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Abstract

We present a constructive procedure for extracting
polynomial-time realizers from ineffective proofs ofΠ0

2-
theorems in feasible analysis. By ineffective proof we mean
a proof which involves the non-computational principle
weak K̈onig’s lemmaWKL, and by feasible analysis we
mean Cook and Urquhart’s systemCPVω plus quantifier-
free choiceQF-AC. We shall also discuss the relation be-
tween the systemCPVω+QF-AC and Ferreira’s base theory
for feasible analysisBTFA, for whichΠ0

2-conservation of
WKL has been non-constructively proven. This paper treats
the case of weak K̈onig’s lemma for trees defined byΠ0

1-
formulas. Illustrating the applicability ofCPVω + QF-AC
extended with this form of weak König’s lemma, we indi-
cate how to formalize the proof of the Heine/Borel covering
lemma in this system. The main techniques used in the pa-
per are G̈odel’s functional interpretation and a novel form
of binary bar recursion.

1. Introduction

With the aim of capturing the notion offeasibly construc-
tive proof, Stephen Cook [4] introduced in 1975 the equa-
tional system of arithmeticPV (polynomially verifiable)
whose definable terms are polynomial-time computable.
Later, Samuel Buss [2] developed the subsystem of clas-
sical arithmeticS1

2 and showed that the provably recursive
functions of his system are polynomial-time computable.
Buss [3] also defined an intuitionistic version ofS1

2, called
IS1

2, and an intricate variant of Kleene realizability to prove
that everyΠ0

2-theorem ofIS1
2 has a polynomial-time com-

putable realizer. Having as one of the motivations to sim-
plify Buss’ proof, Cook and Urquhart [5] defined systems
both extendingPV to higher types, obtainingPVω, and ex-
tendingPV with intuitionistic and classical logic, obtain-
ing IPV andCPV. A combination of those two extensions
gives the systemsIPVω andCPVω. Those systems have the

∗Basic Research in Computer Science, funded by the Danish National
Research Foundation.

same property ofIS1
2 that the provably recursive functions

are polynomial-time computable. Cook and Urquhart then
developed variants of Kreisel’s modified realizability and
Gödel’s functional interpretation for the systemIPVω. The
latter via negative translation applies also toCPVω. Given
a proof of aΠ0

2-theorem ofIPVω or CPVω, these interpre-
tations provide a simple procedure for extracting from this
proof a polynomial-time algorithm realizing the theorem.

The main contribution of the present paper is to extend
Cook and Urquhart’s functional interpretation, via nega-
tive translation, ofCPVω to include quantifier-free choice
QF-AC and the non-computational principle weak K¨onig’s
lemmaWKL (for Π0

1-definable trees). The interpretation
uses a novel form of binary bar recursion. We also show
that the type one terms of the systemIPVω extended with
this new form of bar recursion are polynomial-time com-
putable. This gives a procedure for extracting polynomial-
time realizers from proofs involving weak K¨onig’s lemma
of Π0

2-theorems over the basic theoryCPVω + QF-AC.
Weak König’s lemma states that every infinite binary

branching tree has an infinite path. This principle relies on
the existence of non-computable functions, in the sense that
it does not hold in a model where all functions are recursive.
As it is well-known in Reverse Mathematics [20],WKL is
actually equivalent1 overRCA0 to numerous mathematical
principles, such as the existence and the attainment of the
infimum by a continuous function on a closed interval and
the Heine/Borel covering lemma. Nevertheless, Friedman
showed (in an unpublished paper) that theΠ0

2-theorems of
RCA0 + WKL are precisely the same as those ofPRA, in
the sense that if∀x∃yA(x, y), forA quantifier-free, is prov-
able inRCA0 + WKL then there exists aprimitive recursive
programh such that,PRA ` A(x, hx). In another words,
RCA0 + WKL is Π0

2-conservative overPRA.
Friedman’s original proof of thisΠ0

2-conservation result
is based on non-constructive model-theoretic arguments.
Therefore, it does not provide a procedure for extracting

1The subsystem of second order arithmeticRCA0 was first defined in
[8], it contains the usual axioms for successor, addition and multiplication;
induction restricted toΣ0

1-formulas and comprehension for recursively de-
fined sets.



the primitive recursive programh from a given proof of a
Π0

2-theorem inRCA0 + WKL. Friedman’s result was later
extended by Harrington, who proved (also in an unpub-
lished paper)Π1

1-conservation ofRCA0 +WKL overRCA0.
The first effective version of Friedman’s result was given
by Sieg [19] using cut-elimination, a Herbrand analysis and
a simple form of Howard’s majorizability for primitive re-
cursive terms. In [12], a combination of G¨odel’s functional
interpretation with Howard’s hereditary majorizability for
functionals in all finite types is developed to extract uni-
form bounds for∀∃-theorems in analysis from proofs based
on various analytical principles includingWKL. In particu-
lar, [12] yields effective forms of extensions of Friedman’s
WKL-conservation result to higher types (cf. also [1], The-
orem 7.1.1).

In 1985, Sieg [18] proposed the problem of finding math-
ematically significant subsystems of analysis whose class
of provably recursive functions consists only ofcomputa-
tionally feasibleones. Fernando Ferreira took up the chal-
lenge and in [6] defined the systemBTFA (Base Theory for
Feasible Analysis) whose provably recursive functions are
precisely the polynomial-time computable functions2. As
done by Harrington forRCA0, Ferreira then showed that by
addingWKL (for bounded formulasΣb

∞) toBTFA one does
not get any newΠ1

1-theorems. This shows a nice correspon-
dence with respect toWKL between the systemRCA0, on
the level of primitive recursion, andBTFA, on the level of
polynomial-time. This correspondence can be expressed in-
formally as

RCA0

RCA0 + WKL
∼ BTFA

BTFA + Σb∞-WKL
.

The congruity between the two sides of the equation
goes even further. Ferreira’s proof ofΠ1

1-conservation, as
the fore-mentioned Friedman’s proof, is also based on non-
constructive model-theoretic arguments and does not give a
procedure for extracting, from a proof

BTFA + Σb
∞-WKL ` ∀x∃yA(x, y),

whereA is quantifier-free, apolynomial-time functionh
such thatA(x, hx) holds, for allx. We present here an
effective procedure for extracting polynomial-time realiz-
ers from proofs ofΠ0

2-theorems involvingWKL in feasible
analysis (here meaningCPVω + QF-AC). It is important
to note, however, that Ferreira proved conservation ofWKL
for trees defined by formulas of the kind∀zT (w, z), T be-
ing abounded formula. This paper treats the case whereT
is aquantifier-free formula.

2Kohlenbach [13] also developed a subsystem of analysis (including
WKL) whoseΠ0

2-theorems have polynomialbounds, i.e. if ∀x∃yA(x, y),
A quantifier-free, is a theorem of the system, then there exists effectively
a polynomialp(x) such that∀x∃y ≤ p(x)A(x, y).

The rest of the article is organized as follows. In Sections
2 and 3 we present the systemsBTFA andCPVω +QF-AC,
in order to discuss the relation between them. The reader
with knowledge onCPVω can start reading from Section 4
where we introduce the new form of bar recursion, which
is going to be used in the interpretation of weak K¨onig’s
lemma forΠ0

1-definable trees,Π0
1-WKLω. In Section 4 we

also prove that this new bar recursion does not give rise to
any new functions when added toIPVω. The functional in-
terpretation of the negative translation ofΠ0

1-WKLω is given
in Section 5. For illustrating the applicability of thisΠ0

1-
form of weak König’s lemma, in Section 6 we indicate how
to formalize the proof of Heine/Borel covering lemma in the
systemCPVω + QF-AC + Π0

1-WKLω.
A functional interpretation of the negative translation of

weak König’s lemma, using a different form of binary bar
recursion, had already been given by Howard [9]. Howard’s
proof, however, does not carry through to the feasible set-
ting under consideration since it is based on exponential
search. We comment further on that in Section 7.

2 Preliminaries

In the following we shall assume some basic knowledge
on negative translation and functional interpretation. For
a smooth introduction to functional interpretation see [1].
We shall use Kuroda’s variant of negative translation which
places double negations after universal quantifiers and in
front of the whole formula. As shown in [16], the different
variations of negative translation are over intuitionistic logic
equivalent. The negative translation of a formulaA will be
denoted byAN .

Thefinite typesare defined inductively as follows:N is
a finite type, and ifρ andσ are finite types thenρ → σ is
also a finite type. We shall write. . . : ρ to denote that term
. . . has typeρ.

The two feasible subsystems of analysis discussed here,
BTFA and CPVω + QF-AC, have two main differences.
Firstly, BTFA is based on second order logic, and there-
fore, has variables and quantifiers for sets, whereas, the the-
ory CPVω + QF-AC is based on the language of function-
als of all finite types, and therefore, has variables for each
finite type. The second main difference is that the stan-
dard model ofBTFA is based on finite 0-1 sequencesW,
while CPVω +QF-AC has standard model based on the nat-
ural numberN (which we shall confuse with the basic finite
type). We shall in this paper define both theories and discuss
briefly the relation between them.

In a feasible setting, where the length of the representa-
tion matters, it is often useful to work with 0-1 sequences
as basic elements. Therefore, when dealing withCPVω we
shall view natural numbers as finite sequences of 0-1, via
their binary expansion. Given a numberx we shall denote



the i-th bit of the binary expansion ofx by x(i). We often
writex0 instead of2x, andx1 instead of2x+1. In general,
given a sequence of bitsbn, . . . , b0 ∈ {0, 1} (with bn = 1)
we shall writebn . . . b0 for the natural number having such
binary expansion. Moreover, we write1n for the sequence
of n bits 1 and we use|x| for the length of the binary ex-
pansion ofx, i.e. dlog2(x+ 1)e. Although the function| · |
is not a basic symbol in either systemsBTFA or CPVω, it is
easily definable and we shall use it freely.

In Section 2.1 (onBTFA) we shall talk about three re-
lations on binary words:x ⊆ y for x being a prefix ofy;
x�y for |x| being less than or equal to|y|, andx ⊆∗ y say-
ing thatx is a subword ofy, i.e. if there exists az such that
zx ⊆ y. When treatingCPVω we usex ≤ y for x being
a number smaller than or equal toy, andx � y for say-
ing that the binary expansion ofx is a prefix of the binary
expansion ofy. In both systems only the first relation is a
primitive symbol, the others are definable relations. Based
on those relations, in this paper the reader shall encounter
three sorts of quantifiers:

• unbounded quantifiers: Qx(. . .),

• bounded quantifiers: Qx� t(. . .) in BTFA andQx ≤
t(. . .) in CPVω, and

• sharply bounded quantifiers: Qx ⊆ t(. . .), Qx ⊆∗
t(. . .) in BTFA andQx � t(. . .), Qx ≤ |t|(. . .) in
CPVω.

Informally, bounded quantifiers correspond to an ex-
ponential search, while sharply bounded quantifiers cor-
respond to linear or quadratic search. A formula isΠ0

1

(resp.Π0
2) if it is of the form∀xA(x) (resp.∀x∃yA(x, y)),

whereA is a quantifier-free formula. While in stronger
systems, such asRCA0, a quantifier-free formula is one
not containing unbounded quantifiers, in the feasible set-
ting aquantifier-freeformula is one containing only sharply
bounded quantifiers.

Notice that, via paring, formulas of the kind
∀x∃yA(x, y), with A being quantifier-free, are as general
as whenA is aΣ0

1 formula.

2.1 The systemBTFA

Ferreira’s systemBTFA [6] has as basis the first order
theoryΣb

1-NIA, whose standard model is the set of finite
strings over{0, 1} denoted byW. The language ofΣb

1-NIA
contains symbolsε, 0 and1, function symbolsx _ y for
the concatenation ofx with y (we usually omit_ and just
write xy), x × y for the concatenation ofx with itself |y|
times, and a binary relation symbol⊆ for string prefix.

The class ofsubword quantification-formulas(sw.q.-
formulas for short) is the smallest class of formulas closed
under boolean operations and subword quantification, i.e.

quantification of the formQx ⊆∗ t(. . .), where the vari-
ablex does not occur in the termt. The class ofbounded
formulas Σb

∞ is the smallest class of formulas contain-
ing the sw.q.-formulas and closed under boolean operations
and bounded quantification, i.e. quantification of the form
Qx � t(. . .), where the variablex does not occur in the
termt. The class of formulas of the form∃x� t A,A being
a sw.q.-formula, is denoted byΣb

1.
Besides fourteen basic axioms governing the behaviour

of the non-logical symbols,Σb
1-NIA contains theinduction

schemeΣb
1-IND

A(ε) ∧ ∀x(A(x) → A(x0) ∧A(x1)) → ∀xA(x),

for A ∈ Σb
1. The theoryΣb

1-NIA is equivalent, in a sense
that could be made precise, to Buss’ theoryS1

2 (cf. [2]),
and therefore, has the property that everyΠ0

2-theorem has
a polynomial-time realizer. The second order theoryBTFA
is obtained fromΣb

1-NIA by adding thebounded collection
principleΣb∞-BC

∀x� t∃yA(x, y) → ∃z∀x� t∃y � zA(x, y),

for A ∈ Σb
∞, andcomprehension∆0

1-CA{ ∀x(∃yA(x, y) ↔ ∀z¬B(x, z)) →
∃S∀x(x ∈ S ↔ ∃yA(x, y)),

for A,B ∈ Σb
1.

Lemma 2.1 ([6]) LetA be a bounded formula. If

BTFA ` ∀x∃yA(x, y)

thenΣb
1-NIA ` ∀x∃yA(x, y).

In the feasible setting of second order arithmetic
WKL(T ) is formulated as

Tree∞(T ) → ∃S(Path∞(S) ∧ ∀w(w ∈ S → T (w)),

whereS is a set variable,Tree∞(T ) is defined as{ ∀w, v(T (w) ∧ v ⊆ w → T (v))∧
∀y∃w(|w| = |y| ∧ T (w)),

andPath∞(S) as

Tree∞(w ∈ S) ∧ ∀x, y ∈ S(x ⊆ y ∨ y ⊆ x).

If Φ is a class of formulas, we shall denote byΦ-WKL
the principleWKL(T ) for T restricted to the classΦ.

Using non-constructive model-theoretic arguments, Fer-
reira showed thatBTFA extended withΣb

∞-WKL has the
same∀∃Σb

∞-theorems asΣb
1-NIA.

Theorem 2.2 ([6]) LetA be a bounded formula. If

BTFA + Σb
∞-WKL ` ∀x∃yA(x, y)



thenΣb
1-NIA ` ∀x∃yA(x, y).

As a corollary, one obtains that the provably recursive
functions ofBTFA + Σb

∞-WKL are polynomial-time com-
putable.

Corollary 2.3 LetA be quantifier-free. If

BTFA + Σb∞-WKL ` ∀x∃yA(x, y)

then there exists a polynomial-time computable functionh
such thatA(x, hx) holds, for allx.

The main result of this paper is an effective version of
Corollary 2.3 for the systemCPVω + QF-AC + Π0

1-WKLω.
In the following section we present the systemCPVω +
QF-AC and we explain how it relates toBTFA.

3 The systemCPVω + QF-AC

The systemCPVω [5] builds on the equational calculus
PVω. The language ofPVω contains a single constant sym-
bol 0, for the number zero. The function symbols ofPVω,
with their intended interpretation, are

• s0(x), s1(x) extendsx to the right with the bit0 and1,
respectively, i.e.s0(x) = 2x ands1(x) = 2x+ 1;

• Parity(x) returns0 if the rightmost bit ofx is 0;

• b 1
2xc chops off the rightmost bit ofx;

• Chop(x, y) chops off|y| bits from the right ofx;

• Pad(x, y) appends|y| zero bits to the right ofx;

• Smash(x, y) returns the bit ’1’ followed by |x| times
|y| zeros.

• Cond(x, y, z) returnsy if x is zero andz otherwise.

PVω has infinitely many variables for each finite type.
Unless stated otherwise, the variablesx, y, z andw shall
have typeN. PVω has also a recursorR of type

N → (N → N → N) → (N → N) → N → N.

The terms ofPVω are formed out of variables and func-
tion symbols as usually done in the typedλ-calculus.PVω

contains only the predicate symbol= for the basic typeN.
The formulas ofPVω consists of all equationss = u, where
s andu are terms of typeN. The axioms ofPVω are the
defining equations for the function symbols listed above, the
axiom forhigher type limited recursion on notationHTLRN

R(x, h, g, y) =




x if y = 0
g(y) if |t| > |g(y)|
t otherwise,

wheret abbreviatesh(y,R(x, h, g, b 1
2yc)), and further ax-

ioms for normalisingλ-terms. Moreover,PVω has four
rulesR1ω–R4ω governing the behaviour of the equality
predicate and a rule for induction on notation (for further
details see [5]).

The systemIPVω is defined as follows. The terms of
IPVω are those ofPVω. The predicate symbols ofIPVω are
= and≤, for typeN only. The atomic formulas ares = u
ands ≤ u, wheres andu are terms of typeN. The for-
mulas ofIPVω are built out of atomic formulas via logical
connectives and quantifiers for each finite type. The logical
axioms of IPVω are the usual ones for many-sorted intu-
itionistic predicate logic. The non-logical axioms ofIPVω

consist of all the theorems ofPVω plus3

• x ≤ y ↔ Lessequ(x, y) = 0,

• x = s0b 1
2xc ∨ x = s1b 1

2xc,
• Cond(x, a, b) = c↔

(x = 0 ∧ a = c) ∨ (¬(x = 0) ∧ b = c),

and theinduction axiomPINDω(A)

(A(0) ∧ ∀x(A(b1
2
xc) → A(x))) → ∀xA(x),

whereA is of the form∃y ≤ t (s = u) and all the free-
variables oft have typeN. At this point we note that in
IPVω , for each quantifier-free formulasA(x) one can build
a terms such thatIPVω ` A(x) ↔ sx = 0.

The systemCPVω is obtained fromIPVω by adding all
instances of the law of excluded middleA ∨ ¬A.

In the following we shall make use of two further logical
principles, namely, thescheme of quantifier-free choice

QF-AC : ∀x∃yA(x, y) → ∃h∀xA(x, hx),

andMarkov’s principle

MPω : ¬¬∃xA(x) → ∃xA(x),

where in both casesA is a quantifier-free formula, and in the
case of Markov’s principle the variablex can be of arbitrary
type. We shall use Markov’s principle in connection with
the negative translation of the systemCPVω + QF-AC.

As shown in [5], the systemCPVω contains a set offea-
sible coding functions. Therefore, one can for instance re-
place a sequence of quantifiers of the same kind by a singe
quantifier. For simplicity, we shall state results without
making it explicit that tuples of quantifiers are allowed.

The next lemma is a simple extension of the negative
translation ofCPVω in IPVω + MPω, given in [5] (Lemma
10.3), to include quantifier-free choice.

3Lessequ(x, y) is a definable function ofPVω which represents the
characteristic function of the inequality predicate.



Lemma 3.1 The theoryCPVω + QF-AC has a negative
translation inIPVω + MPω + QF-AC.

Since the functional interpretation ofMPω andQF-AC
are trivial, we obtain the following extension of Theorem
10.4 of [5].

Lemma 3.2 LetA be a quantifier-free formula. If

CPVω + QF-AC ` ∀x∃yA(x, y),

then from this proof one can extract a closed termt of type
N → N of IPVω such thatIPVω ` ∀xA(x, tx).

Moreover, since the terms of typeN → N of IPVω

denote polynomial-time computable functions, we get a
procedure from extracting polynomial-time realizers from
proofs ofΠ0

2-theorems inCPVω + QF-AC.

3.1 The systemCPVω + QF-AC + Π0
1-WKLω

As we have mentioned, the theoryBTFA has as standard
model the set of finite 0-1 sequencesW. This setting is par-
ticularly convenient for working with weak K¨onig’s lemma,
since the prefix relation⊆ is one of the primitives of the sys-
tem. The systemCPVω, however, has the natural numbers
as its standard model. Therefore, based on the bijective fea-
sible mappingη (which assigns0 to ε and positive numbers
to their binary expansion) between natural number and the
set of strings1{0, 1}∗∪{ε}, we define the prefix relation�
in CPVω as

x � y :≡ η(x) ⊆ η(y),

wherex, y are numbers. The prefix relation⊆ in W is a
partial order which can be depicted as

11
1

iiiiii 10 . . .

ε
iiiiii
UUUUUU

0 UUUUUU 01 . . .

00

Notice that the binary words of the form0{0, 1}∗ are not
valid binary representation of any natural number. There-
fore, under the mappingη, in N the prefix relation� gives
rise to the partial order

7
3

jjjjjj 6 . . .

1
jjjjjj
TTTTTT

0
jjjjjj 2

TTTTTT 5 . . .

4

A predicateT on numbers is said to define atree if it
is closed under the prefix relation�, i.e. wheneverT (w)
holds andv � w thenT (v) also holds. Formally

Tree(T ) :≡ ∀w, v(T (w) ∧ v � w→ T (v)).

A function f : N → N is an infinite path if f(y) ∈
{0, 1}, for all y, andf(0) = 1, i.e.

Path(f) :≡ ∀y(f(y) ≤ 1) ∧ f(0) = 1.

We require thatf(0) = 1 since we shall view initial seg-
ments off as numbers, and finite 0-1 sequences of the form
0{0, 1}∗ do not correspond to valid natural numbers.

We say that an infinite pathf belongs to a treeT if every
initial segment off belongs toT , i.e. ∀yT (fy), where for
a given pathf , the functionf : N → N is defined as

f(y) =
{

0 if y = 0
f(0)f(1) . . . f(1|y|−1) otherwise.

Therefore, in the feasible setting of finite types weak
König’s lemma for a predicateT is expressed as{

Tree(T ) ∧ ∀y∃w(|w| = |y| ∧ T (w)) →
∃f(Path(f) ∧ ∀yT (f(y))).

The predicatesTree andPath can actually be omitted via
the use of feasible operations (cf. [12]). The transformation

T t(w) :≡ ∀v � wT (v),

makes an arbitrary predicateT into a treeT t. It is easy to
show that ifT (w) is already a tree, thenT t(w) holds iff
T (w) holds. Moreover, via the transformation

fp(y) =
{

1 if y = 0
Parity(f(y)) otherwise,

we can make an arbitrary functionf : N → N into an in-
finite pathfp. Again, if f is already a path thenfp(y) =
f(y), for all y. Using these transformations, weak K¨onig’s
lemma (in the language of higher types)WKLω(T ) can be
stated as

∀y∃w(|w| = |y| ∧ T t(w)) → ∃f∀yT t(fp(y)). (1)

Since the formulation of weak K¨onig’s lemma changes
from the setting of second order arithmetic to the setting
of finite types, we use the superscriptω for the latter. The
two definitions, however, can be easily shown to be equiv-
alent, i.e. one can define feasible functionals which given
the characteristic function of a pathS produces a pathf ,
and vice-versa.

The transformationf 7→ fp used above actually allows
for quantification over infinite paths. Therefore, in the fol-
lowing we takef as a meta-variable for infinite paths, and
omit the transformationfp.

In order to carry out the functional interpretation of
WKLω(T ) it will be particularly convenient to treat it as
an axiom (rather than an axiom schema)

WKLω : ∀gWKLω(gw = 0).



TheΠ0
1-form of weak König’s lemma is then stated as

Π0
1-WKLω : ∀gWKLω(∀z(gwz = 0)).

We shall use the superscriptω to differentiate between
Ferreira’s and our formulation of weak K¨onig’s lemma.

3.2 BTFA versusCPVω + QF-AC

In the systemCPVω, using limited recursion on notation,
sharply bounded quantifiers can be absorbed by quantifier-
free matrices. Therefore, forA quantifier-free, the subword
quantification ofBTFA (which is definable inCPVω) can
be also absorbed by two applications of recursion, since
Qx ⊆∗ tA(x) can be rewritten as

Qy � tQx � yA(Interv(x, y, t)),

where the feasible functionInterv(x, y, z) returns all the
bits ofz between|x| and|y|. In this way, the sw.q.-formulas
of BTFA correspond to quantifier-free formulas ofCPVω.
The predicate� can be easily defined using≤, so that the
formulasΣb

1 of BTFA correspond to formulas of the form
∃x ≤ t(s = u) in CPVω.

Moreover, the systemCPVω + QF-AC proves compre-
hension for∆0

1-formulas

∀x(A(x) ↔ ¬B(x)) → ∃h∀x(hx = 0 ↔ A(x)),

whereA,B ∈ Σ0
1, which corresponds precisely to∆0

1-CA
of BTFA, and the following weaker form of bounded col-
lection

∀x � t∃yA(x, y) → ∃z∀x � t∃y ≤ zA(x, y),

for A ∈ Σ0
1. It does not seem to prove, however, the more

generalΣb∞-BC.
One advantage ofCPVω + QF-AC over BTFA is the

availability of higher order functionals. In this way one can
talk about transformation between numbers (objects of type
N), real numbers and continuous functions (objects of type
N → N) in a straightforward way, as opposed to using en-
codings with sets.

In Section 6 we shall illustrate how the systemCPVω +
QF-AC can be used for practical applications by sketching
the proof of Heine/Borel theorem inCPVω + QF-AC +
Π0

1-WKLω.

4 A simple form of (binary) bar recursion

Howard showed in [9] that a simpler form of Spector’s
[21] bar recursion was sufficient for giving a functional
interpretation of the negative translation of weak K¨onig’s
lemma. Howard’s proof, however, does not seem to be suit-
able for weak theories such asIPVω, since it makes essential
use of exponential search (cf. Section 7). For our conserva-
tion result we shall add to the language ofIPVω the constant
(of binary bar recursion)B having type

((N → N) → N) → (N → N) → N → N,

and the axiom

B(Y,W, z) =




z if |Y ŵz| ≤ |wz |
or |wz | 6= |z|

B(Y,W, z1) otherwise,
(2)

wherewz abbreviatesWz, and for a givenw ∈ N, the func-
tion ŵ : N → {0, 1} is defined as

ŵ(y) :=
{
w(|y|) if |y| < |w|
0 otherwise.

The functionŵ denotes the infinite 0-1 sequence ob-
tained by extending the binary expansion ofw with 0’s. In
order to make sure that̂w always represents an infinite path
(as defined in Section 3.1), we need to consider the partic-
ular casew = 0, since0̂(0) = 0. Therefore, we change
slightly the definition ofŵ and set̂0 = 1̂. It is important to
note, moreover, that for the function̂w : N → {0, 1} only
the length of the argument is considered. This shall often
be used since in a feasible setting functions should be com-
puted in polynomial-time on the length of the input. In fact,
in those cases it is more convenient to use the tally part of
N instead. We abstain from that in order to keep the basic
setup ofCPVω unchanged.

The main result of this paper is based on the fact that
IPVω is closed under the “rule version” of (2), i.e. ifΨ is
a closed term of typeN → (N → N) → N andΦ a closed
term of typeN → N → N then there exists a closed term
t : N → N such thattx = B(Ψx,Φx, 0), for all x. In fact,
even 0-1 oracles are allowed (cf. Lemma 4.4).

Remark 4.1 Note that the functionalB only applies the
first argumentY to 0-1 functions. Therefore, ifY1 and
Y2 coincide on all 0-1 functions thenB(Y1,W, z) =
B(Y2,W, z), for all W andz.

Notice that the functionalB(Y,W, z) can also be viewed
as the unbounded search

min y ≈ z1n (|Y ŵy| ≤ |wy| ∨ |wy| 6= |y|), (3)

wherewy abbreviatesWy andy ≈ z1n means thaty has the
same binary expansion asz followed by a finite number of
ones. The functionalB has a flavour of bar recursion since
the sequenceswz , on the “hat transformation” of which the
functionalY is applied, gets longer and longer as the recur-
sion progresses.

For justifying this new form of binary bar recursion (2)
(or, equivalently, for bounding the search (3)) we can, for
instance, assumeboundedness of functionals of type(N →
N) → N on 0-1 functions

BND : ∀Y ∃u∀α(∀v(α(v) ≤ 1) → |Y α| ≤ |u|),



which is a consequence of uniform continuity for function-
alsY : (N → N) → N on the Cantor space. The idea is
that, since|z| keeps increasing in the recursion (2), either
|wz| 6= |z| for somez, or the length ofwz also increases,
and eventually reaches the length of the boundu. The con-
dition |Y ŵz| ≤ |wz | is then satisfied. We shall needBND in
the verification of our interpretation of weak K¨onig’s lemma
(cf. Theorem 5.1).

For the rest of this section the variablex should be
viewed as a sequence of variables of typeN andα as a se-
quence of variables of typeN → N.

Lemma 4.2 ([10], Lemma 5.4)For any closed termΨ of
typeN → (N → N) → N of IPVω there exist constants
c1 andc2 such that for anyx and 0-1 functionsα we have
|Ψxα| ≤ |x|c1 + c2.

Using Lemma 4.2 one can show thatIPVω is closed un-
der the “rule version” of (2).

Lemma 4.3 Let Ψ be a closed term of typeN → (N →
N) → (N → N) → N andΦ a closed term of typeN →
(N → N) → N → N of IPVω. Then, there exists a closed
termt : N → (N → N) → N such that for allx and for all
0-1 functionsα, txα = B(Ψxα,Φxα, 0).

Proof. Let Ψ andΦ be fixed. We shall definet by lim-
ited recursion on notation. Letc1 and c2 be such that
(cf. Lemma 4.2) for allx and 0-1 valued functionsα
andβ, |Ψxαβ| ≤ |x|c1 + c2. For a givenx, let dx de-
note the number having binary expansion1|x|

c1+c2 , then
|dx| = |x|c1 + c2. We then define two functions

hx,α(y, z) :=
{
v if |Ψxαŵv| ≤ |wv| or |wv| 6= v
z otherwise,

where v abbreviatesChop(dx, y) and wv abbreviates
Φxαv; andgx(y) := dx, i.e. gx is a constant function with
valuedx. Finally, we definetxα := R(0, hx,α, gx, dx).
2

The following lemma shows that arbitrary terms of type
N → (N → N) → N (on 0-1 functions) ofL(IPVω) + {B}
denote polynomial-time computable functions with boolean
oracles.

Lemma 4.4 Let t[x, α] be a term ofL(IPVω)∪{B} of type
N, having as only free-variablesx andα, such that (for sim-
plicity) B is always applied to zero on the third argument.
Then, there exists a polynomial-time computable functionh
(with 0-1 oracle) such that for all inputx and for all 0-1
oraclesα, h(x, α) = t[x, α].

Proof. The proof follows closely the normalisation argu-
ment given in the proof of Proposition 4.2 in [14]. In the fol-
lowing we saypolynomial-time computablefor polynomial-
time computable with 0-1 oracle. We start by carrying out

all possible logical reductions on the termλx, α.t[x, α]. We
get a termλx, α.t1[x, α] such thatt1[x, α] is of the form:

• 0 or xi (xi in the tuplex). We are done.

• g(t2[x, α]), where g is either one ofα or a func-
tion symbol of IPVω . By induction there exists a
polynomial-time computableh2 such that for all inputs
x and 0-1 oraclesα, h2(x, α) = t2[x, α]. Hence, for
all inputsx and 0-1 oraclesα, h(x, α) := g(h2(x, α))
does the job.

• R(t2[x, α], t3[x, α], t4[x, α], t5[x, α]). The terms
t2[x, α] andt5[x, α] are again typeN, and by induc-
tion there are polynomial-time computable functions
h2(x, α) and h5(x, α) which coincide witht2[x, α]
and t5[x, α] on all inputsx and 0-1 oraclesα. The
termst3[x, α] andt4[x, α] are of typeN → N → N

andN → N respectively. We therefore add an extra
variablesy and z to bring them to typeN. By in-
duction there are polynomial-time computable func-
tions h3(x, y, z, α) and h4(x, y, α) which coincide
with t3[x, α]yz andt4[x, α]y on all inputsx, y, z and
0-1 oraclesα. Then, for all inputsx and 0-1 oraclesα
the polynomial-time computable function

h(x, α) := R(h2xα, λy, z.h3xyzα, λy.h4xyα, h5xα)

does the job.

• B(Ψ2[x, α], t3[x, α], 0). The termΨ2[x, α] is of type
(N → N) → N. Let β be a variables of type
N → N. By induction there exists a polynomial-
time computableh2 such that for all inputsx and 0-
1 oraclesα, β, h2(x, α, β) = Ψ2[x, α]β. The term
t3[x, α] is of type N → N. Adding an extra vari-
able to bring it to typeN we obtain, by induction
hypothesis, that there exists a polynomial-time com-
putableh3 such that for all inputsx, y and 0-1 oracles
α, h3(x, y, α) = t3[x, α]y. By Lemma 4.3 and Re-
mark 4.1, there exists a polynomial-time computable
h such that for all inputsx and 0-1 oraclesα

h(x, α) = B(λβ.h2(x, α, β), λy.h3(x, y, α), 0)
= B(Ψ2[x, α], t3[x, α], 0) 2

5 Interpreting Π0
1-WKLω

We shall now present the functional interpretation (via
negative translation) ofCPVω +QF-AC+Π0

1-WKLω in the
systemIPVω extended with a constant symbolB, BND and
the axiom (2).

Theorem 5.1 The theoryCPVω + QF-AC + Π0
1-WKLω

has a functional interpretation (via negative translation) in
IPVω + BND + (2).



Proof. By Lemma 3.1, we just need to show that

IPVω + MPω + QF-AC + (∀gWKLω(∀z(gwz = 0)))N

has a functional interpretation inIPVω + BND + (2). The
functional interpretations ofMPω andQF-AC are trivial.
Let T (w, z) abbreviate∀v � w(gvz = 0). The negative
translation of∀gWKLω(∀z(gwz = 0)) gives{ ¬¬∀g¬¬(∀y¬¬∃w(|w| = |y| ∧ ∀z¬¬T (w, z)) →

∃f∀y, z¬¬T (f(y), z)),

which is equivalent to{ ∀g(∀y¬¬∃w(|w| = |y| ∧ ∀zT (w, z)) →
¬¬∃f∀y, zT (f(y), z)),

Since we shall give realizers independently of the treeg we
henceforth omit the quantifier overg. Then{ ∀y¬¬∃w(|w| = |y| ∧ ∀zT (w, z)) →

¬¬∃f∀y, zT (f(y), z),

has the functional interpretation (in three steps){ ∀y, h∃w(|w| = |y| ∧ T (w, hw)) →
∀Y, Z∃fT (f(Y f), Zf),

{ ∃W∀y, h(|Wyh| = |y| ∧ T (Wyh, h(Wyh))) →
∀Y, Z∃fT (f(Y f), Zf),




∀W,Y,Z∃y, h, f(|Wyh| = |y| ∧ T (Wyh, h(Wyh)) →
T (f(Y f), Zf)

)
.

Uniformly in W , Y , Z we producey, h andf satisfying

|Wyh| = |y| ∧ T (Wyh, h(Wyh)) → T (f(Y f), Zf).

Define h(w) := Z(ŵ) and letwy abbreviateWyh. Now,
we need to producey andf satisfying

|wy| = |y| ∧ T (wy, Z(ŵy)) → T (f(Y f), Zf).

Define y := B(Y, λy.Wyh, 0) . By BND one can prove
that

|Y ŵy | ≤ |wy | ∨ |wy | 6= |y|.
Finally, define f := ŵy . Then, assuming|wy | = |y|, we

havef(Y f) � wy , and

T (wy, Zf) → T (f(Y f), Zf)

follows from the fact thatT is a tree. 2

Combined with Lemma 4.4, Theorem 5.1 gives an effec-
tive procedure from extracting polynomial-time algorithms
from WKL-proofs ofΠ0

2-theorems in feasible analysis.

Corollary 5.2 Let A be a quantifier-free formula. From
a proof of∀x∃yA(x, y) in the systemCPVω + QF-AC +
Π0

1-WKLω one can extract a polynomial-time computable
functionh such that for allx, A(x, hx) is true.

Proof. Via negative translation and functional interpreta-
tion one can extract a termt of L(IPVω) + B such that
IPVω + BND + (2) ` ∀xA(x, tx). By Lemma 4.4 the
recursorB can be eliminated fromt, giving rise to a termh
of L(IPVω) such thatIPVω + BND + (2) ` ∀xA(x, hx).
Scarpellini’s [17] type structure of all continuous set-
theoretical functionalsC is a model ofIPVω + BND + (2).
Therefore, sinceC coincides with the full type structure
in the types zero and one, the conclusion of the corollary
follows. 2

We have used Lemma 4.4 in the above proof in order
to verify that the termt denotes a polynomial-time com-
putable function. Notice, however, that in the present con-
text the binary bar recursionB has the same computational
behaviour as the limited recursion on notation by which it
gets replaced. Therefore, for practical applications, when
one is only interested in obtaining a polynomial-time com-
putable realizer for the givenΠ0

2-theorem, we can directly
use the programt, avoiding the normalization procedure
used in Lemma 4.4.

We can strengthen Corollary 5.2, by noticing that
Lemma 4.4 holds even for termst which have 0-1 oracle
variables.

Corollary 5.3 LetA be a quantifier-free formula. From a
proof of∀α∀x∃yA(α, x, y) in the systemCPVω +QF-AC+
Π0

1-WKLω one can extract a polynomial-time computable
function (with 0-1 oracle)h such that for all 0-1 oraclesα
and inputx, A(α, x, hαx) holds.

Notice that, in order to turn the above results intoconser-
vation results, one needs furthermore to show thatIPVω +
BND + (2) is Π0

2-conservative overIPVω.

6 The Heine/Borel covering lemma

In this section we indicate how to formalize inCPVω +
QF-AC + Π0

1-WKLω the proof of the Heine/Borel covering
lemma. Our formalization follows closely the ones given in
[7] (Theorem 1) and [20] (Lemma IV.1.1).

In the systemCPVω we shall represent thetally part of
N (to be used as unary numbers) asT. Those are natural
numbers having binary expansion in the form1n. In the
following we use variablei, j andn to range overT, and
p, q to range overQ. Real numbersR are represented via
functionsψ : T → Q satisfying

∀i, j(i ≤T j → Abs(ψ(i)−Q ψ(j)) ≤ 2−i),



whereAbs(q) returns the absolute value of a rational num-
ber. A real numberψ1 is said to besmallerthanψ2, written
ψ1 <R ψ2, if

∃i(ψ1(i+T 1) + 2−i <Q ψ2(i+T 1)).

The Heine/Borel covering lemma says that if a sequence
of open sets(ψL

i , ψ
R
i )i∈T covers the unit interval[0, 1], then

an initial segment of the sequence already covers[0, 1].

Theorem 6.1 The following is provable inCPVω +
QF-AC+ Π0

1-WKLω. Given two sequences of real numbers
(ψL

i )i∈T and(ψR
i )i∈T, if

∀ψ ∈ [0, 1]∃i(ψL
i <R ψ <R ψ

R
i )

then∃n∀ψ ∈ [0, 1]∃i ≤ n(ψL
i <R ψ <R ψ

R
i ).

Proof. For each positive numberw ∈ N (having binary ex-
pansionbmbm−1 . . . b0 with bm = 1) we define two rational
numbers, written for simplicity in radix notation,

pw := 0.bm−1 . . . b0,

qw := 0.bm−1 . . . b0 + 2−m.

For completeness we setp0 := p1 andq0 := q1. That is,
for each positive numberm we have partitioned the unit
interval[0, 1] into 2m subintervals of length2−m. Let

T (w) :≡ ¬∃i(i ≤ |w| ∧ ψL
i <R pw <R qw <R ψ

R
i ).

It is easy to show thatT (w) defines a tree, i.e. ifT (w)
holds andv � w thenT (v) also holds. Moreover, notice
thatT (w) is Π0

1. Assuming that

(∗) ∀ψ ∈ [0, 1]∃i(ψL
i <R ψ <R ψ

R
i )

we claim thatT has no infinite path. For the sake of contra-
diction, assumef is an infinite path inT . Define then the
real numberψ as (in radix notation)

ψ(n) := 0.f(1) . . . f(n−T 1).

Note that for allj ∈ T, pfj ≤ ψ ≤ qfj , and moreover, as
j increases bothpfj andqfj converge toψ. For suchψ, let

i be as in assumption(∗), i.e. ψL
i <R ψ <R ψR

i . Let n be
so large thati ≤ n andψL

i <R pfn <R qfn <R ψR
i . Then

¬T (fn), which proves the claim. By weak K¨onig’s lemma
it follows thatT is finite. Letn ∈ T be such that

∀w(T (w) → |w| < n).

Therefore

∀w(|w| = n→ ∃i ≤ n(ψL
i <R pw <R qw <R ψ

R
i )),

which implies

∃n∀ψ ∈ [0, 1]∃i ≤ n(ψL
i <R ψ <R ψ

R
i ). 2

7 Related results and open problems

As mentioned above, Howard [9] gave a functional inter-
pretation (of the negative translation of)WKL using a dif-
ferent form of binary bar recursion, namely

BH(Y, z) =
{

0 if Y ẑ ≤ |z|
t otherwise,

wheret = 1 + max{BH(Y, z0),BH(Y, z1)}. Note that
BH(Y, 0) can also be defined in terms of unbounded search
as

minn∀w(|w| = n→ ∃z � w(Y ẑ ≤ |z|)). (4)

As opposed to the matrix of the search (3), which is asso-
ciated toB, the above unbounded search apparently requires
at each step of the computation an exponential search. This
reflects, as we shall see, the fact that Howard interpretation
of WKL does not take bounded quantifier into considera-
tion.

In the following letT (w) abbreviate∀v � w(gv = 0).
Consider the negative translation ofWKL (over intuitionis-
tic logic andMPω)4

∀g(∀n¬¬∃w(|w| = n ∧ T (w)) → ¬¬∃f∀nT (fn)).

In a system where exponential search is available, the
bounded quantifier∃w(|w| = n ∧ . . .) can be absorbed by
quantifier-free matrices and functional interpretation does
not witness it. Hence, in this case the functional interpre-
tation of WKLN asks forn andf (uniformly in g andY )
realizing

∀g, Y ∃n, f(∃w(|w| = n ∧ T (w)) → T (f(Y f))).

The functionalBH is used to realizen by settingn :=
BH(Y, 0). Then, in order to producef satisfying

∀g, Y ∃f(∃w(|w| = n ∧ T (w)) → T (f(Y f))),

one looks for aw of lengthn such thatT (w) holds. If
suchw is found, meaning that the premise holds, letv be
the shortest prefix ofw such thatY v̂ ≤ |v|. We then set
f := v̂, so that (sinceY f = Y v̂ ≤ |v| ≤ n) the conclusion
also holds. If no suchw exists we can safely takef to be an
arbitrary path.

It is important to note that Howard’s work concerns sys-
tems in which exponential search is available, i.e. bounded
quantifiers can be absorbed by quantifier-free matrices. In
the present context of feasible analysis, negative transla-
tion and functional interpretation need to take such quanti-
fiers into consideration. Notice, however, that by taking the
quantification overw into consideration we obtain a new

4In stronger settings the operationf is normally defined as

f(n) =

{
0 if n = 0
f(0) . . . f(n− 1) otherwise.



functional as input (W in the proof of Theorem 5.1) which
we could use to realizey andf in a feasible way, by using
the simpler search (3) instead of (4).

An interesting follow-up of the present paper is to find
ineffective proofs ofΠ0

2-theorems which can be formalized
in CPVω+QF-AC+Π0

1-WKLω, and carry out the extraction
of polynomial-time algorithms (cf. [15] where, in the con-
text of classical analysis, a proof based onWKL has been
analyzed providing the first effective realizer for the theo-
rem). It would be also interesting to investigate whether
Kohlenbach’s proof ofWKL elimination can be translated
to the feasible setting, by making a more careful treatment
of bounded quantifiers.

The author has been recently informed by Avigad
that Sieg’s proof ofWKL elimination was successfully
translated to the feasible setting by Kauffmann [11],
using an extension ofS1

2 with 0-1 function variables and
quantifier-free choice for those functions. In fact, by mak-
ing use of Parikh’s lemma, Kauffmann obtains an effective
WKL elimination for trees defined by arbitrary bounded
formulas. This provides another effective procedure for
extracting polynomial-time realizers fromWKL-proofs in
feasible analysis, via an initial elimination ofWKL from
the proof. It should be noticed, however, that our algorithm
produces a polynomial-time realizerdirectly from the
originalWKL-proof, without having to initially go through
the elimination procedure. Moreover, our approach has a
finite type theory as basis and enjoys thefull modularity
of the negative translation and functional interpretation,
whereas Sieg’s proof, as well as Parikh’s lemma, are based
on cut-elimination.
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