc,agf(zle)B(:c,a; f) = Ja, aVfIz <* aVy <* fxaAp(x;y)

& Jx,a¥eIz <*aVy <*c Ap(x;y).
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