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Abstract

This article investigates Krivine’s realizability interpretation of classical
second-order arithmetic and its recent extension handling countable choice.
We will start by presenting a two-step interpretation which first eliminates
classical logic via a negative translation and then applies standard realizabil-
ity interpretation. We then argue that a slight variant of Krivine’s interpreta-
tion corresponds to this two-step interpretation. This variant can be viewed
as the continuation passing style variant of Krivine’s original interpretation,
and as such uses standardλ-terms and avoids the use of new continuation
constants in the interpretation of classical logic.

1 Introduction

This article investigates Krivine’s realizability interpretation of classical second-
order arithmetic [7], and its recent extension handling also countable choice [8].
Krivine’s interpretation makes use of extensions of untypedλ-calculus with con-
tinuation constructs (for the realization of classical logic) and a new operation la-
belledquote(for the interpretation of countable choice) which associates indices
to closed terms.

Our goal in this paper is to study the connection between Krivine’s interpre-
tation of countable choice and the recent modified realizability interpretation due
to U. Berger and the first author [3] (based on [2]) which makes use ofbar re-
cursion. Such study has been suggested in [8]. It is clear, however, that a direct
inter-definability result cannot hold, since Krivine’s ‘quote’ works even when all
functions on natural numbers in the model are computable whereas bar recursion
requires the presence of noncomputable sequences of natural numbers because oth-
erwise the Kleene tree1 would be well founded.

Therefore, rather than comparing the functionals involved, we will focus on
the corresponding realizability interpretations. The main problem in relating the

1See [11], chapter 4, section 7.6.
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Γ,A `c2 B

Γ `c2 A→ B

Γ `c2 A

Γ `c2 ∀xA

Γ `c2 A

Γ `c2 ∀X
Γ `c2 Ai

Γ `c2 A Γ `c2 A→ B

Γ `c2 B

Γ `c2 ∀xA

Γ `c2 A[s/x]

Γ `c2 ∀XA

Γ `c2 A[B/X]

Γ `c2 (A→ B)→ A

Γ `c2 A

Figure 1: Classical Second-order Arithmetic (Systemc2)

two realizability interpretations of countable choice is the use of different language
paradigms, namelyfunctionals of arbitrary finite typesis used in [3] while Krivine
[8] works in a language forobjects and sets. What we propose in this paper is to
view (a slight variant of) Krivine’s classical realizability interpretation as a com-
bination of a negative translation (in the style of Gödel’s negative translation [5])
followed by a standard intuitionistic realizability interpretation. That is the line
which has been followed in [3], in the setting of finite types.

The presentation of Krivine’s classical realizability interpretation given here
differs slightly form the one presented in [8]. The main change is that we will
be using standardλ-terms, avoiding the use of new continuation constants in the
interpretation of classical logic.

The focus of this paper is on the relation between the tworealizability interpre-
tations. The problem of relating the functionals used to witness the interpretations,
namely Krivine’squoteandbar recursion, remains open.

2 Classical Second-Order Arithmetic

As in Krivine [8], we will use the axiomatisation ofclassical second-order arith-
meticdescribed in Figure 1. The usual restrictions apply in the universal introduc-
tion rules, thatx andX are not free inΓ ≡ A1, . . . ,An. We assume that the language
of c2 contains function symbolsfφ for each recursive functionφ : Nk → N. In
particular, we have constants 0 (zero) and 1+ (successor). Equalityx = y is de-
fined as∀X(X(x)→ X(y)). Besides the logical rules shown in Figure 1, the system
c2 contains the usual universal axioms for zero and successor, and the defining
equations for all recursive functions. Finally, the systemc2 contains theinduction
axiom∀x Int(x), where

Int(x) :≡ ∀X
(
∀y(X(y)→ X(1+ y))→ (X(0)→ X(x))

)
.
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When writing formulas of the classical systemc2, the following abbreviations
will be used:

⊥ ≡ ∀X.X ¬A ≡ A→ ⊥ ∃cxA≡ ¬∀x¬A

Provability in classical second-order arithmetic will be denoted by the subscript
c2 in the provability sign, i.e.Γ `c2 A. For conciseness, we will normally present
derivations in the systemc2 in a natural deduction style.

In the following we considerλ-terms with the usualβ-reduction (λx.t)s  
t[s/x]. We writeΛ for the set of closedλ-terms. Instead of Krivine’s “stacks” of
closedλ-terms we will use finite sequences based on the following coding of pairs
and projections. We write〈t, s〉 as an abbreviation forλu.uts and for i = 0,1 we
write (t)i for t(λx0λx1.xi) which coding validates the reduction (〈t0, t1〉)i  ti . We
write S→ T for

{t ∈ Λ : ∀s∈S(ts ∈ T)}.

andS × T for

{〈t, s〉 : s∈S andt∈T}.

wheneverS,T ⊆ Λ. A subsetT of Λ is calledsaturatedif it is closed underβ-
expansion, i.e. ift ∈ T and s t then s ∈ T. Let T ⊆ P(Λ) denote the set of
saturated subsets ofΛ. It is clear that ifT is saturated thenS→ T is also saturated;
and ifS,T are saturated thenS × T is saturated.

3 Relativisation to the Integers

The induction axiom ofc2 states that every element of the model is an integer. As
argued in [8], this is too strong to be interpreted directly. Therefore, before we pro-
ceed with the realizability interpretation ofc2, we will need an initial relativisation
of the first-order quantifiers ofc2 to the integers. The relativisation simply replaces
first-order universal quantifiers∀x . . . by ∀x(Int(x) → . . .). Let us denote by (A)Int

the relativisation of the first-order quantifiers ofA to the integers. Moreover, let
c2r denote the systemc2 where the defining equations for the recursive function
are relativised, and the induction axiom is replaced by the axiom schema

∆ f : ∀~y(Int(~y)→ Int( f~y))

for each function symbolf of the language. Notice that the integer relativisation of
the induction axiom,∀x(Int(x)→ (Int)Int(x)), then becomes provable. I.e. assuming
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Int(x) and X(0) andInt(y),X(y) ` X(1 + y) we can deriveX(x). Making use of
conjunctions for conciseness, the proof is sketched below2

Int(0)∧ X(0)

[Int(y) ∧ X(y)](1)

Int(y)

Int(1+ y)

[Int(y) ∧ X(y)](1) Int(y) ∧ X(y) ` X(1+ y)

X(1+ y)

Int(1+ y) ∧ X(1+ y)
(1)

Int(y) ∧ X(y) ` Int(1+ y) ∧ X(1+ y)
(by Int(x))

Int(x) ∧ X(x)

X(x)

We have also used that bothInt(0) andInt(y)→ Int(1+ y) are easily derivable.

Lemma 3.1 Let ~x be all the first-order free-variables ofΓ,A. If Γ `c2 A then
(Γ)Int, Int(~x) `c2r (A)Int.

Proof. The lemma follows from a simple induction on the derivationΓ `c2 A. The
only non-trivial case is in the elimination of the first-order universal quantifier:

Γ `c2 ∀xA(x)

Γ `c2 A(s[y])

The Int translation of the premise only implies the translation of the conclusion if
we have a derivation of (Γ)Int, Int(y) ` Int(s[y]), which follows from∆. As argued
above, the integer relativisation of the induction axiom is provable inc2r. 2

4 A Negative Translation

Having dealt with the issue of the induction axiom, we now show how classical
logic can be eliminated via a form of negative translation (cf. [4, 5]). This will lead
us to an intuitionistic version ofc2r which we will call i2r. This is based on the
standard intuitionistic systemi2 whose logical rules are described in Figure 2 plus
axioms for the constants 0 and 1+, function symbols and equations for all recursive
functions, and the axioms∆ f of the previous section.

Definition 4.1 (P-translation) Let P be a new (uninterpreted) predicate constant.
Consider the following translation of formulas ofc2 into formulas ofi2:

2Thanks to Thierry Coquand for bringing this proof to our attention.
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Γ `i2 A0 ∧ A1

Γ `i2 Ai∈{0,1}

Γ `i2 A0 Γ `i2 A1

Γ `i2 A0 ∧ A1

Γ,A `i2 B

Γ `i2 A→ B

Γ `i2 A→ B Γ `i2 A

Γ `i2 B

Γ,A `i2 B

Γ,∃xA `i2 B

Γ,∃xA `i2 B

Γ,A[s/x] `i2 B

Γ,A `i2 B

Γ,∃XA `i2 B

Γ,∃XA `i2 B

Γ,A[C/X] `i2 B

Γ `i2 A

Γ `i2 ∀xA

Γ `i2 ∀xA

Γ `i2 A[s/x]

Γ `i2 A

Γ `i2 ∀XA

Γ `i2 ∀XA

Γ `i2 A[C/X]

Figure 2: Intuitionistic Second-order Arithmetic (Systemi2)

(X)P :≡ X

(A→ B)P :≡ ((A)P→ P) ∧ (B)P

(∀xA)P :≡ ∃x(A)P

(∀XA)P :≡ ∃X(A)P

where X is a second-order variable.

Intuitively, the translation is a generalised negative translation, in which a fixed
predicate constantP takes the role of⊥. Note that, in the present context, we
need not double negate prime formulas because there is no logical difference be-
tween quantifying over single negated predicates and double negated predicates
(and (A)P → P is intuitionistically equivalent to the formula obtained fromA by
replacing every occurrence ofX by X → P). As discussed in [1] and [10], such
negative translation can also be used to analyse Shoenfield’s Dialectica interpreta-
tion of classical logic.

Lemma 4.2 (Storage operator)The following equivalence is derivable ini2r

((Int(y))P→ P)↔ ((Int(y)→ P)→ P)

Proof. Consider for instance the forward implication. That is equivalent to

(Int(y)→ P)→ (((Int(y))P→ P)→ P).

AssumingInt(y) → P and (Int(y))P → P we must deriveP. For conciseness let us
write ¬A for A→ P. Note that (Int(y))P→ P is equivalent to
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[(A)P](2)

[((A)P→ P) ∧ (B)P](1)

(B)P

[(A)P](2)

[((A)P→ P) ∧ (B)P](1)

(A)P→ P

P

(B)P→ P

P
(1)

(((A)P→ P) ∧ (B)P)→ P)
(def)

(A→ B)P→ P [(+)](3)

(A)P→ P

P
(2)

(A)P→ P

Figure 3: Derivability of the negative translation of Peirce’s law

∀X
(
∀k(¬Xk→ ¬X(1+ k))→ (¬X0→ ¬Xy))

)
which in turn implies

(+) ∀k(¬¬Int(k)→ ¬¬Int(1+ k))→ (¬¬Int(0)→ ¬¬Int(y)))

instantiatingX with ¬Int. A sketch of whole derivation can be presented as:

¬Int(y)

¬¬Int(0)

¬¬Int(k)→ ¬¬Int(1+ k)
(+)

¬¬Int(0)→ ¬¬Int(y)

¬¬Int(y)

P

using that¬¬Int(0) and¬¬Int(k)→ ¬¬Int(1+ k) are derivable. This is the deriva-
tion which gives rise to the so-called storage operator [6]. The other implication is
even simpler. 2

For a sequence of formulasΓ ≡ A1, . . . ,An, let (Γ)P → P be an abbreviation
for the sequence (A1)P→ P, . . . , (An)P→ P.

Theorem 4.3 If Γ `c2r A then(Γ)P→ P `i2r (A)P→ P.

Proof. The proof proceeds by induction on the classical derivationΓ `c2r A. Ev-
ery instance of an axiomΓ ` Ai translates into the simple derivation of (Γ)P →
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P, (Ai)P `i2r P. For the rest of the proof we omit the subscripti2r in the provability
sign.

Implication. In this case, for simplicity, let us ignore the contextΓ. The implication
elimination is treated as

` (A→ B)P→ P
(def)

` (((A)P→ P) ∧ (B)P)→ P

((A)P→ P) (B)P ` (B)P

(B)P ` ((A)P→ P) ∧ (B)P

(B)P ` P
(1)

` (B)P→ P

and for implication introduction

(A)P→ P ` (B)P→ P (B)P ` (B)P

(A)P→ P, (B)P ` P

((A)P→ P) ∧ (B)P ` P
(def)

(A→ B)P ` P

` (A→ B)P→ P

Peirce’s law. The the derivation of the translation of Peirce’s law is shown in Fig-
ure 3, where (+) is ((A→ B)P→ P) ∧ (A)P→ P.

Universal quantifiers. The rules for the second-order universal quantifier are trans-
lated into the rules for existential quantifiers:

(Γ)P→ P ` (A(X))P→ P

(Γ)P→ P, (A(X))P ` P

(Γ)P→ P,∃X(A(X))P ` P

(Γ)P→ P ` (∀XA(X))P→ P

(Γ)P→ P ` (∀XA(X))P→ P

(Γ)P→ P,∃X(A(X))P ` P

(Γ)P→ P, (A(X))P[(B)P/X] ` P

(Γ)P→ P, (A(B))P ` P

(Γ)P→ P ` (A(B))P→ P

using that (A(B))P ≡ (A(X))P[(B)P/X]. Similarly one proceeds for first-order quan-
tifiers.

Axioms∆ f . We must show that∆ f implies itsP-translation. This follows from the
fact that∆ f implies

((Int(y)→ P)→ P)→ (Int( f y)→ P)→ P

and this implies (∆ f )P→ P, by Lemma 4.2. 2
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Note the fundamental use of conjunction introduction and elimination in the
treatment of implication. As we will see, Krivine’s classical realizability inter-
pretation combines negative translation with a standard realizability interpretation
into one package, which makes it more difficult to produce realizers, since at each
λ-abstraction or term application one has to take into consideration the pair for-
mulations and projections shown in the proof above. This is dealt with in a neat
way by Krivine’s abstract machine, via the use of stacks, but the price to pay is
that realizers loose some of their semantic meaning, and become more “machine
oriented”.

5 Intuitionistic Realizability

We present now an intuitionistic realizability interpretation ofi2r (which is also
used by Krivine in [6]) and show that when combined with theP-translation of
Section 4 and the integer relativisation of Section 3 we obtain a CPS translation of
Krivine’s classical realizability interpretation of second-order logic.

LetM be a term structure for second-order logic. The interpretation associates
each formulaA with a saturated set (i.e. an element ofT ). In order to give an inter-
pretation for a formulaA with free-variables, we will make use of anenvironment
ρ associating each first-order free-variable with an element ofM and second-order
free-variables with mappings fromMk toT .

Let ~x consist of all free-variables (both first and second-order variables) of
A, and letρ be an assignment for the free-variables as described above. The set of
realizers ofA(~x) with respect toρ, written{A(~x)}ρ, is defined inductively as follows:
For the propositional part, the interpretation is given as:

{X(t)}ρ :≡ ρ(X)(ρ(t))

{A∧ B}ρ :≡ {A}ρ × {B}ρ

{A→ B}ρ :≡ {A}ρ → {B}ρ.

The interpretation of the first-order quantifiers is done as

{∃xA}ρ :≡
⋃

a∈M
{A}ρ[a/x]

{∀xA}ρ :≡
⋂

a∈M
{A}ρ[a/x]

while, for the second-order quantifier we set

{∃XA}ρ :≡
⋃

S∈Mk→T

{A}ρ[S/X]

{∀XA}ρ :≡
⋂

S∈Mk→T

{A}ρ[S/X] .
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Theorem 5.1 (Soundness)If Γ `i2r A then there exists a term t[~x] such that, for
all ρ and~s ∈ {Γ}ρ we have t[~s] ∈ {A}ρ.

Proof. For conciseness we omit the universal quantifications overρ and~s. We can
transform the intuitionistic system into a “typing system” forλ-terms.

Axioms. For the axioms we have

~s ∈ {Γ} ⇒ si ∈ {Ai}

Arrow rules. In the case of the implication introduction and elimination:

~s ∈ {Γ}, r ∈ {A} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ} ⇒ λx.t[~s, x] ∈ {A→ B}

~s ∈ {Γ} ⇒ r[~s] ∈ {A} ~s ∈ {Γ} ⇒ t[~s] ∈ {A→ B}

~s ∈ {Γ} ⇒ t[~s]r[~s] ∈ {B}

First-order existential quantifier. Given the definition{∃xA}ρ :≡
⋃

a∈M
{A}ρ[a/x] we

get

~s ∈ {Γ}, r ∈ {A(y)} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {∃yA(y)} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {∃yA(y)} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {A(s)} ⇒ t[~s, r] ∈ {B}

Second-order existential quantifier. Given the definition{∃XA}ρ :≡
⋃

S∈Mk→T

{A}ρ[S/X]

we get

~s ∈ {Γ}, r ∈ {A(X(s))} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {∃XA(X(s))} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {∃XA(X(s)))} ⇒ t[~s, r] ∈ {B}

~s ∈ {Γ}, r ∈ {A(C(s))} ⇒ t[~s, r] ∈ {B}

Axioms∆ f . Let φ be theλ-term representing the recursive functionf . It is easy to
check thatφ realizes∆ f . 2

6 Krivine’s Classical Realizability Interpretation

In this section we will present a variant of Krivine’s classical realizability interpre-
tation which corresponds to the combination of theP-translation of Section 4 and
the intuitionistic realizability of Section 5. We borrow most of the notation from
[8]. Recall that a structureM = (M, f , . . . ,y) for a second-order theory consists
of a setM of individuals, an interpretationfM : Mk → M for eachk-ary function
symbol f , and a fixed saturated subsety of Λ. In the case ofc2r, classical second-
order arithmetic, we always takeM = N and the interpretation of each function
symbol fφ is the corresponding recursive functionφ.
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We will also useρ as a mapping from the first-order variables ofc2r to elements
of M, and second-order variables of arityk to mappings fromMk to the setT . Any
such structureM gives rise to a model ofc2r where to formulas saturated elements
of T are assigned as follows.

For each formulaA we will simultaneously define the sets‖A‖ρ and|A|ρ in T .
The set|A| is supposed to containwitnessesfor A relative toy, while the set‖A‖
contains the set ofchallengesused in arguing that a term is not a witness forA.
Recall thatΛ denotes the set of all closedλ-terms. The saturated set|A| is defined
as

|A|ρ :≡ ‖A‖ρ →y i.e. {t ∈ Λ : ∀s ∈ ‖A‖ρ(ts ∈y)}

where the saturated set‖A‖ρ is defined inductively as:

‖X(t)‖ρ :≡ ρ(X)(ρ(t))

‖A→ B‖ρ :≡ |A|ρ × ‖B‖ρ

‖∀xA‖ρ :≡
⋃

a∈M
‖A‖ρ[a/x]

‖∀XA‖ρ :≡
⋃

S∈Mk→T

‖A‖ρ[S/X] .

Moreover, by the definition of|A|ρ given above we have:

|A→ B|ρ ≡ ‖A→ B‖ρ → y

≡ |A|ρ × ‖B‖ρ → y

|∀xA|ρ ≡
⋂

a∈M
|A|ρ[a/x]

|∀XA|ρ ≡
⋂

S∈Mk→T

|A|ρ[S/X] .

Note that|A→ B| and|A| → |B| are not the same set. Nevertheless, if we use
t • sas an abbreviation forλx.t〈s, x〉 thent ∈ |A→ B| ands ∈ |A| imply t • s ∈ |B| as
follows: Supposet ∈ |A→ B| ands ∈ |A| andr ∈ ‖B‖. Then (t • s)r  β t〈s, r〉 ∈ y
and thus (t • s)r ∈ y sincey is saturated.

Similarly, even if a termt[x] is such thatt[s] belongs to|B| whenevers ∈ |A|,
this does not implyλx.t[x] ∈ |A → B|. For the more general form of abstrac-
tion λ̃x.t[x] ≡ λy.t[y0]y1, however, we do have thatλ̃x.t[x] ∈ |A → B| as fol-
lows: Supposet[s] ∈ |B| whenevers ∈ |A|. Let s ∈ |A| and r ∈ ‖B‖. We have
(λ̃x.t[x])〈s, r〉  β t[(〈s, r〉)0](〈s, r〉)1  β t[s]r ∈ y and thus (̃λx.t[x])〈s, r〉 ∈
y sincey is saturated. Finally, note also that these two abbreviations satisfy
(λ̃x.t[x]) • s βη t[s].

The reason why the correspondence between|A → B| and |A| → |B| is only
up to equivalence comes from the fact that the realizability interpretation presented
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c2

?

Int
relativization

c2r -
P-translation

i2r -
Realizability

λ-calculus

6

Krivine’s classical realizability

Figure 4: Decomposing Krivine’s interpretation

above incorporates the negative translation discussed in Section 4. This negative
translation, particularly the treatment of implication, relies on conjunction intro-
duction and elimination (cf. proof of Theorem 4.3) which appears here as pair
formation and projections.

Example 6.1 Consider the interpretation of the closed formulaInt(n)

|Int(n)| ≡
⋂

S∈Mk→T

( ⋂
a∈M

(|S(a)→ S(1+ a)|) × (|S(0)| × ‖S(n)‖)
)
→ y

where n is the numeral1+1+. . .+0. Let S∈ Mk → T , s∈
⋂

a∈M(|S(a)→ S(1+a)|)
and r ∈ |S(0)| be fixed. We have that a witness forInt(n) must be a closed term t
such that(t• s)• r ∈ |S(n)|. For instance, this could bẽλ f .λ̃x. f n(x), where f0x := x
and fn+1x := f • f n(x).

Definition 6.2 (Krivine realizability) For every fixed choice ofy, a closed term t
is said toy-realizeA if t ∈ |A|, i.e. if ts∈y whenever s∈ ‖A‖.

We often omity and just write “t realizesA”. If y :≡ ∅ then|A| is either the set
of all closed terms or the empty set, and we get the usual notion of a formula being
either true (|A| being the whole set) or false (|A| being empty). We are interested in
closedλ-terms thaty-realizeA (i.e. belong to|A|) no matter the choice ofy. Those
programs capture the computational content of the formula A.

Theorem 6.3 ([8]) Let the base saturated sety be fixed. Each proof ofΓ `c2r A
can be associated with aλ-term t[~x] such that, for allρ and ~u ∈ |Γ|ρ we have
t[~u] ∈ |A|ρ.

Proof. Observe that for allρ such thatρ(P) =y we have
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(i) t ∈ |A|ρ if and only if t ∈ {(A)P→ P}ρ,

(ii ) t ∈ ‖A‖ρ if and only if t ∈ {(A)P}ρ.

The result then follows from Theorems 4.3 and 5.1.2

The realizability interpretation above describes a procedure for associating
computational information (in the form of a closedλ-term) to each proof in classi-
cal second-order arithmetic (see Figure 4).

Our presentation of Krivine’s realizability interpretation differs from Krivine’s
[8] with respect to two points. First, we only needstandardclosedλ-terms in order
to define realizers, whereas Krivine [8] uses also so-calledprocesses(a pair of a
λ-term and astack). Second, our version of the interpretation of Peirce’s law does
not require continuation termscc andkr , but can be witnessed by a standardλ-term
(see proof of Theorem 6.3).

The reason we do not need the continuation termscc andkr for the realizability
interpretation is because those can be defined as:

cc := λ f |(A→B)→A|λx ‖A‖. f 〈λy|A|×‖B‖.(y)0x, x〉

and forr ∈ ||B||

kr := λy|A|×‖B‖.(y)0r.

It follows that the corresponding reductions forcc andkr (used in [8]) are derivable

cc tr  t〈kr , r〉 kr〈t, s〉 tr

7 Krivine’s Interpretation of Countable Choice

In this section we briefly revise Krivine’s interpretation [8] of (the integer relativi-
sation of) thesecond-order countable choice

cAC2 : ∃cF(·)∀x
(
A(x, Fx)→ ∀XA(x,X)

)
considering our reformulation of Krivine’s realizability interpretation. The inter-
pretation is split into two steps. The second step is discussed in Section 7.1, while
the first is the interpretation of (the integer relativisation of) thefirst-order count-
able choice

cAC1 : ∃c f∀x
(
Z(x, f (x))→ ∀yZ(x, y)

)
.

The existence of the functionf is in fact an abbreviation for the existence of a set
F of pairs of numbers describing the graph off , i.e.
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∃cF
(
Func(F) ∧ ∀x(∀y(F(x, y)→ Z(x, y))→ ∀yZ(x, y))

)
where the formulaFunc(F) is ∀n,m0,m1(

∧1
i=0 F(n,mi) → m0 = m1). We argue

that (cAC1)Int is derivable in second-order arithmetic as follows. The functionF
can be produced by minimisation as

F(x, y) :≡ ¬Z(x, y) ∧ ∀kInt<yZ(x, k).

It is easy to show thatF as defined above satisfiesFunc. Moreover, assuming
Int(x), the implication

∀yInt(F(x, y)→ Z(x, y)) `c2 ∀y
IntZ(x, y)

can be proven using induction (i.e. the assumptionInt(x)) and Peirce’s law: for
y = 0 the statement reduces to an instance of Peirce’s law ((Z(x,0) → ⊥) →
Z(x,0))→ Z(x,0). The induction hypothesis is used to eliminate∀k<yZ(x, k) in
F(x, y), so that we again get an instance of Peirce’s law.

7.1 Full countable choice

The second step in Krivine’s interpretation of countable choice is as follows. As-
sume a fixed surjectionn 7→ tn of the set of Church numerals intoΛ. Let u 7→ nu

be some inverse of this mapping, so thattnu = u. We add to theλ-calculus a new
constantχ with the respective conversion rule

χ〈u, r〉 u〈nu, r〉

i.e. χ simply applies the argumentu to its corresponding Church numeralsnu

(wherenu is reminiscent of LISP’squoteu). The goal is to produce a term which
realizescAC2. Krivine notices thatcAC2 is a consequence of the first-order count-
able choicecAC1, and the following principle3

KA : ∃cS(·)∀x(∀nA(x,Sx,n)→ ∀XA(x,X))

which we will refer to asKrivine’s axiom4. It basically says that for any property
A(X) there exists a family of setsSx,n such that quantifications over sets satisfying
A can be reduced to quantification over the indexing set of the family of setsSx,n.
As shown above, the integer relativisation ofcAC1 is easily derivable in second-
order logic and we are left with the integer relativisation ofKA to interpret.

Instead of interpreting (KA)Int one can actually produce a realizer for the stronger
statement

3TakeZ(x,n) :≡ A(x,Sx,n,Y) andFx :≡ Sx, f (x).
4The interpretation of this principle has also been investigated in [9], in connection with a Curry-

Howard correspondence for intuitionistic set theory.
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(∗) ∃S(·)∀x(∀nIntA(x,Sx,n)→ ∀XA(x,X))

i.e. the variablex does not need to be relativised and the existential quantification
overS can be treated intuitionistically.

Theorem 7.1 ([8]) χ ∈ |(∗)|.

Proof. Recall that when working with second-order arithmetic we always assume
that the set of individuals in the model isN. We will show thatχ belongs to⋃

S(·)∈Nk→T

⋂
x∈N

(( ⋂
n∈N
|Int(n)→ A(x,Sx,n)| × ‖∀XA(x,X)‖

)
→ y

)
.

First, note that for each indexn of the enumeration (tn), if

(r ∈ ‖∀XA(x,X)‖) ∧ (tn〈n, r〉 < y)

for some termr, then for some mappingS ∈ Nk → T we also haver ′ ∈ ‖A(x,S)‖
and (tn〈n, r ′〉 < y), for some (potentially different)r ′. By countable choice there is
a sequence of mappingsSx,n such that

(∗) if ∃r((r ∈ ‖∀XA(x,X)‖) ∧ (tn〈n, r〉 < y)) then

∃r((r ∈ ‖A(x,Sx,n)‖) ∧ (tn〈n, r〉 < y)).

We show thatχ belongs to the set⋂
x∈N

(( ⋂
n∈N
|Int(n)→ A(x,Sx,n)| × ‖∀XA(x,X)‖

)
→ y

)
.

Fix x and letu ∈
⋂

n∈N
|Int(n) → A(x,Sx,n)| andr ∈ ‖∀XA(x,X)‖. By the assumption

on u and the fact thattnu = u (recall thatn 7→ tn is an enumeration ofλ-terms
andu 7→ nu is inverse of that), we haveu〈nu, r〉 = tnu〈nu, r〉. We must show that
tnu〈nu, r〉 ∈ y, which impliesχ〈u, r〉 ∈ y. Assumetnu〈nu, r〉 < y. By (∗) we get
that for somer ′ ∈ ‖A(x,Sx,nu)‖ we havetnu〈nu, r ′〉 < y. This is a contradiction to
our assumption onu (= tnu). 2

In the presence of classical logic and first-order countable choice, Krivine’s
axiom is in factequivalentto second-order countable choice. One direction was
discussed above. For the other direction, notice thatKA follows by cAC2 from

∀x∃cS(·)(∀nA(x,Sn)→ ∀XA(x,X))

which is classically equivalent to the trivial statement

∀x(∀S(·)∀nA(x,Sn)→ ∀XA(x,X)).
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Figure 5: Alternative interpretation ofc2

8 Conclusions

We have seen how a slight variant of Krivine’s classical realizability interpretation
can be viewed as a negative translation followed by a standard intuitionistic realiz-
ability interpretation. In particular, using this variant one does not need continua-
tions constructs. Throughout the paper we have tried to make clear the important
role of the integer relativisation of the first-order quantifiers.

One important advantage of splitting Krivine’s interpretation into two steps is
that we can, alternatively, perform the integer relativisation between the negative
translation and the realizability interpretation (see highlighted path of Figure 5).
This can be beneficial, given that the negative translation does not affect the induc-
tion axiom. One then has to produce realizers for∆ f in the sense of the simpler
intuitionistic realizability interpretation, and not in the sense of the classical real-
izability interpretation.

One might also wonder whether it is possible to translate Krivine’s second-
order interpretation of countable choice (via the use of thequote) into a language
based on finite types. This does not seem to be helpful since the reduction from
countable choice toKrivine’s axiom(see Section 7.1) takes for granted the first-
order countable choice. In the setting of finite types, however, already the first-
order countable choice is strong enough to require the full power of bar recursion.
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[5] K. Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie.Ergebnisse
eines Mathematischen Kolloquiums, 4:34–38, 1933.

[6] J. Krivine. A general storage theorem for integers in call-by-name lambda-
calculus.Th. Comp. Sc., 129:79–94, 1994.

[7] J. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Archive for Mathematical Logic, 40(3):189–205, 2001.

[8] J. Krivine. Dependent choice, ‘quote’ and the clock.Th. Comp. Sc., 308:259–
276, 2003.

[9] A. Miquel. A strongly normalising Curry-Howard correspondence for IZF
set theory. InComputer Science and Logic (CSL’03), pages 441–454, 2003.

[10] T. Streicher and U Kohlenbach. Shoenfield is Gödel after Krivine. To appear
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