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Abstract. This article presents an analysis of Gödel’s Dialectica interpretation
via a refinement of intuitionistic logic known as linear logic. Linear logic comes
naturally into the picture once one observes that the structural rule of contrac-
tion is the main cause of the lack of symmetry in Gödel’s interpretation. We use
the fact that the Dialectica interpretation of intuitionistic logic can be viewed as
a composition of Girard’s embedding of intuitionistic logic into linear logic fol-
lowed by de Paiva’s Dialectica interpretation of linear logic. We then investigate
the various properties of the Dialectica interpretation, such as the characterisation
theorem, and variants of Gödel’s interpretation within the linear logic context.
The role of contraction in extensions to classical logic, arithmetic and analysis is
also discussed.

1 Introduction

This article aims at analysing Gödel’s Dialectica interpretation [14] via a refinement
of intuitionistic logic known as linear logic [11, 12]. Moreprecisely, we discuss how
Gödel’s ingenious interpretation can be obtained via a combination of de Paiva’s in-
tuitive interpretation [25, 26] of linear logic and Girard’s embedding [11] of intuition-
istic logic into linear logic. By breaking the Dialectica interpretation into two well-
defined steps we are able to give an analysis of the characterisation principles required
by Gödel’s interpretation and to gain flexibility in the extensions of the interpretation
to arithmetic and analysis. We also investigate some of the variants of the Dialectica
interpretation within the linear logic context. Our analysis is based on recent work of
Shirahata [30]. Our main contribution with respect to de Paiva’s and Shirahata’s work
is the characterisation theorem of the linear logic Dialectica interpretation, and the uni-
form treatment of the several variants of the Dialectica interpretation [22, 24].

Gödel’s Dialectica interpretation of a formal systemS into another systemT asso-
ciates each formulaA ∈ L(S) with a decidable binary relationAD ⊆ ρ × τ in L(T ).
By ρ andτ we mean sequences of finite types. The systemS is normally called the
interpreted systemwhileT is called theverifying system. Intuitively, the binary relation
AD describes the adjudication relation in a one-move game between two players (say
Eloise and Abelard) whose moves are taken from the finite typesρ andτ respectively.
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S →֒ T

Formulas as games A AD(x; y)

Proofs as winning moves ⊢ A ⊢ ∀yAD(a; y)

Table 1.The Dialectica interpretation

The game goes as follows: Eloise chooses an elementa ∈ ρ, Abelard then chooses an
elementb ∈ τ , Eloise wins ifAD(a; b) holds, otherwise Abelard wins. The interpre-
tation is such that from a proof ofA in S one can extract a winning movea ∈ ρ for
Eloise together with a proof thata is a winning move, i.e.∀yAD(a; y), in the verifying
system. More precisely, a formulaA is interpreted as the existence of a winning move
for Eloise in the gameAD(x; y), i.e.

∃x∀yAD(x; y) (1)

and a proof ofA provides a concrete winning move for Eloise. Notice that thetuplesx
andy could possibly be empty, in which case the corresponding player is not asked to
make a move, but will win in case the truth value of the adjudication relation goes in
her/his way. For instance, consider the trivial case of the formulaA ≡ ∀x(x = x). The
formulaA is associated with the game in which Eloise does not need to make a move,
while Abelard tries to find a valueb which refutes∀x(x = x), i.e. such thatb 6= b.
Since Abelard will never be able to find suchb, Eloise wins the corresponding game no
matter what choice Abelard makes.

In Gödel’s seminal work,S was first-order intuitionistic arithmetic andT an ex-
tension of primitive recursive arithmetic to all finite types. Gödel’s goal for developing
the interpretation was to provide a relative consistence proof for first-order intuitionistic
arithmetic. That is achieved since falsity⊥ is interpreted as the game where none of the
players need to make a move, and Abelard always wins. But, recall that a proof ofA in
S gives rise to a winning move for Eloise and a verification of this fact inT . Assuming
T is consistent Eloise cannot win the game corresponding to⊥, which implies that⊥
cannot be derived in the interpreted systemS, i.e.S is consistent.

There are, however, several issues which make the Dialectica interpretation difficult
to understand or justify. First, there is the strange lack ofsymmetry between Eloise and
Abelard, since Eloise is always required to make the first move and Abelard’s move can
depend on Eloise’s move. This seems to make Abelard’s life easier, and consequently,
Eloise’s task more difficult. The asymmetry in the roles of the players comes from
the asymmetry in intuitionistic logic between assumptionsand conclusions. Namely, in
intuitionistic logic one tries to derive asingleformulaA from afinite setof assumptions
Γ . In particular, a single assumptionB can be used repeatedly in a proof in different
ways in order to derive the single conclusionA. In other words, in intuitionistic logic
one allows the structural rule of contraction for formulas in the premise

Γ, B, B ⊢ A

Γ, B ⊢ A
(2)
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but not in the conclusion, by restricting the conclusion to contain a single formula.
Another issue with the Dialectica interpretation concernsthe interpretation of im-

plicationsA → B. Given that interpretations forA andB in the form (1) have already
been obtained, the formula

∃x∀yAD(x; y) → ∃v∀wBD(v; w) (3)

is interpreted as
∃f , g∀x, w(AD(x; fwx) → BD(gx; w)). (4)

Despite empirical evidence that this is a choice of interpretation with excellent proper-
ties (cf. Bishop [5] and Kreisel [19]), it is difficult to argue why that should be so. All
we can say is that in order to go from (3) to (4) we use the least ineffective prenexation
of (3), namely

∀x∃v∀w∃y(AD(x; y) → BD(v; w)) (5)

and then apply the axiom of choice to obtain (4). This prenexation is only valid in the
presence of semi-intuitionistic principles which turn outto be sound for the Dialectica
interpretation. But again we have an asymmetry between premise and conclusion, as
the functionalf has access to both argumentsx, w while the forward functionalg only
accessesx. As we will see, this is again a consequence of contraction being allowed in
the premise but not in the conclusion (cf. also Shirahata’s [30] discussion).

Finally there is the issue that the Dialectica interpretation requires decidability of
quantifier-free formulas. This is once more due to the fact that in the rule of contraction,
which can be written asA → A ∧ A, we must produce a single negative movey

in the gameAD(x; y) given two candidate negative movesy0 andy1. By requiring
that the adjudication relationAD(x; y) is decidablewe can simply check which of
the two candidatesy0 andy1 is actually the best negative move. The assumption of
decidability, however, can be quite strong when working with higher order objects, and
leads to restrictions on the amount of extensionality one isallowed to use.

As we have indicated, the root cause of all the asymmetry, obscurity and subtlety of
the Dialectica interpretation comes from the need to deal with the naive-looking (and
semantically trivial) structural rule ofcontraction(2). As we will discuss in the paper,
this becomes even more evident once one moves to linear logicwhere contraction can
be isolated from the other connectives. Without contraction, a formulaA is actually
interpreted in a much more symmetric way as

(

∃x

∀y

)

AD(x; y), (6)

with the help of a simple form branching quantifier. For simplicity of notation we write
this branching quantifier as

Æx
y A. Without contraction, the intuitionistic implication

A → B becomelinear implicationsA ⊸ B, and that can also be given a symmetric
interpretation, since Æx

y AD(x; y) ⊸

Æv
wBD(v; w) (7)

can be interpreted as

Æf ,g
x,w(AD(x; fw) → BD(gx; w)). (8)
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Finally, without contraction one does not need to assume decidability of quantifier-free
formulas!

Unfortunately, one does need contraction in practise, since proofs often make use of
a single assumption several times. In linear logic contraction is recovered in a controlled
manner with the help of the modality!A. Contraction is only permitted for “marked”
formulas!A and the rule (2) becomes

Γ, !A, !A ⊢ B
(con)

Γ, !A ⊢ B

We then have to give an interpretation to the new modality!A. As one might suspect, the
interpretation of the modality introduces precisely the breaking of symmetry between
the players. The new modality turns a symmetric game betweenEloise and Abelard
into a game where Abelard has the advantage of playing secondand choosing his move
based on Eloise’s move. One way of giving Abelard this advantage is to say that for the
game!A Abelard’s move is a functionalf which produces his move in gameA given
Eloise’s move. The adjudication relation for!A is then

(!A)D(x; f) ≡ AD(x; fx).

For instance, the game associated with the formulaA ≡

Æx
y (x ≥ y) corresponds to

the “biggest number game” in which both players try to cook upa bigger number than
their opponent (equal numbers favour Eloise). Neither player has a winning move in
this game. On the other hand, in the game!A Abelard has a winning move, since Eloise
will have to provide anx and Abelard is asked to produce a functionf such thatx ≥ fx
is false, and he can choose e.g.f(x) = x + 1.

In linear logic the intuitionistic implication is derived via the linear implication
A ⊸ B and the modality!A, which does the bookkeeping of contractions, as

A → B ≡ !A ⊸ B. (9)

Using this analysis of the intuitionistic implication we will see that the intrinsic diffi-
culty of the Dialectica interpretation ofA → B discussed above comes from the subtle
interpretation of!A.

The article is organised as follows. The next two subsections 1.1 and 1.2 give a
brief introduction to Girard’s linear logic [11, 12] and Gödel’s Dialectica interpretation
[1, 14]. Section 2 presents de Paiva’s Dialectica interpretation of linear logic. The re-
lation between the Dialectica interpretations of linear logic and intuitionistic logic is
discussed in Section 3. In Section 4 the characterisation principles required for the Di-
alectica interpretation of intuitionistic logic are analysed in the linear logic context. In
Sections 5.1, 5.2 and 5.3 we look at extensions of Dialecticainterpretation to classical
logic, arithmetic and analysis, respectively. Finally, inSection 6 we discuss the relation
between three variants of the Dialectica interpretation.

1.1 Intuitionistic linear logic

In the following we will describe a fragment of intuitionistic linear logic which is suffi-
cient for embedding full intuitionistic logic. We work withan extension of the language
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Γ ⊢ A ∆, A ⊢ B
(cut)

Γ, ∆ ⊢ B

Γ ⊢ A
(per)

π{Γ} ⊢ A
Aat ⊢ Aat (id)

Γ, A ⊢ B
(⊸r)

Γ ⊢ A ⊸ B

Γ ⊢ A
(∀r)

Γ ⊢ ∀zA
∀zA ⊢ A[t/z] (∀l)

Γ ⊢ A ∆, B ⊢ C
(⊸l)

Γ, ∆, A ⊸ B ⊢ C

Γ, A ⊢ B
(∃l)

Γ,∃zA ⊢ B
A[t/z] ⊢ ∃zA (∃r)

Γ [γ
0
] ⊢ A Γ [γ

1
] ⊢ B

(3l

z)
Γ [(z)(γ

0
, γ

1
)] ⊢ A 3z B

A ⊢ A 3t B

A 3t B ⊢ A

)

(3t)

Γ [γ
0
], A ⊢ C[c0] Γ [γ

1
], B ⊢ C[c1]

(3r

z)
Γ [(z)(γ

0
, γ

1
)], A 3z B ⊢ C[(z)(c0, c1)]

B ⊢ A 3f B

A 3f B ⊢ B

)

(3f)

Table 2.Exponential-free intuitionistic linear logic

of linear logic to all finite types. The set offinite typesT is inductively defined as fol-
lows: b, i ∈ T; and if ρ, σ ∈ T thenρ → σ ∈ T. For simplicity, we work with just two
basic finite typesb (boolean) andi (integer).

The terms of the language contain all typedλ-terms, i.e. variablesxρ for each finite
type ρ; λ-abstractions(λxρ.tσ)ρ→σ; and term applications(tρ→σsρ)σ. Besides these
we also add boolean constants for true and false, and the if-then-else term construction
(tb)(rτ , sτ ) for each typeτ . The term(tb)(rτ , sτ ) reduces to eitherr or s depending
on whether the boolean termt reduces to true or false, respectively.

The atomic formulas areAat, Bat, . . .. For simplicity, the standard propositional
constants of intuitionistic linear logic have been omitted, since the interpretation of
atomic formulas is trivial (see Section 2). Formulas are built out of atomic formulas
Aat, Bat, . . . via the connectivesA ⊸ B (linear implication),A 3z B (if-then-else),
and quantifiers∀xA and∃xA. The rules for these are shown in Table 2, with the usual
side condition in the rules (∀r) and (∃l) that the variablez must not appear free in
Γ, B. The structural rules of linear logic do not contain the usual rules of weakening
and contraction. These are added separately in a controlledmanner via the use of the
modality!A. The rules governing the behaviour of!A are shown in Table 3.

Note that we are deviating from the standard formulation of linear logic, in the sense
that we will use the if-then-else logical constructorA 3z B instead of standard additive
conjunction and disjunction1. The standard additive connectives can be defined as

1 See Girard’s comments in [11] (p13) and [12] (p73) on the relation between the additive con-
nectives and the if-then-else construct.
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!Γ ⊢ A
(!r)

!Γ ⊢!A

Γ, A ⊢ B
(!l)

Γ, !A ⊢ B

Γ, !A, !A ⊢ B
(con)

Γ, !A ⊢ B

Γ ⊢ B
(wkn)

Γ, !A ⊢ B

Table 3.Rules for the exponentials

A ∧ B :≡ ∀zb(A 3z B)

A ∨ B :≡ ∃zb(A 3z B)

with the help of quantification over booleans. In the following we sometimes use the
abbreviationsA ∧B andA ∨B to stand for the corresponding formulas containing the
if-then-else connective.

Since we will be considering extensions of this basic system, let us denote the sys-
tem just described byLLω

0 . After introducing the basic Dialectica interpretation ofLLω
0

we will discuss extensions of this basic system for which theinterpretation can be char-
acterised.

Notation. We use bold face variablesf , g, . . . , x, y, . . . for tuples of variables, and
bold face termsa, b, . . . , γ, δ, . . . for tuples of terms. Given sequences of termsa and
b, by a(b) we mean the sequence of termsa0(b), . . . , an(b); and bya[b/x] we mean
the sequencea0[b/x], . . . , an[b/x].

1.2 Gödel’s Dialectica interpretation

Gödel’s Dialectica interpretation [1, 7, 14] is normally presented as in Definition 1 be-
low. Note the asymmetric treatment of conjunction/disjunction and universal/existential
quantifiers.

Definition 1 (Dialectica interpretation). For each formulaA of intuitionistic logic we
associate a new quantifier-free formulaAD(x; y) inductively as follows:

(Aat)
D :≡ Aat, whenAat is an atomic formula.

Assume we have already definedAD(x; y) andBD(v; w). We then define

(A ∧ B)D(x, v; y, w) :≡ AD(x; y) ∧ BD(v; w)

(A ∨ B)D(x, v, z; y, w) :≡ AD(x; y) 3z BD(v; w)

(A → B)D(f , g; x, w) :≡ AD(x; fwx) → BD(gx; w)

(∀zA)D(f ; y, z) :≡ AD(fz; y)

(∃zA)D(x, z; y) :≡ AD(x; y).

Finally, we define(A)D :≡ ∃x∀yAD(x; y).
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In the following, we will work with an equivalent formulation of Gödel’s Dialectica
interpretation where the clauses for conjunction, disjunction and the existential quan-
tifiers are slightly modified, so as to treat these in a symmetric way. For the sake of
reference we state this variant as a definition:

Definition 2 (Equivalent formulation of Dialectica interpr etation).Same as in Def-
inition 1 except that the treatment of disjunction, conjunction and the existential quan-
tifier are modified as:

(A ∧ B)D(x, v; y, w, zb) :≡ AD(xz; y) 3z BD(vz; w)

(A ∨ B)D(x, v, zb; y, w) :≡ AD(x; yz) 3z BD(v; wz)

(∃zτA)D(x, z; f) :≡ AD(x; fz).

The formula(A)D is defined as before, i.e.(A)D :≡ ∃x∀yAD(x; y).

This reformulation leads to (intuitionistically) equivalent formulas(A)D. In the case
of conjunction and disjunction, the extra boolean information z given to the functionals
is irrelevant, since each functional will only be applied when the boolean is either true
or false. The reason for allowing the booleanz as an argument for the functionals will
become clear in Section 3, where we show how this comes naturally from the inter-
pretation of linear logic. In general terms, we can argue forthe equivalence between
the two choices ofAD by noticing that both can be shown to be equivalent toA using
the same characterisation principles (see Section 4). Since equivalences betweenΣ2-
statements shown using the characterisation principles can also be shown without these
principles the result then follows. The benefit of modifyingthe interpretation is that
we obtain a symmetric treatment of the connectives (∨/∧) and quantifiers (∃/∀). This
symmetry, which in this case is optional, is forced upon us inthe case of the Dialectica
interpretation of linear logic, as we will see in the following section.

2 The Dialectica Interpretation of Linear Logic

In this section we present de Paiva’s Dialectica interpretation [25] of intuitionistic linear
logic. To each formulaA of the fragment of linear logicLLω

0 we associate a quantifier-
free formula|A|xy , wherex, y are fresh-variables not appearing inA. The variablesx in
the superscript are called thewitnessing variables, while the subscript variablesy are
called thechallenge variables. Intuitively, the interpretation of a formulaA is a one-
move two-player (Eloise and Abelard) game, where|A|xy is the adjudication relation.
We want Eloise to have a winning move wheneverA is provable inLLω

0 . Consider first
the case of linear implicationA ⊸ B. In this game, Eloise claims to have a justification
for B given a justification forA, and also, claims to give a refutation forA given a
refutation forB. Hence, her move in this game is a pair of constructionsf , g, while
Abelard must present argumentsx in favour ofA andw againstB. Using our notation
the adjudication relation for the gameA ⊸ B can be succinctly described as

|A ⊸ B|f ,g
x,w :≡ |A|xfw ⊸ |B|gx

w .
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The if-then-else game is just a flagged disjoint union of the two gamesA andB,
where the boolean flagz tells which game is indeed being played. Therefore, both play-
ers make moves in both gamesA andB, but only one of the games will be considered
depending on the boolean value ofz, i.e.

|A 3z B|x,v
y,w :≡ |A|xy 3z |B|vw.

The quantifier games correspond to a parametrised family of games. Depending on
whether we have a universal or existential quantifier, one ofthe players selects which
particular instancez of the game they want to play, while the other player is allowed to
choose their move depending on the choicez of the instantiation. For instance, in the
case of the game∃zA, Eloise chooses a value forz and makes a movex in the game
A(z). Abelard’s move is a functionalf which transforms Eloise’s choice of instantia-
tion z into his movefz. A symmetric situation occurs in the game∀zA, i.e.

|∃zA(z)|x,z
f :≡ |A(z)|xfz

|∀zA(z)|fy,z :≡ |A(z)|fz
y .

In the game!A the symmetry between the players is broken. Eloise must makeher
movex available to Abelard, and depending onx Abelard chooses his move. Equiva-
lently, we ask that Abelard’s move in this game be a functional f producing his move
whenever given Eloise’s move, i.e.

|!A|xf :≡ !|A|xfx.

The interpretation of linear logic formulas given above is such that a linear logic
proof ofA will provide Eloise’s winning movea in the corresponding game, i.e.∀y|A|ay .
This is formally stated in the following theorem.

Theorem 1 (Soundness).Let A0, . . . , An, B be formulas ofLLω
0 , with z as the only

free-variables. If

A0(z), . . . , An(z) ⊢ B(z)

is provable inLLω
0 then termsa0, . . . , an, b can be extracted from this proof such that

|A0(z)|x0

a0
, . . . , |An(z)|xn

an
⊢ |B(z)|bw

is provable in the quantifier-free fragment ofLLω
0 , where

– FV(ai) ∈ {z, w, x0, . . . , xn}\{xi}
– FV(b) ∈ {z, x0, . . . , xn}.

Proof. See [22–24] for details of how the termsa0, . . . , an, b and a derivation of

|A0(z)|x0

a0
, . . . , |An(z)|xn

an
⊢ |B(z)|bw

can be constructed by induction on the derivation ofA0(z), . . . , An(z) ⊢ B(z). 2

Remark 1 (Chu spaces).One can also view the Dialectica interpretation above as as-
sociating formulasA of LLω

0 with Chu spaces, i.e. triples(ρ, τ , |A|xy), where|A|xy is
a relation betweenx ∈ ρ andy ∈ τ . The Dialectica constructions, however, differ
slightly from the Chu constructions, as discussed in de Paiva’s recent paper [27].
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The Dialectica interpretation of intuitionistic logic (described in Section 1.2) gives
a strange advantage to Abelard, since he is only asked to present his move after Eloise
has chosenx. In view of the Dialectica interpretation of linear logic presented above,
this lack of symmetry can be seen to come from the fact that formulas of intuitionistic
logic are viewed as!A, and the modality! indeed breaks the symmetry between the
two players. If one looks at the interpretation of linear logic presented above, however,
except for the treatment of!A, there is a nice conformity between the two players. The
reason is that a formulaA of linear logic is actually interpreted as

Æx
y |A|xy (10)

where

Æx
y A is a simple form of branching quantifier (we will refer to these assimulta-

neous quantifiers) for which we assume the following rule:

A0(x0, a0), . . . , An(xn, an) ⊢ B(b, w)
(

Æ

)Æx0

y
0

A0(x0, y0), . . . ,

Æxn

yn
An(xn, yn) ⊢

Æv
wB(v, w)

with the two side-conditions:

– xi may only appear free in the termsb or aj , for j 6= i;
– w may only appear free in the termsai.

The simultaneous quantifier subsumes both existential and universal quantifiers, when
the tuplesw andu are empty in

Æv
wB(v, w), respectively. In terms of games, the new

quantifier embodies the idea of the two players performing their moves simultaneously.
Let us refer to the extension ofLLω

0 with the new simultaneous quantifier byLLω
1 .

Theorem 2. Extend the interpretation above to the systemLLω
1 by defining

|
Æv

wA(v, w)|f ,v
g,w :≡ |A(v, w)|fw

gv .

Theorem 1 holds for the extended systemLLω
1 .

Proof. We must show that the soundness theorem still holds when the system is ex-
tended with the new rule for the simultaneous quantifier. Thenew rule is handled as
follows:

|A0(v0, a0)|
x0

γ
0

, . . . , |An(v0, an)|xn
γn

⊢ |B(b, y)|δu
[fiai

xi
, gb

u
]

|A0(v0, a0)|
f

0
a0

γ′

0
v0

, . . . , |An(v0, an)|
fnan

γ′

nvn
⊢ |B(b, y)|δ

′y
gb

|

Æv0

w0
A0(v0, w0)|

f
0
,v0

γ′

0
,a0

, . . . , |

Ævn

wn
An(vn, wn)|

fn,vn

γ′

n,an
⊢ |

Æx
y B(x, y)|δ

′,b
g,y

where

– δ′ :≡ λy.δ[f iai/xi], for all i
– γ′

j :≡ λvj .γj [gb/u][f iai/xi], for all i 6= j.

This concludes the proof. 2

In fact, note that the simultaneous quantifiers are eliminated via the interpretation,
and we obtain an interpretation ofLLω

1 into the quantifier-free fragment ofLLω
0 . Theo-

rem 2 also provides an assurance that the rule for the simultaneous quantifier suggested
above characterises that quantifier, since a proof of the conclusion of the rule yields
terms satisfying the premise.
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ILω

?

(·)⋆

-

Dialectica interpretation
qfILω

?

(·)⋆

LLω

1 +(TA′) -
| · |

qfLLω

1

Fig. 1. Composing Girard’s embedding with Dialectica interpretation of LLω

1 +(TA′)

3 Relation to Dialectica Interpretation of Intuitionistic Logic

In this section we describe how the interpretation of linearlogic presented above corre-
sponds to Gödel’s Dialectica interpretation [14] of intuitionistic logic. A similar result
concerning the Dialectica interpretation of classical logic is shown in Shirahata [30].
We will assume that intuitionistic logic is also formalisedwith the if-then-else connec-
tive A 3z B, so that conjunction and disjunction are defined notions. First, consider a
variant of Girard’s embedding of intuitionistic logic intoour version of linear logic with
conditionals.

Definition 3 ([11]). For any formulaA of intuitionistic logic its linear translationA⋆

is defined inductively as

(Aat)
⋆ :≡ Aat

(A 3z B)⋆ :≡ A⋆
3z B⋆

(A → B)⋆ :≡ !A⋆
⊸ B⋆

(∀zA)⋆ :≡ ∀zA⋆

(∃zA)⋆ :≡ ∃zA⋆.

Girard’s original embedding makes use of an extra! for the interpretation of∃xA
as∃x!A⋆. We will see that in the presence of the principle

(TA′) !∃zA ⊸ ∃z!A.

this extra! is not necessary. The reason for assuming the principle(TA′) is that it is
sound for the Dialectica interpretation under consideration. In fact, this is a simple form
of the more general principle(TA) to be discussed in Section 4.4.

Theorem 3. Let Γ, A be formulas in the language of intuitionistic logic. The transla-
tion given in Definition 3 is such that ifΓ ⊢ A is derivable inILω then!(Γ ⋆) ⊢ A⋆ is
derivable inLLω

1 + (TA′).

Proof. By induction on the derivation ofΓ ⊢ A in ILω. The only difference from
Girard’s embedding is in the treatment of the existential quantifier. With the help of the
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extra principle (TA′) it can be treated as

!Γ ⋆, !A⋆ ⊢ B⋆

(∃l)
!Γ ⋆, ∃z!A⋆ ⊢ B⋆

(TA′)
!Γ ⋆, !∃zA⋆ ⊢ B⋆

(D3)
!Γ ⋆, !(∃zA)⋆ ⊢ B⋆

The other cases are treated as usual (see [28]).2

The next theorem states that, up to the embedding described in Def. 3, the Dialectica
interpretation of intuitionistic logic corresponds to theinterpretation of linear logic (see
diagram of Figure 1).

Theorem 4. Let A be a formula of intuitionistic logic. Then(AD(x; y))⋆ ≡ |A⋆|xy
(where≡ denotes syntactic identity).

Proof. The proof is by induction on the logical structure of the intuitionistic formulaA.
Recall thatA ∨ B is defined as∃z(A 3z B). We have
Disjunction

((A ∨ B)D(x, v, z; y, w))⋆
(Sec1.2)
≡ (AD(x; yz) 3z BD(v; wz))⋆

(Def3)
≡ (AD(x; yz))⋆

3z (BD(v; wz))⋆

(IH)
≡ |A⋆|xyz 3z |B

⋆|vwz

(Sec2)
≡ |∃z(A⋆

3z B⋆)|x,v,z
y,w

(Def3)
≡ |(A ∨ B)⋆|x,v,z

y,w ,

Implication

((A → B)D(f , g; x, w))⋆
(Sec1.2)
≡ (AD(x; gxw) → BD(fx; w))⋆

(Def3)
≡ !(AD(x; gxw))⋆

⊸ (BD(fx; w))⋆

(IH)
≡ !|A⋆|xgxw ⊸ |B⋆|fx

w

(Sec2)
≡ |!A⋆|xgw ⊸ |B⋆|fx

w

(Sec2)
≡ |!A⋆

⊸ B⋆|f ,g
x,w

(Def3)
≡ |(A → B)⋆|f ,g

x,w.

Existential quantifier

((∃zA)D(x, z; f))⋆
(Sec1.2)
≡ (AD(x; fz))⋆

(IH)
≡ |A⋆|xfz

(Sec2)
≡ |∃zA⋆|x,z

f

(Def3)
≡ |(∃zA)⋆|x,z

f ,

The treatment of conjunction and universals is similar to disjunction and existentials,
respectively. 2
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In the remaining sections of the paper we will consider further extensions of the
Dialectica interpretation of linear logic, and show how these extensions correspond to
extensions of Gödel’s Dialectica interpretation. We start by considering the principles
needed for the characterisation of the interpretation, then we conclude with the exten-
sions covering classical logic, arithmetic and analysis.

4 An Analysis of the Characterisation Principles

As mentioned in Section 1.2, the Dialectica interpretationis based on a prenexation of
an arbitrary formulaA into a formula of the form (1). The interpretation is such that an
intuitionistic proof ofA gives us enough information to explicitly construct a witness
for the existential quantifier of (1). In fact, the followingsemi-intuitionistic principles:
axiom of choice for universal formulas

(AC) ∀x∃yA∀(x, y) → ∃f∀xA∀(x, fx)

independence of universal premises

(IP) (A∀ → ∃xB∀) → ∃x(A∀ → B∀)

andMarkov principle

(MP) (∀xAqf → Bqf) → ∃x(Aqf → Bqf)

are sufficient for showing the equivalence betweenA and its interpretation (1). Above,
by Aqf , Bqf we mean quantifier-free formulas, whereasA∀, B∀ denote purely universal
formulas, i.e. formulas of the form∀zAqf(z).

Let us look at each of the principles in turn and investigate their linear logic counter-
parts. In other words, we look at which linear logic principles to use in order to derive
the linear logic translations(AC)⋆, (IP)⋆ and(MP)⋆. These will allows us to derive the
equivalence between an arbitrary formulaA and its (linear) Dialectica interpretationÆx

y |A|xy .

4.1 Axiom of choice

The axiom of choice(AC) says that a∀∃ quantifier dependence implies the existence
of a functional realising this dependence. When we move intothe linear logic context,
the axiom of choice(AC) boils down to the fact that if Eloise wins a parametrised gameÆx

y Aqf(x, y, z) for any choice ofz, then she must have a strategyf which produces
her moves whenever given the value of the parameterz, i.e.

(ACl) ∀z

Æx
y Aqf(x, y, z) ⊸

Æf
y,zAqf(fz, y, z).

Moreover, since we are working with linear implication, itscontrapositive

(ACc
l )

Æx,z
f Aqf(x, fz, z) ⊸ ∃z

Æx
y Aqf(x, y, z)

is also realised by the linear Dialectica interpretation. Note that the converse of both
(ACl) and (ACc

l ) can be derived inLLω
1 . Assuming thatA is equivalent to

Æx
y |A|xy , one

then obtains the equivalence between∀zA or ∃zA and their interpretations as:
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∀zA
(IH)
⇔ ∀z

Æx
y |A|xy

(ACl,LLω
1
)

⇔

Æf
y,z|A|fz

y ,

∃zA
(IH)
⇔ ∃z

Æx
y |A|xy

(LLω
1

,ACc
l)⇔

Æy,z
f |A|xfz.

We will also make use of a simple form of (ACc
l ) in Section 4.4, for the treatment of the

modality!A.

4.2 Independence of premise

The independence of premise says that universal assumptions do not contribute to wit-
nessing existential statements. Existential quantifiers can then be prenexed over such
universal premises. The linear logic counterpart of (IP) states that if Eloise wins a gamesÆv

wBqf(v) relative to another game

Æx
y Aqf(y) it must be because she has copy-cat

strategiesf , g which take positive moves in the first game into positive moves of the
second, and negative moves of the second into negative movesof the first, i.e.

(IPl) (

Æx
y Aqf(y) ⊸

Æv
wBqf(v)) ⊸

Æf ,g
x,w(Aqf(gw) ⊸ Bqf(fx)).

This is in fact a generalisation of the independence of premise principle (case when
tuplesx andw are empty). Again, it is easy to see that the converse of(IPl) is derivable
in LL

ω
1 . Assuming thatA andB are equivalent to

Æx
y |A|xy and

Æv
w|B|vw, respectively,

one then obtains the equivalence betweenA ⊸ B and its interpretation as:

A ⊸ B
(IH)
⇔

Æx
y |A|xy ⊸

Æv
w|B|vw

(IPl,LLω
1
)

⇔

Æf ,g
x,w(|A|xgw ⊸ |B|fx

w ).

4.3 Markov principle

As the independence of premise, the Markov principle (MP) is a classically valid prin-
ciple which turns out to be validated by the Dialectica interpretation. Its importance
comes from the fact that up to the Markov principle the negative translation ofΠ0

2

statements is intuitionistically equivalent to the statements themselves. This is crucial
for concrete applications of proof theory to mathematics [17, 18, 29].

In the case ofintuitionistic logic, the Markov principle is used to obtain the equiv-
alence between∀xAqf → Bqf and∃x(Aqf → Bqf). On the other hand, in the case of
linear logic, given (IPl), all we need to add is the principle

(MPl) ∀x!Aqf ⊸ !∀xAqf

establishing the commutativity between the universal quantifier and the “bang” modal-
ity. This equivalence is not derivable in standard linear logic, but is validated by the
Dialectica interpretation. Having many copies of∀xAqf seems to be stronger than only
being able to instantiate∀x!Aqf once and then being able to use that instantiation sev-
eral times. What the Dialectica interpretation shows is that this is not the case, at least
when we have decidability ofAqf . The reason is that having decidability of quantifier-
free formulas allows us to incorporate several instantiations into a single instantiation,
via the definition by cases.

Using (IPl) and (MPl) we can derive(MP)⋆ as

(!∀xAqf ⊸ Bqf)
(MPl)
⊸ (∀x!Aqf ⊸ Bqf)

(IPl)
⊸ ∃x(!Aqf ⊸ Bqf).

As it turns out, in order to show the equivalence between!A and its interpretation we
need yet an extra principle, which is not visible in the intuitionistic context.
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4.4 An extra principle!

By refining the Dialectica interpretation via linear logic we also get soundness with
respect to a new principles which, like (MPl), can not even be stated in the context of
intuitionistic logic, namely

(TA) !

Æx
y A ⊸ ∃x!∀yA.

We refer to this principle astrump advantage, since the “bang” modality turns a sym-
metric game

Æx
y A into a game where Eloise has to play first, and Abelard’s move is

allowed to depend on Eloise’s. A simple form of this principle has already been dis-
cussed in Section 3, and basically states that the!-modality commutes with the existen-
tial quantifier.

Assuming thatA is equivalent to

Æx
y |A|xy , we are then able to derive the equivalence

between!A and its interpretation as:

!A
IH

-� !

Æx
y |A|xy

TA
-

�

LLω

1

∃x!∀y|A|xy

LLω

0
-

�

MPl

∃x∀y!|A|xy

LLω

1
-

�

ACc
l

Æx
f !|A|xfx

4.5 Characterisation of linear logic Dialectica

Let us denote byLLω
2 the extension ofLLω

1 with these four schemata(ACl), (IPl), (MPl)
and(TA). The next lemma states that, in fact, these extra principlesare all one needs to
show the equivalence betweenA and its interpretation

Æx
y |A|xy .

Lemma 1. The equivalence betweenA and
Æx

y |A|xy can be derived in the systemLLω
2 .

Proof. This has been shown above.2

In particular, we obtain a (weak) completeness result, showing how winning moves
for Eloise in a game|A|xy correspond to the linear logic formulaA being provable.

Theorem 5. LetA be a formula in the language ofLLω
0 . ThenA is derivable inLLω

2 if
and only if|A|ty is derivable inLL

ω
0 , for some sequence of termst.

Proof. The forward implication follows from the extensions of the Soundness Theorem
1 discussed above. For the other direction, assume|A|ty is derivable inLL

ω
0 . In particular

we have

Æx
y |A|xy . By Lemma 1 we get thatA is derivable inLLω

2 . 2

5 Extensions of the Dialectica Interpretation

In this section we analyse three standard extensions of the basic Dialectica interpretation
of intuitionistic logic, namely, extensions to classical logic (Section 5.1), arithmetic
(Section 5.2) and mathematical analysis (Section 5.3). Theextension to the classical
context is normally obtained via a combination of the Dialectica interpretation with one
of the possible variants of thenegative translation[13, 20]. In the case of arithmetic, the
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important step is the interpretation of the induction schema. This can be done, as shown
by Gödel [14], via a form ofprimitive recursion on all finite types. Finally, Spector
[32] solved the problem of the Dialectica interpretation ofcomprehension via a form of
recursion on well-founded trees, known asbar recursion. In the following we analyse
the role of contraction in each of these extensions.

5.1 Extension 1: Classical logic and negative translations

The Dialectica interpretation does not provide a direct interpretation of classical logic,
since one cannot in general find witnesses for the interpretation of thedouble negation
elimination

(DNE) ¬¬A → A.

What one can do, however, is to bypass any uses of the double negation elimination
via some form of negative translation. Negative translations associate formulasA with
classically equivalent formulas(A)N . The benefit is that even whenA is only valid
classically, the formula(A)N will also be valid intuitionistically. Hence, we can define
the Dialectica interpretation of a classical formulaA as the Dialectica interpretation
of (A)N . These two steps can be combined into a single interpretation, as shown by
Shoenfield [31, 33].

In order to see the implicit role of contraction in the principle (DNE) we need to
move intoclassical linear logic. Let us define linear negation asA⊥ :≡ A ⊸ ⊥. Then,
the double (linear) negation elimination principle

(DNEl) (A⊥)⊥ ⊸ A

has a trivial Dialectica interpretation, since|A⊥|xy ≡ (|A|yx)⊥. This indicates that
“negation” is not the culprit in (DNE). The difficulty in interpreting classical logic
comes from the fact that intuitionistic negation¬A (≡ !A ⊸ ⊥) is weaker than linear
negationA⊥ (≡ A ⊸ ⊥). In the context of linear logic, the principle corresponding to
(DNE) is (!(!A)⊥)⊥ → A. If we abbreviate(!A⊥)⊥ as?A, we can write this as

(CEE) !?!A ⊸ A

which we will refer to as thecoupled exponentials elimination. Similarly to the negative
translation of classical into intuitionistic logic, Girard’s ?!-translation is precisely the
tool one needs to avoid any uses of this principle, and translate a (CEE)-proof ofA into
a proof of an equivalent theorem which does not use (CEE).

5.2 Extension 2: Arithmetic and Gödel’s primitive recursion

As mentioned in the introduction, Gödel’s purpose for defining the Dialectica interpre-
tation was actually to interpret full Heyting arithmetic into a quantifier-free calculus
(an extension of primitive recursive arithmetic to all finite types). Gödel’s interpreta-
tion involves reducing induction forarbitrary formulas to induction forquantifier-free
formulas. The interpretation of induction relies on a intricate argument. The problem is
that one has to carefully use the pair of witnessessb, sf for A(n) → A(n + 1) in order
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to produce a witness forA(k), for arbitraryk. Due to the dependency off onx in (4),
in the interpretation of intuitionistic implication, the two witnesses must be used in a
subtle way.

As we will see, by moving into the linear logic context this interference of the two
flows is restricted to the rule of contraction, which makes the treatment of the rule of
induction very smooth. Consider the extension of the systemLLω

2 with the following
linear inductionrule2

⊢ A(0) A(n) ⊢ A(n + 1)
(IND)

⊢ A(k)

Let us refer to this system byLAω (linear arithmetic). It is easy to see thatHAω is still
embeddable intoLAω as in Definition 3. The translation of the induction rule ofHAω is
derivable inLA

ω as:

⊢ (A(0))⋆

(!r)
⊢!(A(0))⋆

!(A(n))⋆ ⊢ (A(n + 1))⋆

(!r)
!(A(n))⋆ ⊢!(A(n + 1))⋆

(IND)
⊢!(A(k))⋆

(A(k))⋆ ⊢ (A(k))⋆

(!l)
!(A(k))⋆ ⊢ (A(k))⋆

(cut)
⊢ (A(k))⋆

The advantage of working with the rule (IND) of LAω is that its Dialectica interpretation
is much simpler, since contraction is dealt with separatelyand the forward and backward
flows do not interact. Assuming we have Eloise’s winning moves forA(n) ⊸ A(n+1)
andA(0) we can obtain a winning move forA(k) as:

⊢ |A(0)|ry

⊢ |A(0)|
R(sf ,r,0)
y

(3)
⊢ |A(0)|

R(sf ,r,0)

R(s̃b,y,k−0)

|A(n)|xsb(n,y) ⊢ |A(n + 1)|
sf (n,x)
y

(1)
|A(n)|

R(sf ,r,n)

s̃b(k−n,y) ⊢ |A(n + 1)|
sf (n,R(sf ,r,n))
y

(2)
|A(n)|

R(sf ,r,n)

s̃b(k−n,R(s̃b,y,k−n−1)) ⊢ |A(n + 1)|
sf (n,R(sf ,r,n))

R(s̃b,y,k−n−1)

|A(n)|
R(sf ,r,n)

R(s̃b,y,k−n) ⊢ |A(n + 1)|
R(sf ,r,n+1)

R(s̃b,y,k−(n+1)))
(IND)

⊢ |A(k)|
R(sf ,r,k)
y

wheres̃b(k − n, y) = sb(n, y), R is Gödel’s primitive recursor (cf. [34]), and the fol-

lowing substitutions have been used: (1) R(sf ,r,n)
x

, (2) R(s̃b,y,k−n−1)
y

and (3) R(s̃b,y,k−0)
y

.
This shows that we can interpretLAω into qfLAω. The complexity of interpretingHAω

is then pushed from the Dialectica interpretation into the embedding ofHAω into LAω.

5.3 Extension 3: Mathematical analysis and bar recursion

The most surprising extension of the Dialectica interpretation is due to Spector [32] and
covers the whole of classical analysis. As we have seen above, classical logic can be
avoided via the use of negative translations, and arbitraryinduction can be interpreted
via quantifier-free induction and primitive recursion in all finite types. The next step was
to interpret the whole of classical analysis by giving an interpretation to comprehension

2 See the conclusion of Shirahata [30] for a discussion about the different ways of extending
linear linear logic with mathematical induction.
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(CA) ∃f∀ni(f(n) = 0 ↔ A(n))

which in the presence of classical logic can be reduced to countable choice

(ACc) ∀ni∃xτA(n, x) → ∃f∀nA(n, fn).

Spector’s bar recursion [21, 32] comes up when one tries to find witnesses for the Di-
alectica interpretation of the negative translation of (ACc) (see also [2, 3]). Given that
(in an intuitionistic context) the countable choice itselfhas a trivial interpretation, in-
terpreting its negative translation boils down to interpreting the double negation shift

(DNS) ∀ni¬¬A → ¬¬∀nA.

Let us move briefly to the context of classical linear logic, where we also have the
modality?A, which is the dual of!A. The modality?A can be given an interpretation
dual to that of!A, i.e.

|?A|fy :≡ ?|A|fy
y .

As noticed by Girard (cf. Section 5.1), double negations areto intuitionistic logic as?!
is to linear logic. Therefore, the linear logic counterpartof (DNS) is

(DNSl) !∀n?!A(n) ⊸ ?!∀nA(n)).

It is not surprising that in trying to produce a winning move for Eloise for the game
(DNSl) one is quickly led to solve precisely the same set of equations Spector solved in
the intuitionistic context. Our recent analysis of Spector’s bar recursion [21] suggests
that an interesting finitary version of (DNSl) is !(?!A∧ ?!B) ⊸ ?!(A ∧ B), which is
indeed provable in classical linear logic, but requires extremely tricky solutions as the
numbers of formulas in the conjunction grows (see also [10]).

6 Variants of Gödel’s Dialectica Interpretation

Moving into the linear logic context also helps us to understand the subtle differences
between the variants of the Dialectica interpretation. In this section we briefly discuss
three of these variants which do not require decidability ofquantifier-free formulas, and
we sketch the different ways in which the problem of contraction is deal with. The three
variants we consider are: the Diller-Nahm variant [6], the bounded functional interpre-
tation [8, 9] and Kohlenbach’s monotone variant of Gödel’sDialectica interpretation
[15, 16].

Regarding theformula interpretation(i.e., the interpretation of formulas as games)
the monotone interpretation is the same as the usual interpretation, whereas the Diller-
Nahm and bounded interpretations are less strict with Abelard as he only has to produce
a “bound” on his move (and not the precise move). In the case ofthe Diller-Nahm
variant the bound is a finite set of candidate moves, and Abelard wins if any of these is
a winning move. As for the bounded functional interpretation, the bound is a majorant
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(in the sense of Bezem [4]). In this case, Abelard wins if any move below the bound is
a winning move:

Diller-Nahm Bounded Monotone

|!A|xf :≡ !∀y ∈ fx |A|xy !∀y≤∗fx |A|xy !|A|xfx

When it comes to theproof interpretation(i.e., extraction of Eloise’s winning move
from the proof ofA) then the Diller-Nahm and bounded interpretations are morestrict
and ask for a precise witnessa, while in the monotone interpretationa is only required
to be a majorant for some witnessx:

Diller-Nahm Bounded Monotone

if ⊢A then ⊢ ∀y|A|ay ⊢ ∀y|A|ay ⊢ ∃x≤∗a∀y|A|xy

The need for the decidability of quantifier-free formulas inGödel’s original inter-
pretation comes from the need to decide which of two candidate witnesses is indeed a
valid witness. There are basically two ways of circumventing the need for making such
a choice. Either one postpones the choice and simply collects the witnesses into a set
(either finite or majorizable set) or one requires the choiceto be made but then at the
end bounds the choice functions so that it becomes unnecessary. For more details on
the different variants of the Dialectica interpretation see [22–24].

Acknowledgements.The Dialectica interpretation of linear logic presented here is
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