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Abstract

This article investigates Krivine’s realizability interpretation of classical
second-order arithmetic and its recent extension handling countable choice.
We will start by presenting a two-step interpretation which first eliminates
classical logic via a negative translation and then applies standard realizabil-
ity interpretation. We then argue that a slight variant of Krivine’s interpreta-
tion corresponds to this two-step interpretation. This variant can be viewed
as the continuation passing style variant of Krivine’s original interpretation,
and as such uses standarterms and avoids the use of new continuation
constants in the interpretation of classical logic.

1 Introduction

This article investigates Krivine’s realizability interpretation of classical second-
order arithmetic [7], and its recent extension handling also countable choice [8].
Krivine’s interpretation makes use of extensions of untypezhlculus with con-
tinuation constructs (for the realization of classical logic) and a new operation la-
belled quote(for the interpretation of countable choice) which associates indices
to closed terms.

Our goal in this paper is to study the connection between Krivine’s interpre-
tation of countable choice and the recent modified realizability interpretation due
to U. Berger and the first author [3] (based on [2]) which makes udsapfe-
cursion Such study has been suggested in [8]. It is clear, however, that a direct
inter-definability result cannot hold, since Krivine’s ‘quote’ works even when all
functions on natural numbers in the model are computable whereas bar recursion
requires the presence of noncomputable sequences of natural numbers because oth-
erwise the Kleene tréavould be well founded.

Therefore, rather than comparing the functionals involved, we will focus on
the corresponding realizability interpretations. The main problem in relating the

1See [11], chapter 4, section 7.6.
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Figure 1: Classical Second-order Arithmetic (Systth

two realizability interpretations of countable choice is the usefééint language
paradigms, namelfunctionals of arbitrary finite typeis used in [3] while Krivine

[8] works in a language foobjects and setswhat we propose in this paper is to
view (a slight variant of) Krivine’s classical realizability interpretation as a com-
bination of a negative translation (in the style abd&l's negative translation [5])
followed by a standard intuitionistic realizability interpretation. That is the line
which has been followed in [3], in the setting of finite types.

The presentation of Krivine’s classical realizability interpretation given here
differs slightly form the one presented in [8]. The main change is that we will
be using standard-terms, avoiding the use of new continuation constants in the
interpretation of classical logic.

The focus of this paper is on the relation between thereatizability interpre-
tations The problem of relating the functionals used to witness the interpretations,
namely Krivine’squoteandbar recursion remains open.

2 Classical Second-Order Arithmetic

As in Krivine [8], we will use the axiomatisation @lassical second-order arith-
meticdescribed in Figure 1. The usual restrictions apply in the universal introduc-
tion rules, thakk andX are not free il" = Ay, ..., A,. We assume that the language

of c2 contains function symbol§; for each recursive function : NK - N. In
particular, we have constants 0 (zero) and(&uccessor). Equality = y is de-

fined asvX(X(x) — X(y)). Besides the logical rules shown in Figure 1, the system
c2 contains the usual universal axioms for zero and successor, and the defining
equations for all recursive functions. Finally, the systhtontains thénduction
axiomVxInt(x), where

Int(x) := YX(Vy(X(y) = X + y)) — (X(0) — X(X))).



When writing formulas of the classical syste®, the following abbreviations
will be used:

1 =VYXX -A=A-> 1L AxA = —-¥x-A

Provability in classical second-order arithmetic will be denoted by the subscript
c2 in the provability sign, i.el" .2 A. For conciseness, we will normally present
derivations in the syster® in a natural deduction style.

In the following we consider-terms with the usugB-reduction gx.t)s ~
t[s/x]. We write A for the set of closed-terms. Instead of Krivine's “stacks” of
closedl-terms we will use finite sequences based on the following coding of pairs
and projections. We writét, s) as an abbreviation fotu.utsand fori = 0,1 we
write (t); for t(AxgAx1.%) which coding validates the reductiofid, t1)); ~ ti. We
write S — T for

{te A : ¥VseS(tse T)}.
andS x T for
{{t,s) : seSandteT}.

wheneverS, T € A. A subsetT of A is calledsaturatedif it is closed undes-
expansion, i.e. it € T ands ~ tthense T. Let7 < P(A) denote the set of
saturated subsets Af It is clear that ifT is saturated the8 — T is also saturated;
and if S, T are saturated the® x T is saturated.

3 Relativisation to the Integers

The induction axiom o€2 states that every element of the model is an integer. As
argued in [8], this is too strong to be interpreted directly. Therefore, before we pro-
ceed with the realizability interpretation o2, we will need an initial relativisation

of the first-order quantifiers @ to the integers. The relativisation simply replaces
first-order universal quantifiefsx. .. by ¥x(Int(x) — ...). Let us denote byA)'™

the relativisation of the first-order quantifiers Afto the integers. Moreover, let
c2r denote the syster? where the defining equations for the recursive function
are relativised, and the induction axiom is replaced by the axiom schema

At 1 VYy(Int(y) — Int(f))

for each function symbadi of the language. Notice that the integer relativisation of
the induction axiomyx(Int(x) — (Int)'"™(x)), then becomes provable. |.e. assuming



Int(x) and X(0) andInt(y), X(y) + X(1 + y) we can deriveX(x). Making use of
conjunctions for conciseness, the proof is sketched Felow

[Int() A X®)] ()

Int(y) [Int(y) A X)]2) Int(y) A X(y) + X(1 +y)

Int(1+ y) X(1+y)
Int(L+y) AX(L+y)
Int(0) A X(0) Int(y) A X(y) + Int(L + y) A X(1 + y)
Int(X) A X(X)

X(X)

We have also used that bdtit(0) andint(y) — Int(1 + y) are easily derivable.

1)
(by Int(x))

Lemma 3.1 Let X be all the first-order free-variables af, A. If I' r.» A then
MM, INt(X) Feor (A)M.

Proof. The lemma follows from a simple induction on the derivatior., A. The
only non-trivial case is in the elimination of the first-order universal quantifier:

I ko2 YXA(X)
[ ez A(dy])

The Int translation of the premise only implies the translation of the conclusion if
we have a derivation of )'™, Int(y) + Int(s[y]), which follows fromA. As argued
above, the integer relativisation of the induction axiom is provab&in O

4 A Negative Translation

Having dealt with the issue of the induction axiom, we now show how classical
logic can be eliminated via a form of negative translation (cf. [4, 5]). This will lead
us to an intuitionistic version of2r which we will call i2r. This is based on the
standard intuitionistic systei? whose logical rules are described in Figure 2 plus
axioms for the constants 0 anel, function symbols and equations for all recursive
functions, and the axioms; of the previous section.

Definition 4.1 (P-translation) Let P be a new (uninterpreted) predicate constant.
Consider the following translation of formulas «f into formulas ofi2;

2Thanks to Thierry Coquand for bringing this proof to our attention.
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Figure 2: Intuitionistic Second-order Arithmetic (Systé&h

(X)p = X

(A->B)p = ((Ap— P)A (B
(YXA)p = AX(A)p

WXAp = IAX(A)p

where X is a second-order variable.

Intuitively, the translation is a generalised negative translation, in which a fixed
predicate constar® takes the role ofL. Note that, in the present context, we
need not double negate prime formulas because there is no logieakdce be-
tween quantifying over single negated predicates and double negated predicates
(and A)p — P is intuitionistically equivalent to the formula obtained froby
replacing every occurrence &fby X — P). As discussed in [1] and [10], such
negative translation can also be used to analyse Shoenfield’s Dialectica interpreta-
tion of classical logic.

Lemma 4.2 (Storage operator) The following equivalence is derivableilr
((Int(y))p — P) & ((Int(y) —» P) — P)
Proof. Consider for instance the forward implication. That is equivalent to

(Int(y) — P) — ((Int(y))p — P) = P).

Assumingint(y) — P and (nt(y))p — P we must deriveP. For conciseness let us
write =Afor A — P. Note that [nt(y))p — P is equivalent to



[((A)p — P) A (B)p](n)
[(A)Pl2) (Ap— P
[((A)p — P) A (B)rlw P
(B)p (B)p — P
P
(1)
(((A)p = P) A (B)p) — P)
(def)
(A—-Bp—P (D))
[(A)rl2) (Ap—P
P
(Ap — P

(2)

Figure 3: Derivability of the negative translation of Peirce’s law

YX(Yk(=Xk = =X(1 + k)) = (=X0 — =Xy)))
which in turn implies
(+) Yk(==Int(k) = —=Int(1 + k)) — (==Int(0) = ==Int(y)))
instantiatingX with —Int. A sketch of whole derivation can be presented as:
==Int(k) —» —==Int(1 + K)
—=Int(0) —=Int(0) —» ——Int(y)

=Int(y) —=int(y)
P
using that=-—Int(0) and-=Int(k) — —=Int(1 + k) are derivable. This is the deriva-

tion which gives rise to the so-called storage operator [6]. The other implication is
even simpler. O

For a sequence of formulds= Aq,..., A, let p — P be an abbreviation
for the sequencedy)p — P,...,(An)p — P.

Theorem 4.3 If T oy Athen(D)p — P Hor (A)p — P.

Proof. The proof proceeds by induction on the classical derivefiegy, A. Ev-
ery instance of an axiom + A; translates into the simple derivation df)¢ —

6



P, (A)p +izr P. For the rest of the proof we omit the subsciitin the provability
sign.

Implication In this case, for simplicity, let us ignore the contExfThe implication
elimination is treated as
FAA->Bp-P (def ((Ap—> P) (Bp+(B)p
F({(A)p > P)A(B)p) - P (B)p + ((A)p — P) A (B)p
(Bp+P

I-(B)p—) P

(1)

and for implication introduction
(Ap—>Pr(Bp—>P (Bpr (Bp
(A)p = P,(Bp+P
(A)p > P)A(Bp+P
(A->BprP
F(A-Bp—>P

def)

Peirce’s law The the derivation of the translation of Peirce’s law is shown in Fig-
ure 3, where{) is (A — B)p - P) A (A)p — P.

Universal quantifiersThe rules for the second-order universal quantifier are trans-
lated into the rules for existential quantifiers:

Mp = PH(YXAX))p —» P
(D)p — P, AX(AX))p + P
Me = P (AX))el(B)p/X] + P
Mp — P(AB))p+P
Mp—->Pr(AB))p— P

O = Pr(AX))p » P
D = P.(AX))p + P
(Dp — PAX(AX)e + P
(Dp = P (YXAX))p — P

using that A(B))p = (A(X))p[(B)p/X]. Similarly one proceeds for first-order quan-
tifiers.

AxiomsA;. We must show thak ¢ implies itsP-translation. This follows from the
fact thatA; implies

((Int(y) —» P) - P) —» (Int(fy) > P) > P

and this impliesf¢)p — P, by Lemma 4.2. O



Note the fundamental use of conjunction introduction and elimination in the
treatment of implication. As we will see, Krivine's classical realizability inter-
pretation combines negative translation with a standard realizability interpretation
into one package, which makes it mordhidult to produce realizers, since at each
A-abstraction or term application one has to take into consideration the pair for-
mulations and projections shown in the proof above. This is dealt with in a neat
way by Krivine’s abstract machine, via the use of stacks, but the price to pay is
that realizers loose some of their semantic meaning, and become more “machine
oriented”.

5 Intuitionistic Realizability

We present now an intuitionistic realizability interpretationi2f (which is also

used by Krivine in [6]) and show that when combined with #¢ranslation of
Section 4 and the integer relativisation of Section 3 we obtain a CPS translation of
Krivine's classical realizability interpretation of second-order logic.

Let M be a term structure for second-order logic. The interpretation associates
each formulaA with a saturated set (i.e. an elemen%0of In order to give an inter-
pretation for a formulaA with free-variables, we will make use of @amvironment
o associating each first-order free-variable with an elemeM @ind second-order
free-variables with mappings froMX to 7.

Let X consist of all free-variables (both first and second-order variables) of
A, and letp be an assignment for the free-variables as described above. The set of
realizers ofA(X) with respect te, written{A(X)},, is defined inductively as follows:

For the propositional part, the interpretation is given as:

X®) = p(X)(e(1)
{AAB}, = {Al,x{B},
{A> B}, = {Al, - (B},

The interpretation of the first-order quantifiers is done as

{IxA, = U {Alarx
aeM
{VXA}p = ﬁ {A}p[a/x]
aeM
while, for the second-order quantifier we set
{IXA, = U {Als/x
SeMK—T
{VXA}p = N {A}p[S/X] .
SeMk—T



Theorem 5.1 (Soundness)f T +ip A then there exists a termid such that, for
all p andse {I'}, we havefts € {A},.

Proof. For conciseness we omit the universal quantifications oegrds. We can
transform the intuitionistic system into a “typing system” foterms.

Axioms For the axioms we have
Sefll = se{A}
Arrow rules In the case of the implication introduction and elimination:

Se{ll,re{Al = t[Sr]e{B} Se{l} = r[§e{A} Se{l} = t[§ {A— B}
Se{ll = Axt[Sx €{A— B} Se (I} = t[9r[g € {B}

First-order existential quantifier Given the definitiondxA}, := U {A}y[a;xy We
get aeM
Se(llref{Aly) = t[sr]e{B} Se{lhre{IA)} = t[Sr] € {B}
Se(l'},r e {AyAly)} = t[Sr] € (B} Se{I'},r e {A(s)} = t[sr] €{B}

Second-order existential quantifiggiven the definitioddXA}, := U  {Algs/x
SeMk—T
we get )

Se ('}, r € {A(X(9)} = t[Sr] € {B} Se ('}, r € (AXA(X(9))} = t[Sr] € {B}
Se (I}, r € (AXAX(9)} = t[Sr] € (B} Se (I}, r e {A(C(9)} = t[5r] € {B}

AxiomsAs. Let ¢ be thed-term representing the recursive functibnit is easy to
check thatp realizesAs. O

6 Krivine’s Classical Realizability Interpretation

In this section we will present a variant of Krivine’s classical realizability interpre-
tation which corresponds to the combination of Bx&ranslation of Section 4 and
the intuitionistic realizability of Section 5. We borrow most of the notation from
[8]. Recall that a structurd1 = (M, f,..., 1) for a second-order theory consists
of a setM of individuals, an interpretatiofiy : MK — M for eachk-ary function
symbolf, and a fixed saturated subsebf A. In the case o€2r, classical second-
order arithmetic, we always takd = N and the interpretation of each function
symbolfy is the corresponding recursive functipn



We will also use as a mapping from the first-order variablesafto elements
of M, and second-order variables of arityo mappings fronMX to the set". Any
such structureM gives rise to a model af2r where to formulas saturated elements
of 7~ are assigned as follows.

For each formulaA we will simultaneously define the sét8||, and|A|, in 7.
The setA is supposed to contawvitnessedor A relative tolL, while the sef|A|]
contains the set ofhallengesused in arguing that a term is not a witness Aor
Recall thatA denotes the set of all closadterms. The saturated 9 is defined
as

A, = A, = L Le.{te A : Vsel|lAl(tse )}

where the saturated s@A||, is defined inductively as:

IX(®)ll = p(X)(o(1))

IA—Bll, = |A,xIBl,

IVXAll, = U lAlpa/x
acM

IVXAl, = U lIAps/x-
SeMK—T~

Moreover, by the definition dfAl, given above we have:

IA—Bl, = [[A-Bl,—> 1
= |Apx|Bll, = L
|VXA|p = ﬂ |A|p[a/X]
acM
|VXA|p = ﬂ |A|p[S/X] .
SeMK—T~

Note thatlA — B| and|A| — |B| are not the same set. Nevertheless, if we use
te sas an abbreviation forx.t(s, x) thent € |A — B| ands € |Alimply te se |B| as
follows: Suppose € |[A — B|ands € |Al andr € [[B]|. Then (e S)r ~5 t{S,;r) € 1L
and thust(e S)r € 1 sincell is saturated.

Similarly, even if a ternt[X] is such that[s] belongs to|B| whenevers € |A],
this does not implyixt[X] € |A — B|. For the more general form of abstrac-
tion Axt[X] = Ay.t[yo]y1, however, we do have thaixt[x] € |A — B| as fol-
lows: Supposd[s] € |B| whenevers € |Al. Lets € |Al andr € ||B||. We have
(AXA[X]){(s. 1) ~p (s, M)o]({s. 1)1 ~p t[slr € 1 and thus AxtX)(s ) €
1L since 1 is saturated. Finally, note also that these two abbreviations satisfy
(AXA[X]) ® S ~g, t[S].

The reason why the correspondence betwéen> B| and|Al — |B| is only
up to equivalence comes from the fact that the realizability interpretation presented

10
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Figure 4: Decomposing Krivine’s interpretation

above incorporates the negative translation discussed in Section 4. This negative
translation, particularly the treatment of implication, relies on conjunction intro-
duction and elimination (cf. proof of Theorem 4.3) which appears here as pair
formation and projections.

Example 6.1 Consider the interpretation of the closed formirgn)

Int)i= N (N (IS(@) — SL+a)l) x (SO x ISM)I)) — L
SeMk—7~ aeM
where nis the numerdh1+...+0. LetSe MX = 77, s€ Naem(1S(@) — S(1+a)|)
and r € |S(0)| be fixed. We have that a witness fot(n) must be a closed term t
such thafte s)er € |S(n)|. For instance, this could béf.x.f"(X), where £x := x
and ™1x:= f e f"(x).

Definition 6.2 (Krivine realizability) For every fixed choice af, a closed term t
is said tolL-realizeAift € |A], i.e. if tse 1L whenever  ||A]l.

We often omitiL and just write t realizesA". If 1L := 0 then|A| is either the set
of all closed terms or the empty set, and we get the usual notion of a formula being
either true fAl being the whole set) or fals&¥ being empty). We are interested in
closedi-terms thati-realizeA (i.e. belong tdA|) no matter the choice af. Those
programs capture the computational content of the formula A

Theorem 6.3 ([8]) Let the base saturated setbe fixed. Each proof df rqor A
can be associated with &term {X] such that, for allp andd € |I'|, we have

td] € |A].

Proof. Observe that for ajp such thap(P) = 1. we have

11



(i) te A, ifand only ift € {(A)p — P},
(i) tellAll, ifand only ift € {(A)p},.

The result then follows from Theorems 4.3 and 5.11]

The realizability interpretation above describes a procedure for associating
computational information (in the form of a closg@derm) to each proof in classi-
cal second-order arithmetic (see Figure 4).

Our presentation of Krivine’s realizability interpretatiorffdrs from Krivine’s
[8] with respect to two points. First, we only nestéindardclosedi-terms in order
to define realizers, whereas Krivine [8] uses also so-calledessega pair of a
A-term and astack. Second, our version of the interpretation of Peirce’s law does
not require continuation terntg andk;, but can be witnessed by a standastrm
(see proof of Theorem 6.3).

The reason we do not need the continuation tererendk; for the realizability
interpretation is because those can be defined as:

cc = AFIA=BI2A K IAL £y AXIBIL ()0, X)
and forr € ||B||
K = AyIAIXIIBII.(y)Or.
It follows that the corresponding reductions arandk, (used in [8]) are derivable

cctr ~ t(k.,r) ki(t, S) ~ tr

7 Krivine’s Interpretation of Countable Choice

In this section we briefly revise Krivine’s interpretation [8] of (the integer relativi-
sation of) thesecond-order countable choice

CACy @ J°F(VX(A(X, Fx) = YXAX, X))

considering our reformulation of Krivine’s realizability interpretation. The inter-
pretation is split into two steps. The second step is discussed in Section 7.1, while
the first is the interpretation of (the integer relativisation of) fil&-order count-

able choice

CAC; : A°FVYX(Z(x, f(X) — YyZ(X, y)).

The existence of the functiohis in fact an abbreviation for the existence of a set
F of pairs of numbers describing the graphfoi.e.

12



A°F(Func(F) A YX(Yy(F (X, y) — Z(X, y)) = YyZ(X, y)))

where the formul&unc(F) is ¥Yn, mo, (AL, F(n,m) — mg = my). We argue
that €AC1)'"™ is derivable in second-order arithmetic as follows. The funckon
can be produced by minimisation as

F(X,y) := ~Z(X y) A VK" <y Z(X, K).

It is easy to show thaF as defined above satisfi€sinc. Moreover, assuming
Int(x), the implication

Vy™(F (X y) = Z(X,y)) Fe2 Yy'"™Z(X, y)

can be proven using induction (i.e. the assumptit(x)) and Peirce’s law: for
y = 0 the statement reduces to an instance of Peirce’s [Z(x,@) —» 1) —
Z(x,0)) — Z(x,0). The induction hypothesis is used to elimingie< y Z(x, K) in
F(x, y), so that we again get an instance of Peirce’s law.

7.1 Full countable choice

The second step in Krivine’s interpretation of countable choice is as follows. As-
sume a fixed surjection — t, of the set of Church numerals info. Letu — ny

be some inverse of this mapping, so that= u. We add to thet-calculus a new
constanjy with the respective conversion rule

X<u7 r> s u<nU’ r>

i.e. y simply applies the argumeni to its corresponding Church numeralg
(whereny is reminiscent of LISP'guuote u). The goal is to produce a term which
realizescAC,. Krivine notices thatAC; is a consequence of the first-order count-
able choic&AC;, and the following principl&

KA 1 3°SH¥YX(YNA(X, Sxn) — YXA(X, X))

which we will refer to aKrivine’s axionf. It basically says that for any property
A(X) there exists a family of seS, , such that quantifications over sets satisfying
A can be reduced to quantification over the indexing set of the family ofSsgts
As shown above, the integer relativisationod{C, is easily derivable in second-
order logic and we are left with the integer relativisatiorkeéfto interpret.

Instead of interpretingqA)'™ one can actually produce a realizer for the stronger
statement

3TakeZ(x,n) := A(X, Sxn. Y) andFy := Sy ¢y
4The interpretation of this principle has also been investigated in [9], in connection with a Curry-
Howard correspondence for intuitionistic set theory.

13



() ISYX(YNMA(X, Sxn) = YXA(X, X))
i.e. the variablex does not need to be relativised and the existential quantification
overS can be treated intuitionistically.

Theorem 7.1 ([8]) x € |(*).

Proof. Recall that when working with second-order arithmetic we always assume
that the set of individuals in the modellis We will show thaty belongs to

U NN IIntn) = A Sxn)l x IYXAX X)I) — 1L).

S(.)ENK—)T xeN neN
First, note that for each indexof the enumerationty), if
(r € IVXAX X)) A (tadn, 1) ¢ 1)

for some ternt, then for some mapping € NK — 7~ we also have’ € ||A(x, S)||
and €.(n,r’) ¢ 1), for some (potentially dierent)r’. By countable choice there is
a sequence of mappin@s, such that
(x) if Ar((r € IVXAX, X)[]) A (tad{n,r) ¢ 1)) then
Ar((r € [IAX Sxn)ll) A (tn(n, 1) € 1L)).

We show thaj belongs to the set

XﬂN (( nﬂN [Int(n) — A(X, Sxn)l X IVXAX, X)I)) — 1L).

Fix xand letu € (N [Int(n) — A(X, Sxn)| andr € [[VXA(x, X)||. By the assumption

on u and the faur:]fl\lthatnu = u (recall thatn — t, is an enumeration of-terms

andu — ny is inverse of that), we hav&n,,r) = tp,(ny, ry). We must show that
tn,(Nu, ) € 1, which impliesy(u,r) € 1. Assumet, (ny,r) ¢ 1. By (x) we get

that for somea”’ e ||A(X, Sxn,)ll we havet, (ny,r’) ¢ 1. This is a contradiction to
our assumptionon (=ty,). O

In the presence of classical logic and first-order countable choice, Krivine’'s
axiom is in factequivalentto second-order countable choice. One direction was
discussed above. For the other direction, notice kAatollows by cAC, from

Vx3A°S(y)(YnA(X, Sp) — YXA(X, X))
which is classically equivalent to the trivial statement

YX(YSYNA(X, Sp) — VXA(X, X)).

14
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Figure 5: Alternative interpretation oP

8 Conclusions

We have seen how a slight variant of Krivine’s classical realizability interpretation
can be viewed as a negative translation followed by a standard intuitionistic realiz-
ability interpretation. In particular, using this variant one does not need continua-
tions constructs. Throughout the paper we have tried to make clear the important
role of the integer relativisation of the first-order quantifiers.

One important advantage of splitting Krivine’s interpretation into two steps is
that we can, alternatively, perform the integer relativisation between the negative
translation and the realizability interpretation (see highlighted path of Figure 5).
This can be beneficial, given that the negative translation doedfieot the induc-
tion axiom. One then has to produce realizersAerin the sense of the simpler
intuitionistic realizability interpretation, and not in the sense of the classical real-
izability interpretation.

One might also wonder whether it is possible to translate Krivine's second-
order interpretation of countable choice (via the use ofgihete into a language
based on finite types. This does not seem to be helpful since the reduction from
countable choice t&rivine’s axiom(see Section 7.1) takes for granted the first-
order countable choice. In the setting of finite types, however, already the first-
order countable choice is strong enough to require the full power of bar recursion.
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